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Abstract— The second law of thermodynamics dictates that
an isolated system will evolve towards a state of maximum
entropy. Simulation engines such as the lattice gas automata
(LGA) allow for the study of systems moving towards equilib-
rium by simulating micro- and macro-scale dynamics. In the
last few decades, many problems in fields such as image pro-
cessing have been formulated as constrained maximum entropy
optimization problems, suggesting that LGA methods could
provide a new method for solving such problems. However, the
proper methods for representing arbitrary data in the LGA
and how the LGA can be used to solve constrained maximum
entropy optimization problems is not clear. This project aims
to answer these questions through a combination of passive
and active simulation methods in the LGA. In the passive
scenario, chambers are initialized with an amount of particles
corresponding to some data value; we then want to see if
by running the system to equilibrium we can infer that data
value. In the active scenario, chambers are initialized with an
amount of particles proportional to gray-scale pixel value, and
we develop a method for constraining maximum entropy to
reconstruct images from blurred measurements with missing
data.

I. INTRODUCTION

In this paper we will present two applications of the
principle of maximum entropy applied to problems in the
LGA. First we will leverage the LGA to investigate what a
system approaching equilibrium, or maximum entropy, can
tell us about its initial state. This leads to an investigation of
diffusion processes and flow rates for a series of connected
chambers. We will show that by measuring flow rates we
can determine both the initial state of the system as well as
its maximum entropy solution. An application of this is, for
example, determining the relationship between a set of data
points. By measuring flow rates between chambers we know
something about the initial state, and by running the system
to equilibrium we can say something about how the initital
state of data corresponds to the average state of all data.

We will refer to this first method as passive” because the
system itself is not being perturbed; we are just measuring
its properties. In our second method, we take an “active”
approach, so named because we take measurements and then
perturb the system depending on the values of these measure-
ments. Such an active approach allows us to apply constraints
to the system, which is useful for performing constrained
optimization problems when the objective function to be
maximized is entropy. Using an active approach, we develop
and show results for a maximum entroy image reconstruction
in the LGA.

II. PASSIVE METHODS FOR DATA ESTIMATION

The LGA, absent of modeling physical properties such
as temperature or gravity, is capable of representing the
maximum entropy solution of a uniform random variable. For
data encoded as particles in a series of connected chambers,
as in Figure 1, the maximum entropy solution will then be
obtained as the average number of particles in each chamber.
Therefore, maximum entropy can encode the average of a
set of data, but can it in some way encode individual data
values?
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Fig. 1: Conceptual illustration of how arbitrary data could
be encoded in particles initialized in seperate chambers in
LGA. In each chamber, the number of particles initially is
proportional to the value of the data relative to other data in
the set.

To answer this question, we can look at flow rates between
interconnected chambers as a system approaches equilibrium
(equal density in each chamber). The relationship between
particle flow rates and concentration gradients is captured
by Fick’s Laws of Diffusion [6], which state that the two
measures are related by a proportional constant, D:

dg d?¢

=D— 1
dt dz? M



where ¢ is the concentration of the diffusing substance.
Therefore, if we are able to measure the flow rates of
particles between a set of chambers, we should be able to
determine how many particles are in one chamber relative
to the number of particles in the other chamber. Such a
local measurement that is representative of the overall state
of the system could be useful in constructing a “demon”
or reversible computation engine wherein initial states are
preserved through an irreversible process. However, whether
or not this is possible in the LGA is not clear, so the
following experiments were performed to confirm Fick’s
Laws.

A. Flow Rate Experiments

We tested Fick’s Laws of Diffusion in the LGA using
the simple 2-chamber setup shown in Figure 2. In this
experiment, we varied the number of particles initialized
in the left chamber and ran the system to equilibrium,
estimating the flow rate along the way. We estimated the
flow rate by counting the number of particles in a chamber
between two time steps and dividing by the time interval.
It is worth noting that a shorter statistical computing step
size actually increases the noise in the flow rate estimate. In
our experiments we set the statistical step size as At = 25
seconds so as to implicitly smooth out the flow rate estimate.
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Fig. 2: The 2-chamber LGA simulation that was used to
validate Fick’s Laws of Diffusion. The cross-sectional area
(or, vertical dimension) of the tube connecting chambers is
denoted as w.

Plotting the estimated flow rate against the difference in
number of particles between each chamber we obtain Figure
3, which shows a linear relationship with the slope given by
D in equation 1. By performing this same experiment and
setting a smaller cross-sectional area of the tube, w, we find
that the slope, D, also decreases. For a smaller opening we
have that over the same range of concentration gradients the
flow rate is lower; thus D captures how difficult it is for
particles to move from one chamber to the next.

Next, we considered whether the same method of estimat-
ing flow rates could be applied to a more practical statistical
computing area: the tube connecting the chambers. Running
the same experiment for an area with w = 10, we found that
the Fick’s Law relationship plotted in Figure 4 still holds but
with a less tight correlation.

The results of these experiments show that flow rate
measurements can be used to estimate particle gradients in
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Fig. 3: Fick’s Law fits for w = 4 (top) and w = 10 (bottom).
This plot shows that there is a linear relationship between
flow rate and concentration gradient, and that the slope, D,
of this relationship can be increased by increasing the cross-
sectional area of the tube connecting the chambers.

the LGA based on Fick’s Laws of Diffusion. These results
have a direct analog to describing current and voltage in
resistive elements in electric circuits. The plots in Figure
3 can be viewed as I-V curves, where flow rate and con-
centration gradient are analogous to current and voltage,
respectively. However, the possible saturation effect at higher
concentrations may suggest that particles flowing through
a constrained volume behave in a way more analogous to
the operation of MOSFET devices, which exhibit saturation
voltages. The existence of this saturation region also implies
that there will be a practical limit to the range of data values
that can be encoded in this manner.

B. Data Inference in the LGA

We return to the question of inferring encoded data values
by measuring flow rates between connected chambers in
a system approaching equilibrium. We have shown that
by measuring the flow rates we can estimate the particle
concentration gradient. An expression for determining the
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Fig. 4: Fick’s Law fit with flow rate measurements performed
in the tube connected the chambers. The linear relationship
predicted holds but with a less correlated structure.

relative concentration gradient between two chambers is the

following:

dn1

— =K(Cy-C 2

T (C2 1) (2)
To expand this expression to encompass a series of connected
chambers as in Figure 1 we can note that flow is conserved
across the system and that the flow in each chamber is a net
flow determined by flow between each adjacent chamber. We
can then express the flow out of the jth chamber in Figure
1 with the following equation:

d(;il = dng;“ - dné;“ = K(Ci+1—Ci)—K(C;—Ci—1)
3)
Now, if we take flow measurements from each chamber
we can set up a system of equations in the form Ax = b and
find x the particles initialized in each chamber. However, it
ends up being the case that A is a singular matrix for the
case where n connected chambers are encoding n unique
data points, which renders the system without a unique
solution for x. This is due to the fact that the densities
shown in figure 1 have no absolute reference for baseline
concentration. To remedy this problem, we used a different
method for encoding data in chambers, with one central
reference chamber to which all concentration gradients can
be compared; this is shown in figure 5. This setup allows for
unique estimation of x, the data encoded in each chamber,
which is provided in figure 5 with respect to the original data
shown in figure 1. Thus we have shown how one can use
the LGA to encode arbitrary data values and naively identify
them using the relationship provided by Fick’s Laws.

C. Discussion

A natural question to consider at this point is whether
this method for estimating data values encoded in the LGA
by way of measuring flow rates represents a computing
operation that is, in some sense, reversible. Consider the
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Fig. 5: Data encoding in chambers with a chamber for
absolute reference. This arrangement allows for the unique
estimation of x, the data encoded in each chamber, the result
of which is shown at the bottom.

2-chamber model presented in Figure 2. By the previous
methods we can estimate the initial conditions of the system
(particle concentration gradients) and also the maximum
entropy, steady state solution (averaged density) by making
local flow rate measurements. Hence, although the maximum
entropy solution is not one-to-one (i.e., the same average
density could be obtained by a number of initialized particle
configurations), we have preserved information by making
local measurements [7], [8]. Estimating the particle gradients
is, then, not strictly reversible, but we still have all the
information on both ends of the computation. How is this
possible?

One possible thermodynamic interpretation of these results
is obtained by considering the relationship between flow
rate, concentration gradient, and entropy. At the start of
a simulation, the system begins to move from a minimal
entropy state towards a maximal one, and those initial
flow rate measurements are most indicative of the particle
concentration gradient. At the end of the simulation, the
system is in a steady state with maximum entropy and zero
net flow between chambers, which is uninformative of the
initial concentration gradient. Thus, in evolving towards a
state of maximum entropy, the system has encoded its useful
work into the flow rates, which are informative of the initial



conditions of the system. This is what allows us to do
estimation of data encoded in the LGA.

III. ACTIVE METHODS FOR DATA ESTIMATION

In this section, we consider active methods of inference
in the LGA. These methods are “active” because particle
statistics are explicitly measured and particles are dynami-
cally added or removed depending on the measured statistics.
This violates the reversible computing properties of the
simulation, but allows the LGA to solve more interesting
problems.

A. Maximum entropy distributions

The maximum entropy method originated with Edwin T.
Jaynes’s seminal 1957 paper [4] that connected statistical
mechanics with information theory. Entropy itself is a mea-
sure of uncertainty, often computed in information theory for
a discrete random variable X with probability mass function

py =p(X = ;) as
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The base of the logarithm is often chosen to be 2, which
means the entropy has units of bits. Other bases can be
used. For example, if e is used as a base, the units of
entropy are in nats. More detail can be found in [2]. Here,
we satisfy ourselves with the intuition that entropy measures
uncertainty.

In information theory, a maximum entropy probability
distribution is one that is “least committal” given prior
information [4]. For example, if we have a discrete random
variable X with cardinality |X'|, then if we have no measure-
ments of the values that X can take on, then the maximum
entropy distribution is a uniform distribution: X ~ U(|X]).
That is, all values of X are equally probable. As another
example, when we only know the first moment x4 and second
moment o2 of a continuous random variable Y with sample
space ) = (—00,00), the maximum entropy distribution is
a normal distribution with mean p and variance 2.

Likewise, statistical mechanics says that physical systems
tend become more disordered over time. Jaynes showed that
thermodynamic entropy is equivalent to information theoretic
entropy. Thus, since the LGA is simulating a physical system,
it will always tend towards the maximum entropy solution.
If we somehow encode prior information from data into the
LGA, it is possible to exploit the maximum entropy property
to perform inference.

B. Maximum entropy image reconstruction

Here, we consider using the LGA to solve the interesting
problem of image reconstruction from blurred and/or missing
measurements using the maximum-entropy method. Gull
and Skilling present an overview of this method in [3],
and Skilling and Bryan present a general gradient-based
algorithm to solve this problem in [5]. Maximum entropy
has found wide application in image processing, tomography,
crystallography, and astronomy. To our knowledge, no one

seems to have tried using a lattice gas automata for maximum
entropy reconstruction.

The basic idea behind maximum entropy is to find the
image that is “least committal” given measured data. That
is, the maximum entropy image has the least amount of
correlation between the pixels. This property gives maximum
entropy the ability to fill in missing data as well as perform
deconvolution of a “true” image from a blurring response.

Let Dy be measured image data. The index k is one-
dimensional here for notational simplicity, and corresponds
to all 2-D locations in the image that have been measured.
Thatis, k € K = {(y, x) | data is measured at (y,z)}. If the
2-D indices in K span the entire image, i.e. y = 1,2,..., M
and z = 1,2,..., N, then there is no missing data. Also let
Ry be a blurring kernel, which could be the response of the
measurement system. !

The goal is to estimate the "true” M x N image data f;.
Again, 7 is a one-dimensional index for notational simplicity,
where i € 7 = {(y,z) |y = 1,2,...,.M; x =1,2,...,N}
To compute the entropy of a candidate image f;, we will
normalize it to be a joint probability distribution. Thus, define

I
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We can write maximum entropy image reconstruction as
a constrained optimization problem:

(&)

.. 1
maximize H(p) = ;pi log o
fi
o fi
Dy = ZRk,jfj +ny
J

subject to  p; = (6)

where nj is some noise that provides a tolerance on how
much measured data points (i.e., f for k € K) can deviate
from the original measured data values. Entropy is a concave
function, which means that it possesses a global maximum.

C. Maximum entropy image reconstruction in the LGA

Here we detail how image data is encoded in the LGA,
how constraints are enforced, and practical implementation
issues.

1) Encoding image data in the LGA: A M x N image
with measured pixel values Dy, k € K, can be encoded into
the LGA as follows.

This is shown schematically in figure 6. The particles
clouds are initialized using the rectNFi1l1 function, which
randomly creates particles in the specified region with a den-
sity between 0.0 and 1.0. Since all regions are the same size,
this is the same as initializing the region particles counts to
be proportional to measured data. The initial implementation
of this scheme also drew containing reflecting walls around

!For example, maximum entropy was successful in reconstructing images
from the Hubble space telescope when it first went up and had problems
with its measurement system. Using knowledge of the response the faulty
measurement system caused, maximum entropy was able to provide satis-
fying reconstructions of the images [1].



each region, with openings to chambers adjacent horizontally
and vertically. However, it soon became apparent during
testing that not using any chamber walls produced superior
results. This is because the particles are less constrained
to move between regions, which is important as the LGA
approaches a maximum entropy state subject to constraints.

2) Regulating region particle counts in the LGA: Regula-
tion of the chambers is performed using a simple proportional
control algorithm. After the particles propogate using the
LGA ruleset at time step ¢, the control algorithm is applied
to each regulated region. In a regulated region, let Ny (t) be
the particle count in region k at discrete time step ¢. The error
between current particle count and desired particle count in
region k is Ej(t) = N — Ny (t), where N3 is the number
of particles that satisfies the constraint

N = > Ry,N; (7)
JES(Ry)

where S(Ry) is the support of the blurring kernel Ry. This
enforces the second constraint in (6). Said in words, this
constraint ensures that the estimated “true” data f;, when
passed through the blurring kernel, equals the measured data
Dy.

The control algorithm adds or removes a number of
particles proportional to the error as

Ni(t) = Ni(t) + K, - round[Ej (t)] (3)

where K, is the proportional gain and Ny (t) is the adjusted
number of particles for the next propogation step.

Regulation of region particle counts in the LGA essentially
implements the ny term in the second constraint in (6). The
variance of the noise is proportional to the “looseness” of
the controller, parameterized by a proportional gain K.

The actual addition or removal of particles is performed
as follows. For each particle location in the regulated region,
a random particle direction is chosen. The LGA encodes
the six particle directions as 6-bit one-hot binary strings, so
choosing a random direction consists of choosing a random
integer b uniformly from [0, 5], and the random binary string
is 20 If particles are to be removed, and the particle with the
specified direction exists, the particle is cleared by taking the
logical-XOR of 2° with the overall bit string and a counter
is incremented. If particles are to be added, and the particle
in the specified direction does not exist, the particle is added
by taking the logical-OR of 2° with the overal bit string
and a counter is incremented. The control algorithm loops
over locations in the region, adding/removing particles until
the counter equals the desired number of added/removed
particles.

D. Results for maximum entropy reconstruction using the
LGA

In this subsection we present two examples of maximum
entropy image reconstruction using the LGA: (1) reconstruct-
ing blurred text with missing data and (2) reconstructing an
everyday image with missing data. We use these examples
to perform an initial characterization of the K, parameter,
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Fig. 6: Schematic of encoding image data in the LGA.
Image data, shown on the left, is encoded as the number of
particles initially in a region. For measured data, the region
corresponding to the data is actively regulated. Missing data
is encoded as an empty region that is unregulated.
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Fig. 7: Maximum entropy reconstruction of a severely de-
graded text string. Top is the original image, middle is
Gaussian-blurred with 50% missing data, and bottom is LGA
maximum entropy reconstruction.

as well as the relative performance of image reconstruction
using the LGA.

1) Blurred text with missing data: For our first example,
we take the image in the top panel of figure 7. A 5 X 5
Gaussian blurring kernel of radius 3 is applied, and 50% of
the data is removed. The result is shown in the middle panel
of figure 7. The text is now unreadable. Using the algorithm
described in the previous section, the text is reconstructed
using maximum entropy in the LGA. For this example, K,, =
0.8, and the best result occurs after about 20 steps. These
parameters were determined experimentally to yield the best
results. The result of the reconstruction, which is shown in
the bottom panel of figure 7, is now readable, proving the
usefulness of maximum entropy in the LGA.

There are several explanations for why the LGA does
not achieve excellent results on this example. One reason is
the locality enforced by the LGA model. Within one time
step, particles can only drift between adjacent chambers.
However, in the usual implementation of maximum entropy
reconstruction, such locality is not present, and all pixels
can interact with all other pixels equally. Thus, the LGA
is limited in its ability to reconstruct images by this local
correlation. In fact, in a sense the LGA is not performing true
maximum entropy reconstruction, but only an approximation
of it. A potential fix for this would be implementing some
kind of “teleportation” between chambers. However, this
would make the LGA depart further from the physical system



Fig. 8: Bicycle reconstruction after 100 time steps, showing
blurriness.

it is supposed to simulate.

Another undesirable quality of the reconstructed images
using the LGA is the inherent noisiness. This is caused by
particles continuously jittering around, even in a state with
relatively high entropy. This problem may be solved in the
future by averaging LGA reconstructions over a number of
trials.

Yet another undesirable aspect of this example is that
the asymptotic performance is not ideal. Figure 8 shows
the LGA reconstruction output after 100 time steps. The
resulting image is quite blurry, though arguably readable. The
local correlation mentioned in the previous paragraph may
be causing the blurriness, preventing the LGA from finding a
better approximate maximum entropy solution. Another way
of improving this aspect may be averaging over multiple
reconstruction trials.

2) Everyday image with missing data: To better quantify
how well the LGA reconstruction is performing, we consider
the 64 x 64 Cameraman image in the upper left panel of figure
9. This image has a nice mix of large scale and small scale
features.

For a range of K, values, we ran the LGA maximum
entropy reconstruction for 7' = 80 time steps per K, and
measured the mean-squared error (MSE) and peak signal-to-
noise ratio (PSNR) between the reconstructed image and the
orignal image. MSE is computed as

MSE(f;) =Y (f; = f;)° (€
J
and PSNR is computed as

552
MSE(f;)
where fi is the estimated image and f; is the true original
image. Results are shown in table 1. It can be easily seen
that a K, close to unity gives ideal results, which makes
sense.

TABLE I: Objective metrics for reconstructions

K  MSE (lower is better)  PSNR (dB, higher is better)

0 2803.1 13.65
0.4 594.6 20.39
0.8 424.5 21.85
1.2 410.8 21.99
1.6 1297.2 17.00

One nice aspect of this example is that the asymptotic
state after many time steps is stable, unlike the first example.
Again, the output could be improved by averaging over many
trials.

(a) Original image

(b) K, =0, T-80 steps
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(e) K, = 1.2, T_80 steps ) K, = 1.6, T-80 steps

Fig. 9: Original Cameraman image (top left) and LGA
maximum entropy reconstructions for different K, (others).

E. Improvements and future work

There are several improvements we propose for maximum
entropy image reconstruction in the LGA.

First, it would be interesting to experiment with different
annealing schedules for K. That is, to make K, a function
of time step t. This would allow the control algorithm to be
“looser” at the beginning, allowing particles to flow more
easily between regions. As the LGA hones in on a solution,
K, could increase, locking in more optimal solutions. This
would be a simulated annealing approach. Second, it would
be interesting to allow more flow between different regions
and see what the LGA maximum entropy reconstructions
look like. Third, the effect of averaging over mutliple trials
should be attempted to see if better reconstructions with less
noise result. Fourth, currently noise is not being taken into
account in LGA maximum entropy image reconstruction.
The LGA may be suitable for image denoising in addition
to deblurring and reconstructing from missing data. Finally,
it would be interesting to extend LGA maximum entropy
reconstruction to blind image deconvolution, which would



be similar to the method mentioned by Gull and Skilling
in [3]. For blind deconvolution, there would be two large
chambers, one encoding the “true” image data and the other
encoding Ry, the blurring kernel. Currently knowledge of
Ry, is assumed, but in the blind setup the LGA may be able
to learn the maximim entropy solution for both f; and Rj.

IV. CONCLUSION

In this paper, we have described two methods of doing
inference in the lattice gas automata. Examination of passive
methods led to insights about how flow rates connect to
initial densities, and we explored how these properties can
be used for data estimation. Next, using an active method of
actually perturbing the LGA system, we demonstrated proof-
of-concept for maximum entropy image reconstruction using
the LGA, and proposed several avenues of further exploration
that could improve the results.

We hope that this unconventional approach to inference
may inspire other attempts, and that it may encourage
researchers to look at problems in new ways.
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