[1] Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE4(1), 18-27.

[2] Brillouin, L. (1950). Can the Rectifier Become a Thermodynamical Demon?. Phys. Rev., 78, 627-628.

[3] Nyquist, H. (1928). Thermal Agitation of Electric Charge in Conductors. Phys. Rev., 32, 110-113.

[4] Silagadze, Z. K. (2006). Maxwell's demon through the looking glass. arXiv preprint physics/0608114.

[5] Cernasov, A. (1981). Thermoelectric conversions based on noise rectification.

[6] Sokolov, I. M. (1999). Reversible fluctuation rectifier. Physical Review E, 60(4), 4946.

[7] Machura, L., Kostur, M., Talkner, P., Łuczka, J., Marchesoni, F., & Hänggi, P. (2004). Brownian motors: Current fluctuations and rectification efficiency.Physical Review E, 70(6), 061105.

[8] Munakata, T., & Suzuki, D. (2005). Rectification efficiency of the Feynman ratchet. Journal of the Physical Society of Japan, 74, 550-553.

[9] Reimann, P. (2002). Brownian motors: noisy transport far from equilibrium.Physics Reports, 361(2), 57-265.

[10] Kish, L. B., & Granqvist, C. G. (2012). Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PloS one,7(10), e46800.

[11] Dziurdzia, P. Modeling and Simulation of Thermoelectric Energy Harvesting Processes.

[12] O’Hanley, H. (2009). Performance of a Stove Mounted Thermoelectric Generator.

[13] Michal, V. (2006). Design of CMOS analog integrated circuits as readout electronics for high-TC superconductor and semiconductor terahertz bolometric sensors (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).