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1 Abstract

Proposed to simulate fluid flows for years, lattice gas automata (LGA) has shed lights on
studying a range of macroscopic aspects in thermodynamics due to the fact that in theory,
their dynamics are based on the same model as fluid flows. Specifically, interests in LGA
methods have led to formal expression of entropy as a thermodynamic quantity using the
Boltzman distribution, yet no work has exhibited that in practise, how the theoretical model
and actual entropy by definition in the LGA simulator can be compared. In this report, by
implementing the formal expression and the actual entropy in a two-chamber scenario in the
LGA framwork, we show that the theoretical model can precisely describe the actual entropy
of the system. Furthermore, we show systematically how other macroscopic quantities can
be simulated in the LGA model in order to study complex behaviors that could happen for
a Billiard-ball computer we could build using the LGA model.

2 Introduction

LGA is a type of cellular automaton used to sumulate fluid flows. From LGA, it is possible
to derive the macroscopic Navier-Stokes equations, forming a relatively new and promising
methods for the numerical solution of (nonlinear) partial differential equations. The fact
that different microscopic interactions can lead to the same form of macroscopic equations
is the starting point for the development of the LGA framework. In addition to real gases
or real liquids one may consider artificial micro-worlds of particles that live on lattices
with interactions that conserve mass and momentum. In our 2-D LGA model, we consider
a hexagonal lattice with six cells at each site such that one site is associated with each
link to the next neighbor node. These sites may be empty or occupied by at most one
particle with unit mass. Thus each cell has only two possible states; volocity and thereby
also momentum can be assigned to each particle by the vector connecting the site to its
next neighbor node along the link where the particle is located. The microscopic interation
is strictly local in that it involves only particles at a single site. The particles exchange
momentum while conserving the mass and momentum summed up over each node. After
this collision each particle propagates along its associated link to its next neighbor site. The
micro-dynamics consists on a repetition of collision and propagation. Microscopic values
of mass and momentum density are calculated by calculating the mean values over large
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spatial regions with hundreds to thousands of sites. Theories have shown that values do not
necessarily obey the Naview-Stokes equations if the third essential condition in addition to
mass and momentum conservation is absent. The third condition is that in 2-D, for example,
4-fold rotational symmetry (square lattice) is not enough whereas hexagonal symmetry
(triangular lattice) is sufficient. A further condition should be mentioned here, which is the
microdynamics must not possess more invariants than required by the desired macroscopic
equations becuase such so-called spurious invariants can alter the macroscopic behavior by
unphysical constraints.
With the complete logical basis we have introduced above, it is time for the comparison
between a theoretical derivation of the entropy from a thermodynamic perspective with
specification to hexagonal 2-D LGA and the actual instantaneous entropy by deifinition in
the hexagonal 2-D LGA. In the following sections, we sequentially introduce how we derive
the entropy formula in 2-D hexagonal LGA, and how we compute the actual entropy in the
same model without any additional assumptions to the model we have been considering.

3 Theoretical Model

3.1 The entropy formula

From a microscopic view, we try to express the entropy with only the pressure, heat capacity
and volumn which can be strictly defined in the 2-D hexagonal LGA model.
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3.2 The estimate of the actual entropy

Operationally, we may define local states of the LGA model at time step t, and we can eval-
uate the occurrence probability of a configuration s by measuring the occurrence frequency
over the whole lattice at each time step. A second measure of the occurrence probability is
the occurrence frequency at a given location of the LGA, over a large number of realizations.
At each run the LGA is initialized independently with a giben set of macroscopic constraints.
Therefore, we obtain a local estimate of entropy that changes with time. Moreover, in order
to make the result comparible with the theoretical result, we will need to obtain a global
estimate of the entropy. In fact, we know that particles in the LGA model consist of two
actions: propagation and collision, and if the propagation does not produce correlations
between the sites, then the global entropy H is entirely determined by the local entropy h:

H =
∑
x

h(x) (1)

where

h(x) = −
∑

p(x) ln p(x) ≈ −
∑
t

f(x, t) ln f(x, t) (2)

The summation holds for equation 1 because the uncertainty is in fact summable over the
entire 2-D hexagonal LGA space. And the estimate of local entropy would be more accurate
if the time window within which we average over the instantaneous entropy is small enough.
In the following sections, we will introduce the implementation of the comparison of the
entropy, and the evaluation of the result.

4 Implementation

In this secition, we use the 2-D hexagonal LGA simulator to implement the two proposed
expression of the entropy of a closed particle system. We adopt a reflecting wall scenario
where two chambers connect to each other by a tunnel. The system is closed without any
sink or source, therefore, there is no energy or mass exchange with outside. However, the
momentum is consistantly changing as particles will exchange momentum with the wall
under the assumption that the wall has an infinite mass. The initial state of the simulator
is shown below.

Figure 1: The initial state of the LGA
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At time step 500, we terminate the simulation, and the state of the simulator at this
time is shown below.

Figure 2: The final state of the LGA

We choose 5 as the number of time steps within which we average the occurrence times
to estimate the occurrence probability. We will look at the entropy of the right region.

5 Evaluation

We denote log(u) as the theoretical entropy of the particle system in the 2-D hexagonal
LGA model, and H as the global estimate of the entropy using an averaging scheme. The
result is shown below.

Figure 3: The comparison of the entropy estimated using two approaches, one based on
thermodynamic theories taking specifications in the 2-D hexagonal LGA into consideration
and the other based on the definition of entropy using information theory

6 Discussion

So far, we have introduced how the comparison of the entropy is done under a logical LGA
framework, which also has successfully proved that the physical definition of entropy can
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be enbodied by particles in a closed space as the two estimate curves are reasonably close
with some fluctuations associated with the theoretical estimate. The reason for that is the
theoretical model is an instantaneous one, which leads to unstable states when the number
of particles is small. In comparison, the estimate of the actual entropy with averaging
manifests significant stability, and proximity to the theoretical estimate as well.
This overall result reveals the potential on the simulation of other macroscopic quantities
that are essential in thermodynamic, if a certain logical estimate of that quantity can be
come up with like the one we use for estimating entropy, an estimation idea borrowed from
information theory.

7 Related Work

An arcicle about entropy estimation under the LGA model (”Entropy and Correlations in
Lattice Gas Automata without Detailed Balance”) uses a different approach where the no-
tion of locality is introduced to define quantities accessible to measurements by treating
the coupling between nonlocal bits as perturbation. It takes into account inhomogeneous
systems, while also considering homogeneous sites in the LGA model. Our work is a sim-
plification version with respect to the entropy estimator in that we don’t have to make
assumptions for the particles and states as it does, while our work achieves a bettwe esti-
mation. The result shown in that work is as follows.

Figure 4: The initial state of the LGA

The solid line corresponds to the exact theoretical model we have used, with strictly local
collision rules, and the dashed line denotes the estimation of entropy the paper uses with a
set of assumptions about locality. The comparison of the two plots, the one in our evalution
and the one the referred paper shown, reveals that our approach has the advantage while
retaining the simplicity.

8 Conclusion

In this paper we have shown that the estimation of entropy can be achieved by two different
approaches. The theoretical approach is derived from fundamental thermodynamic while
adapting to the specific conditions in the 2-D hexagonal LGA model, and the approach using
averaging has more smoothness and is based on the definition of entropy in information
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theory. We also compare our approach with another estimator which involves assumptions
about particles in LGA and the states they define that are associated with the sites. The
experiment result shows that our approach has a better coherence regarding two different
algorithms without any assumptions in addition to the LGA model we base all our work on.
In the future, it would also be desirable to explore ways of estimating other thermodynamic
quantities in the 2-D hexagonal LGA model, such that more interesting thermodynamic
simulations could be legitimized within this framework without solving complex partial
differential equations.
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