
CSE 599d - Quantum Computing
The Quantum Circuit Model and Universal Quantum Computation

Dave Bacon
Department of Computer Science & Engineering, University of Washington

So far we have talked about quantum computations involving only a few qubits. In this lecture I’d like to begin
to discuss how we might scale this up to more than a few qubits and to make something resembling a valid model
of computation. To do proper justice to this task, we should probably review the history of the classical theory of
computation, and the struggles which the early pioneers in quantum computing went though in order to define a valid
model of quantum computing. But we are lucky because a lot of the pitfalls and results have already been overcome,
so we won’t need to dwell on this work too much but instead get to the more important pragmatic question of what
is needed for a universal quantum computer.

So where to begin. The natural place to begin is probably back in 1936 with Alan Turing’s seminal paper “On
Computable Numbers, with an Application to the Entscheidungsproblem.” In this paper Turing defined a model of
carrying out a computation which is now called a Turing machine. What is a Turing machine? A Turing machine is
a machine which is designed (thought-experiment-like) to mimic a person (computer) who can change the contents
of a unlimited paper tape which is divided up into cells that contain symbols based on the local information about
the symbols on the tape and an internal state which the person keeps track of. To be more concrete, we can imagine
a machine which consists of four main components. The first is an infinite tape which has been subdivided into cells
into which symbols from some alphabet can be written and erased. Usually cells that have not been written on are
assumed to be filled with no symbol. The second component of the Turing machine is a head. This is a device for
reading and writing symbols onto the tape. This head will occupy only one cell of the Turing tape at a time. The
head can also move one cell up or down the Turing tape. Third the Turing machine contains a little local memory cell
called the state register of the Turing machine. This register will be in one of a finite set of different configurations
and represents the “state” of the Turing machine. There are usually special states for the Turing machine, like a halt
state which halts the action of the Turing machine. Finally there is the brains of the Turing machine, the controller.
The controller of a Turing machine is specified by an action table. This table tells the Turing machine how to act.
In particular it gives instructions for, given that the Turing machine state register has a particular configuration, and
the symbol read by the head of the Turing machine, what symbol to write on the cell underneath the head, what
direction to move the head of the Turing machine, and how to change the state of the Turing machine. It is easy
to imagine ourselves as a Turing machine. Indeed many office workers have often pondered if they are nothing more
than Turing machines in the great machine known as the corporation! But intuitively at least we can imagine that
we can specify instructions to a Turing machine which allow it to carry out important algorithmic tasks.

One of the most important points that Turing made in his 1936 paper was that it is possible to design a Turing
machine which is a universal Turing machine. Every Turing machine computes some (partial) computable function
from possible input strings specified on the symbol tape. So specific Turing machines compute specific partial com-
putable functions. But the action table which describes how a specific Turing machine works could also be written
as a series of symbols on the Turing tape. What Turing showed in 1936 was that it was possible to design a Turing
machine which could take the symbols on the Turing tape which specify the action table along with the symbols
specifying some input on the tape and that this Turing machine would compute the same computable function as
the Turing machine specified by the symbols on the Turing tape. This, of course, is just our modern notion of a
programmable computer. But what Turing did that was so great was that he formalized a model of computation, the
Turing machine, and then showed that the notation of programming could, in effect, be made rigorous.

At this point it is probably useful to introduce what is usually known as the Church-Turing thesis. The question
that this “thesis” address is whether the model of what can be computed by a Turing machine is indeed the most
general notion of what can be computed in the real world. Over the years there are have been numerous attempts
to construct other models of computers. For example the Church in the title of this thesis is not the Church of some
religion but the name of a guy who studied another model of computers called the lambda calculus. One might wonder
that this model is in any sense more powerful than the Turing machine: that is are there computable functions in
this other model which are not computable functions on the Turing machine. For the labmda calculus it was quickly
shown that the notion of computable functions for a Turing machine and for the lambda calculus are identical. The
Church-Turing thesis is the hypothesis that this will always be true: that every reasonable model of computation is
equivalent to the Church-Turing thesis. Now what the heck does reasonable mean here? Well certainly many have
argued that this has got something to do with physics. What has been discovered (so far) is that every model which
seems reasonable (including quantum computers) satisfies the Church-Turing thesis. Now this brings up two issues.
The first is whether there are models that are unreasonable which do not satisfy the Church-Turing thesis. Indeed

2

there are. For example there are computer models called hypercomputation which explicitly compute non-Turing-
computable functions. But we call these models not reasonable because I know of no way to physically construct
these devices (although certainly some have tried.) The lesson, of course, is that you should never name something
“hyper”-such-and-such. The second issue is whether, since reasonable has something to do with physics (i.e. how the
real world works) whether it is possible to “derive” the Church-Turing thesis from the laws of physics. This was one
of the original motivations of David Deutsch to consider quantum computers. So far I would say that this task has
not been achieved and indeed it is a fun problem to think about.

Now onward to the quantum world! If we are going to begin to contemplate quantum computers, perhaps the
best place to begin is to begin by constructing quantum Turing machines: i.e. Turing machines where the Turing
tape stores quantum information, the state of Turing machine is also quantum mechanical, the action table is now a
description of a valid quantum evolution of the quantum Turing machine. This is indeed one way towards quantum
computers and this can be done. However we will not choose this route. Why? Well because just like we don’t usually
talk about Turing machines when we talk about our everyday classical algorithms because it is too cumbersome, we
will use a slightly less formal language to talk about quantum computers. In particular we will work with what is called
the quantum circuit model of quantum computation. This model has, in some respects, drawbacks (in particular we
will need to talk about uniform quantum circuits), but is mostly a very nice, if not totally transparent, formalism.

I. THE QUANTUM CIRCUIT MODEL

OK, so what is a quantum circuit. A quantum circuit is a prescription for quantum operations we will perform
on some set of quantum data. So the first part of a quantum circuit is a description of what the quantum data is.
In most cases we will talk about n-qubit quantum circuits. In this case the quantum data are just n quantum bits.
But in full generality a quantum circuit model can be used to describe different quantum information, like three level
quantum systems, or qutrits. Having defined what the quantum circuit operates on, we can now describe a quantum
circuit. A quantum circuit is a prescription for carrying out the following procedure

1. (Preparation) Prepare an input quantum state |i〉,

|i〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (1)

where ij ∈ {0, 1}, i.e. we prepare a quantum state in the computational basis. This input is the classical
information which describes, for example the specific input to our quantum computation. Often times it also
contains padded state which are initiallized in some fiducial manner like all |0〉 in the computational basis.

2. (Evolution) Apply a unitary evolution due to some set of quantum gates, U1, U2, . . . , Ur For right now just think
of a quantum gate as a unitary evolution on k of the n qubits. We will fix k (i.e. make it not depend on n.)
Then the full unitary evolution of the quantum circuit is U = UrUr−1 · · ·U2U1.

3. (Output) Measure the state of the n qubits in the computational basis . The output of our quantum computation
is then the measured state |k〉. The probability of output |k〉 given the first two steps is |〈k|U |i〉|2.

Now one thing to be clear about from the onset is that this is not the most general quantum circuit we can construct,
but it turns out that every quantum circuit in more general settings can be turned into a quantum circuit of the
above form. One particular thing to notice is that often the classical input is sometimes used only to decide what
unitaries Ui are implemented. In this case we often think about this input as classical bits which are used as control
bits for these unitaries. Often we even get rid of this control notation in the circuit and it is implicit. A second thing
to realize is that at this point we haven’t really defined a quantum computer: we’ve just defined a machine which
manipulates quantum information (Think about the classical case. We input some information and get some output.
At the current stage in our development of circuits, any possible output is attainable. But nothing has been said
about a mechanical recipe for producing this manipulation.)

The notion of a quantum algorithm in the quantum circuit model is thus not just the above notion of a quantum
circuit, but is instead really embedded in the concept of a “consistent uniform quantum circuit family”. Lets take this
concept apart word by word. First what is a quantum circuit family. A quantum circuit family is a set of quantum
circuits. The elements of this set are labelled by an integer n. n is the number of qubits in the quantum circuit
on n qubits of which the circuit labelled by n is a member of. Thus a quantum circuit family is a set of circuits,
{C1, C2, C3, . . . } where Ci is a quantum circuit on i qubits.

Next what is a consistent quantum circuit family? A quantum circuit family is consistent if the circuit on n qubits,
Cn acting on an m qubit input, m < n padded by |0〉’s gives the same output as Cm does if we pad this output with
|0〉 as appropriate. Thus if we have a circuit family {C1, C2, C3, . . . }, then this family is called consistent if

Cn(|i〉m ⊗ |0〉⊗n−m) = (Cm|i〉m)⊗ |0〉⊗n−m (2)

3

Now often times our input does not grow in chunks of a single bit. Therefore we often apply consistent to mean
growing with our input size (for example ancilla bits may be needed for each new input bit, so we would only require
consistency across a growth of two bits in circuit size.)

Finally we come to the most subtle point in our definition of a quantum circuit family. That is the notion of
a uniform quantum circuit family. We call a quantum circuit family uniform if there is a classical algorithm for
constructing the quantum circuit Cn given classical input n, the size of the quantum circuit. In other words we
require that there be some sort of Turing machine which will tell us how to construct each element in the circuit
family. This is an important quality to keep track of, because with out it we would be able to bury uncomputable
computations in the gate construction itself. This would be very bad, so we require that our circuit families be
uniform.

So now we have a notion of what a quantum algorithm is in the quantum circuit model, it is a consistent uniform
quantum circuit family. If this was the end of the story, we would be in a wicked state of affairs: for every quantum
algorithm we would have to redesign our hardware (the quantum gates) each time we wanted to run a different
quantum algorithm. But luckily there is a way out of this pickle of a situation. We do this by defining a fully
universal quantum gate set:

A set of quantum gates G is a fully universal quantum gate set if for every ε > 0, a sequence of gates from
G can be used to produce a quantum circuit on n qubits to an accuracy of ε.

A. Accuracy of Quantum Gates

Well here we’ve gone ahead and used a concept, the accuracy of a unitary evolution, that we haven’t even defined.
So let’s fix that. Suppose that we desire to implement a unitary U but actually implement the unitary V . Then the
accuracy we will use is given by

E(U, V) = max
|ψ〉

||(U − V)|ψ〉|| (3)

where |||v〉|| =
√
〈v|v〉 and the maximization is over all normalized states. Now why do we use this definition of

accuracy? Because if we are given the state U |ψ〉 and then make a measurement as opposed to being given the
state V |ψ〉 and then make the same measurement, then the above quantity is a good measure of how different the
probabilities for the measurement can be. Let’s prove this!

Suppose that we measure in a basis {|φi〉}. The probability that we get outcome i if we have performed U is
Pr(i|U) = |〈φi|U |ψ〉|2 and if we have performed V is Pr(i|V) = |〈φi|V |ψ〉|2. Thus the difference in probabilities is

|Pr(i|U)− Pr(i|V)| = ||〈φi|U |ψ〉|2 − |〈φi|V |ψ〉|2|
= |〈ψ|U†|φi〉〈φi|U |ψ〉 − 〈ψ|V †|φi〉〈φi|V |ψ〉| (4)

To simplify notation denote P = |φi〉〈φi|. Then

|Pr(i|U)− Pr(i|V)| = |〈ψ|U†PU |ψ〉 − 〈ψ|V †PV |ψ〉|
= |〈ψ|U†P |δ〉+ 〈δ|PV |ψ〉| (5)

where |δ〉 = (U − V)|ψ〉. Next use the triangle inequality, |x+ y| < |x|+ |y|:

|Pr(i|U)− Pr(i|V)| ≤ |〈ψ|U†P |δ〉|+ |〈ψ|PV |δ〉| (6)

Recall that the Cauchy-Schwarz inequality is given by |〈v|w〉|2 ≤ 〈v|v〉〈w|w〉 (A quick proof: 〈v|v〉〈w|w〉 =∑
i〈v|i〉〈i|v〉〈w|w〉. Assume one of the i points along the |w〉 direction. Then

∑
i〈v|i〉〈i|v〉〈w|w〉 ≥

〈v|w〉〈w|v〉
〈w|w〉 〈w|w〉 =

〈v|w〉〈w|v〉 = |〈v|w〉|2) Applying the square root of the Cauchy-Schwarz inequality to our different of probabilities
yields:

|Pr(i|U)− Pr(i|V)| ≤ |||δ〉|| · ||PU |ψ〉||+ |||δ〉|| · ||V P |ψ〉|| (7)

But ||PU |ψ〉|| and ||V P |ψ〉|| are both less than unity (because they represent a projector onto a normalized state.)
Thus

|Pr(i|U)− Pr(i|V)| ≤ 2|||δ〉|| (8)

4

from which we can derive

|Pr(i|U)− Pr(i|V)| ≤ 2 max
|ψ〉

||(U − V)|ψ〉|| (9)

or

|Pr(i|U)− Pr(i|V)| ≤ 2E(U, V) (10)

Thus we see that E(U, V) bounds the maximum difference in probabilities for an outcome of measurement probabilities
given that we have implemented V instead of U . Thus it is a good measurement of “accuracy” for unitary evolutions.

One thing you might worry about in quantum computation is that if you build up a quantum circuit from a series
of quantum gates, then if these gates are not implemented with perfect accuracy, then the error in our circuit will
grow worse than the sum of the errors in implementing individual gates. Here we show that this is not true. Which is
nice because if it were not true we would be in trouble! Suppose that we start in the state |ψ〉. We wish to implement
the evolution U2U1, but instead we implement V2V1. Then the error is given by E(U2U1, V2V1). To bound this we
add a new term

E(U2U1, V2V1) = max
|ψ〉

||(U2U1 − V2V1)|ψ〉|| = max
|ψ〉

||(U2U1 − V2U1 + V2U1 − V2V1)|ψ〉|| (11)

where we can reexpress as

E(U2U1, V2V1) = max
|ψ〉

||(U2 − V2)U1|ψ〉+ V2(U1 − V1)|ψ〉|| (12)

Next use the triangle inequality |||x〉+ |y〉|| ≤ |||x〉||+ |||y〉|| so

E(U2U1, V2V1) ≤ max
|ψ〉

(||(U2 − V2)U1|ψ〉||+ ||V2(U1 − V1)|ψ〉||) (13)

Since we are maximizing over |ψ〉 and U1 and V1 just represent unitary rotations (and hence could only decrease these
two terms), we find that

E(U2U1, V2V1) ≤ E(U2, V2) + E(U1, V1) (14)

OK, so what does this tell us? This tells us that the errors in accuracy for a series of two unitary gates add. Induction
then shows that the errors in accuracy for a series of n unitary gates also add. This is good because it tells us that if
we want a unitary to implemented to a precision ε, then if this is done with N gates, then we need only implement
each gate to a precision ε

N . What could this have been? It could have been that one minus the accuracy multiplies.
This would mean that the success probability scales exponentially poorly in the errors of the individual gates. But
luckily this is not true, so we are safe!

B. Universal Set of Quantum Gates

Now that we have taken the important sidestep of defining the accuracy of a unitary transform, we can return to
our definition of a universal set of quantum gates

A set of quantum gates G is a fully universal quantum gate set if for every ε > 0, a sequence of gates from
G can be used to produce a quantum circuit on n qubits to an accuracy of ε.

Okay, so do universal sets of quantum gates exist? Let’s show one!
Suppose that our gate set consists of the single qubit gates T = exp(iπ8Z) and M = exp(iπ4Y) and the two qubit

gate the controlled-NOT CX . Note that this means that for our quantum circuit of n qubits we can implement H or
M on any of the n qubits and the controlled-NOT between any two qubits (actually we only need nearest neighbors
to be able to interact by a CX acting in either direction.) So now the question is, by applying gates from this set of
quantum gates on n qubits , can we approximate any unitary evolution on these n qubits.

Lets begin to answer this question by working with just a single qubit. First note that by powering T we can
implement any exp(iπ8 kZ) where k ∈ Z8 and by powering M we can implement any exp(iπ4Y j) where j ∈ Z4. Using
the fact that MZM3 = −X this implies that we can implement exp(iπ8 kX) for any k ∈ Z8 by MT 8−kM3. Further,
by using this gate for k = 2, we can similarly construct exp(iπ8 kZ), k ∈ Z8. In particular we can implement

exp(i
π

8
Y) exp(i

π

8
X) =

(
cπ

8
I + isπ

8
Y

) (
cπ

8
I + isπ

8
X

)
= c2π

8
I + i(sπ

8
cπ

8
(X + Y) + s2π

8
Z) (15)

5

where cπ
8

= cos
(
π
8

)
and sπ

8
= sin

(
π
8

)
. What does this represent? This represents a rotation in the Bloch sphere by

an angle θ given by cos
(
θ
2

)
= c2π

8
. This is a rather strange angle this θ. In fact this angle is an irrational multiple of

2π. The proof of this fact is given in Appendix A. Now if we are rotating about some axis n̂ by an irrational multiple
of 2π, then we can approximate any angle φ by a sequence repeated rotations about this angle. Don’t worry about
the efficiency of this right now! Thus to any accuracy we desire we can approximate gates which rotate around the
axis

n̂1 =
1√

c2π
8

+ 1
(cπ

8
, cπ

8
, sπ

8
) (16)

Similarly we can perform

exp(i
π

8
X) exp(i

π

8
Z) =

(
cπ

8
I + isπ

8
X

) (
cπ

8
I + isπ

8
Z

)
= c2π

8
I + i(sπ

8
cπ

8
(X + Z) + s2π

8
Y) (17)

which is a rotation about the axis

n̂2 =
1√

c2π
8

+ 1
(cπ

8
, sπ

8
, cπ

8
). (18)

by the same irrational θ. Thus by powering this operation we can again approximate any rotation about this axis.
Finally via a similar construction we can rotate about the axis

n̂3 =
1√

c2π
8

+ 1
(sπ

8
, cπ

8
, cπ

8
). (19)

Note that n̂1, n̂2, n̂3 are linearly independent. Finally we use the Trotter formula:[
exp

(
i
A

N

)
exp

(
i
B

N

)]N
= exp (i(A+B)) +O

(
1
N

)
(20)

Thus to any accuracy we desire we can enact the evolution

exp(i(v1n̂1 + v2n̂2 + v3n̂3) · σ) (21)

But since the n̂i are linearly independent we can use this to construct any rotation in SU(2). So what we have shown
is that by using only T and M gates we can approximate to any accuracy we desire any rotation in SU(2).

At this point it would be useful to point out that this fact, that we can use two rotations to approximate any
element of SU(2), is really not that surprising. Why? Because there are very few finite subgroups of SU(2)! In fact
the finite subgroups of SU(2) are limited to cyclic groups, dihedral groups, the tetrahedral group, the octahedral
group, and the icosahedral group. If you are interested there is an amazing correspondence between these groups and
Dynkin diagrams for semisimple Lie groups known as the McKay correspondence. It is hard to do anything to qubits
that doesn’t turn into everything on qubits!

Okay, so what we have just shown is that using T and M we can approximate any single qubit gate. The next
step in showing that we have universal quantum computation is to show how we can use single qubit gates plus the
controlled-NOT to approximate any gate on two qubits, i.e. on the SU(4) of these two qubits. In analogy with a
generic element of SU(2), every element of SU(4) can be written as

exp

i 3∑
α,β=0|α=β 6=0

θαβσα ⊗ σβ

 (22)

Now a very useful identity is the circuit identity

• X •

�������� ��������
⇔ X

X

(23)

Using U exp(iH)U† = exp(iUHU†) this allows us to conjugate a controlled-NOT about a single qubit gate as

CX exp(iθX ⊗ I)CX = exp(iθX ⊗X) (24)

6

Now using single qubit rotations it is possible to conjugate these and to change this two qubit term to any two qubit
Pauli operation:

exp(iθσα ⊗ σβ) (25)

where α, β ∈ {1, 2, 3}. The single qubit rotations we have already seen how to achieve. Thus we can construct any
exp(iθσα ⊗ σβ) except α = β = 0. The next step is to use the Trotter formula. This allows us to construct to any
desired accuracy a gate in the SU(4) of two qubits.

Finally we can now induct up to obtain any desired SU(2n) on n qubits. We can do this using a similar construction
to the conjugation by the controlled-NOT. If we can implement SU(2k) on any k qubits, then to show we can implement
SU(2k+1) we just show how to implement a rotation like X⊗k+1 using the controlled-NOT trick and then again use
the local rotations to get any rotation with a k + 1 non-trivial Pauli terms. Again we complete with the Trotter
approximation.

To bring things back together, what have we achieved? We have shown how, using a sequence M and T on every
qubit, along with CX between all qubits, we can implement any possible unitary transform to any desired accuracy ε.

But lets return now to the efficiency of our circuit constructions. One thing we might worry about is that if we
use different gate sets for achieving universal quantum computation, then these gate sets will lead to very different
numbers of gates in order to approximate a particular quantum computation. In particular let’s review that original
point in our construction, where we took a rotation by an irrational multiple of 2π, exp(iθn̂ · ~σ)N = exp(iθNn̂ · ~σ).
Diagramatically we think about this going around the circle, never repeating, and densely filling the circle. If we
assume this filling is rather uniform, then we expect the maximum distance of any point from one of the other elements
to go like O

(
1
N

)
. Thus the first step in our construction produces gates to an accuracy ε ≈ 1

N .
This is bad! To see why this is bad, suppose that we have a circuit family which requires f(n) gates from a gate

set G. To produce this circuit family with a universal gate set one approximates each of these gates f(n) gates with
a set of gates from the universal gate set. To produce an accuracy ε each gates should be simulated to an accuracy
ε

f(n) (remember that the accuracies add.) Now suppose that if, instead of using gates from G, we use gates from a
different gate set. Since our construction for simulating the old gate sets goes like 1

N , this implies that we need to use
N ≈ f(n)

ε gates to approximate each gate in the old gate set by ones from the new gate set. Thus our circuit will take

O
(
f(n)2

ε

)
gates to simulate with this new gate set. Now this is bad. Why? Well the square is not horrible, although

it is not good. But that 1
ε is not very good. It means that for every increase in the precision we desire, we have to

increase the size of our circuit by a multiplicative amount corresponding to this precision. This is really not a good
thing!

But luckily there is a way out of this. And this is a beautiful result due to Kitaev and Solovay:

(Kitaev-Solovay Theorem): Let the unitary operators U1, . . . , Up generate a dense subset of SU(d). Then
any matrix U ∈ SU(d) can be approximated to within ε by O

(
logc

(
1
ε

))
elements of U1, . . . , Up and their

inverses U−1
1 , · · · , U−1

p . (c is a fixed constant.)

Now this is very nice: it means, essentially, that all gate sets we come up with, for fixed size gates, are equivalent.
Note that this fixed size requirement is important. This is because we haven’t explicitly noted how the number of
gates needed scales with the dimension SU(d). In fact it scales poorly with d. But in universal quantum gate sets we
are dealing with gates of fixed size (like single qubit and two qubit gates) so this doesn’t matter.

Now we won’t prove the Kitaev-Solovay theorem (for a long time the actual proof of this theorem was quantum
computing folklore: with some unpublished notes floating around, but no explicit write up.) But we can at least get
some intuition about why this works. Suppose that we have two non-commuting operators Ua and Ub. When we were
just powering a single unitary, the order of this unitary didn’t matter. But now that we have two non-commuting
operators, the order does matter. Thus for two applications, there are four possible gate combinations, U2

a , UaUb, UbUa,
and U2

b . In general there will be 2n such combinations. If we assume that these gate uniformly fill SU(d), then if
the gates don’t overlap too much we then expect that we can obtain accuracy ε = O

(
1
2n

)
for n applications of these

gates.
Finally it is nice to note that for a circuit family with f(n) gates from one universal gate set, then the Kitaev-

Solovay theorem implies that a universal gate set can execute this circuit family with O
(
f(n) logc

(
f(n)
ε

))
elements

of a different gate set to accuracy ε.
Let’s take stock of what we’ve done. We’ve showed that there are discrete sets of quantum gates which we can

apply and which we can then use to construct to any accuracy we desire any unitary quantum circuit on n qubits.
Thus there is a sense in which this set of gates is universal. Further we have seen that the Kitaev-Solovay theorem,
guarantees, with some technical conditions, that no matter what gate set we choose, every universal set of quantum
gates is equivalent to every other set of quantum gates.

7

One important thing to realize is that we have used a discrete set of quantum gates. Sometimes in the literature
you will see people consider continuous sets of quantum gates. This is, in one sense, kind of crazy because it implies
that we can implement each of these gates to any desired accuracy. I’m a theoretician and even I don’t believe this is
experimentally possible. In fact when we get to the issue of fault-tolerant quantum computation, we will see that the
fact that we consider a discrete set of quantum gates is very important. Now in another sense, it is okay to consider
continuous sets of quantum gates: certainly what we really mean is that we have a discrete set, to a certain accuracy.
Then we can use the results of discrete sets of universal quantum gates to proceed. So this shouldn’t bother you too
much: unless you want to build a full scale fault-tolerant quantum computer!

APPENDIX A: IRRATIONALITY OF θ

How do we show that the angle defined by cos
(
θ
2

)
= cos

(
π
8

)2 is an irrational multiple of 2π? The argu-
ment below is taken from P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan, “A new univer-
sal and fault-tolerant quantum basis”, Information Processing Letters, vol. 75, pp. 101-107, 2000 available at
http://lanl.arxiv.org/abs/quant-ph/9906054. Instead of working with θ lets work with α = eiθ. Now we
need to remember some results from algebra. A minimal (monic) polynomial of an algebraic number is polynomial
p(x) of smallest degree with leading coefficient unity and coefficients from all coming from the rational numbers Q.
c2π

8
= 1

2

(
1 + 1√

2

)
, so

α =
1

2
√

2

[
(
√

2 + 1) + i(
√

2− 1)
]

(A1)

Now clearly the minimal polynomial for α cannot be a polynomial of degree one, because then it would be a rational
number. If it is polynomial of degree two, then from the fundamental theorem of algebra, it must be that the
polynomial is (x− α)(x− α∗) = x2 − (α+ α∗)x+ 1. But this polynomial has irrational coefficients in the order one
term. Similarly using the fundamental theorem of algebra, a third order polynomial must have its third root real,
call it r, so it would be of the form (x− r)(x− α)(x− α) = x3 − (α + α∗ − r)x2 + (1 + r(α + α∗))x+ r. Since αα∗
is rational, this implies that r must also be rational (from the zeroth order term), but then this contradicts the first
order term (because α+α∗ is irrational). Thus the minimial polynomial for α must be of at least forth order. Indeed
it is easy to find this, because we know that it must be of the form

p(x) = (x− α)(x− α∗)(x− β)(x− β∗) = (x2 − (α+ α∗)x+ 1)(x2 − (β + β∗)x+ ββ∗) (A2)

which, requires that α+ α∗ + β + β∗ must be rational. So β = a− 1√
2

+ b, for some rational a and imaginary b. But
(α + α∗)(β + β∗) must also be rational, and this requires (1 + 1√

2
)(a − 1√

2
) is rational which is only true if a = 1.

Further requiring that ββ∗ is rational implies that b must be such that β is on the complex unit circle. There are,
of course two solutions for this, and choosing one arbitrarily leads to 1

2
√

2

[
(
√

2− 1) + i(
√

2 + 1)
]
. This leads to the

forth order polynomial

p(x) = x4 − 2x3 + 2x2 − 3
2
x+

9
16

(A3)

This the minimal polynomial for α. For some reason that I cannot figure out the paper of Boykin et al. contains a
different minimal polynomial.

Now there is a theorem from algebra which states that the minimal polynomial for ei2πc exists and is cyclotomic
iff c is rational.

A cyclotomic polynomial is a polynomial of the form Φn(x) =
∑φ(n)
k=1 (x− zk) where zk is the kth primitive n root of

unity, e
2πij

n with j coprime to n. The first few cyclotomic polynomials are Φ1 = x− 1, Φ2 = x+ 1, Φ3 = x2 + x+ 1...
When n is prime, the cyclotomic polynomial is just Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1. It is easy to see that there is
a recursive formula for cyclotonic polynomials which is given by

Φn(x) =
∏
d|n

Φd(x) (A4)

From this and the expression for the cyclotomic polynomials for a prime number we see that a cyclotomic polynomial
always has integer coefficients. And this is where we get our contradiction. The theorem says that if c is rational iff
a minimal polynomial for ei2πc exists and is cyclotomic. But we have seen above that our minimal polynomial has
rational coefficients. Hence we have shown that c is not rational!

8

For completeness it is nice to see a proof of the theorem that if c is rational then a minimal polynomial for ei2πc
exists and it is cyclotomic. First note that if c is ration, we can express it as p/q where p, q ∈ Z+ and q 6= 0. Then
β = ei2πc satisfies βq − 1 = 0. Thus we have a polynomial xq − 1 which exists and is monic. But it might not be the
minimal polynomial. Further we want this minimal polynomial to be cyclotomic. We claim that xn−1 =

∏
d|n Φd(x).

Why is this true? Well every nth root of unity is a primitive dth root of unity for exactly one positive divisor d of n.
So we have shown that xq − 1 =

∏
d|n Φd(x). Thus the minimal polynomial will be one of the cyclotomic functions

Φd(x). This completes the proof.

ACKNOWLEDGMENTS

The diagrams in these notes were typeset using Q-circuit a latex utility written by graduate student extraordinaires
Steve Flammia and Bryan Eastin.

