
CSE 599d - Quantum Computing
Shor’s Algorithm

Dave Bacon
Department of Computer Science & Engineering, University of Washington

I. FACTORING

The problem of distinguishing prime numbers from composites, and of resolving composite numbers into
their prime factors, is one of the most important and useful in all of arithmetic... The dignity of science
seems to demand that every aid to the solution of such an elegant and celebrated problem be zealously
cultivated — Carl Gauss

The efficient factoring of numbers is a problem that has attracted the attention of humankind for probably as long
as we have contemplated numbers. Indeed, today the most widely used system used to communicate securely over
the internet has its security based on the difficulty of factoring numbers efficiently. A great deal of effort has been
spent trying to find classical algorithms to factor numbers. Indeed, probably more than we will ever know has been
spent on this problem: the National Security Agency is supposedly the largest employer of mathematicians in the
world and it would be reasonable to assume that they have spent a considerable amount of attention attempting to
break the cryptosystems whose hardness is related to the hardness of factoring. Thus it was quite remarkable when,
in 1994, Peter Shor showed that quantum computers could efficiently factor numbers. A warning that these notes are
not as easy as our previous notes. The factoring algorithm has a lot of technical details which we will go through,
and these details are easy for those who have had a good founding in discrete math and algorithms in number theory,
but they aren’t so easy for the rest of us mortals.

II. REDUCING FACTORING TO ORDER FINDING

The first step in Shor’s factoring algorithm is to reduce the problem of factoring an integer N to the problem of
order finding. Let’s try to understand this reduction. We will assume, without loss of generality, that N is not even.

Suppose that we find a solution to the equation x2 = 1 mod N which is not one of the trivial solutions x = 1 or
x = N − 1. This equation can be written as (x + 1)(x − 1) = 0 mod N . This implies that N must have a common
factor with (x + 1) or with (x − 1). This common factor cannot be N because x + 1 and x − 1 are not equal to N
(those were the trivial solutions.) Thus we find that a factor of N is either gcd(x + 1, N) or gcd(x− 1, N), where gcd
is the greatest common divisor.

1. An Aside on Euclid’s Algorithm

But how do we compute the gcd? An efficient method for computing the greatest common divisor goes all the way
back to Euclid! It is based on the following observation: if a > b are integers and r is the remainder when a is divided
by b, then assuming r 6= 0, gcd(a, b) = gcd(b, r). Why is this so? Well a = qb + r, which we can rewrite as r = a− qb.
Thus whatever divides a and b must also divide r (and also divide b). Similarly we have that any divisor of b and r
must also be a divisor of a (and also divide b.) Thus gcd(a, b) = gcd(b, r). What about the case where r = 0? Well
in this case you have just found that a = qb, and thus the gcd of these two numbers is b.

Euclid’s algorithm works simply by repeatedly using gcd(a, b) = gcd(b, r). Given a > b, we compute the remainder
of a divided by b. If this is zero we are done (the gcd is b.) If not, we take b and r and compute the remainder r′

of b divided by r. Using gcd(a, b) = gcd(b, r) = gcd(r, r′), if r′ is zero, then we know that gcd(a, b) = r. If not, we
can continue in this manner until eventually the remainder is zero. This is Euclid’s algorithm. This process is always
guaranteed to terminate, since each remainder will be smaller than the number we divide by.

What is the running time of this algorithm? A good way to get a bound is to notice that the remainder is always
smaller than the number being divided by a factor of two. Suppose you are dividing a by b. Then if b is less than or
equal to a/2, the remainder must be less than a/2. If b is greater than a/2, then the it will only divide b once and
the remainder will be less than a/2. Thus the number of divisions we will need to perform in Euclid’s algorithm is
bounded by log2 a. Thus we see that Euclid’s algorithm is efficient.

2

2. Back to Shor

So now we’ve seen that if we can find x2 = 1 mod N , which is not x = 1 or x = N − 1, then we can factor N .
Suppose we pick a random number y between 1 and N − 1. We can check whether gcd(y, N) is equal to one or not. If
it is not equal to one, then we have found a factor of N . If it is equal to one, then y is coprime with N . The order of
y is the smallest integer r such that yr = 1 mod N (recall that the group of numbers coprime with N forms a group
and importantly for us has a multiplicative inverse.) Now it might happen that r is even. If this is the case then we
have found a solution, x = yr/2 to x2 = 1 mod N . Thus if we can show that the probability of a random coprime
number y having an even order is high, then we see that we have reduced the problem of factoring to the the problem
of finding the order of a number.

So is it true that a randomly chosen coprime y will have an even order modulo N? (The details of this calculation
were taken from Nielsen and Chuang “Quantum Computation and Quantum Information” but all mistakes are mine!)

Let’s begin to answer this consider this question for N equal to an odd prime. N − 1 is then an even number. Let
2m be largest power of two which divides N − 1. The group of numbers coprime to N forms a cyclic group: that is
every such number can be written as gt mod N for some generator g. Call r the order of gt modulo N . If t is odd,
then since gtr mod N = 1 implies that tr divides N − 1 and t is odd, r is divisible by 2m. If t is even, then since
g

t(N−1)
2 = (gN−1)t = 1 mod N , this implies that r divides N−1

2 and hence that 2m does not divide r. Thus we have
shown that if N is an odd prime, and 2m is the largest power of two which divides N − 1, then exactly half of the
numbers coprime to N will have an order which is divisible by 2m and half will not.

Okay this is a great start, but we aren’t interested in the N is prime case. We are interested in general N . How do
we fix this? First consider the case where N is a power of an odd prime number N = pα. Then the same argument
we used in the previous argument can be repeated, but this time with N − 1 replaced by Nα−1(N − 1). Thus we have
shown that if N is a power of an odd prime, and 2m is the largest power of two which divides Nα−1(N − 1), then
exactly half of the numbers coprime to N will have an order which is divisible by 2m and half will not.

Now we can go for the big one and talk about the general case of a number which is a product of powers of an
odd prime N = pα1

1 · · · pαs
s . Now the group of numbers coprime to N , Z∗

N , is equal to the direct product of the prime
factor cyclic groups of this number: Z∗

N = Zp
α1
1
× · · · × Zpαs

s
. Choosing x randomly with uniform probability over

numbers coprime to N is equivalent to choosing xi randomly with uniform probability over numbers coprime to pαi
i

such that x = x1 . . . xs. Let ri be the order of xi modulo pαi
i . Then we have already seen that with probability one

half, the numbers coprime to pαi
i have an order which is even, and in fact is a multiple of 2, 2di . Consider the case

where r is odd. Then each rj must be odd. This case occurs with probability 2−s from our previous results. Further
we need to worry about the case where r is even but xr/2 = −1 mod N . Then xr/2 = −1 mod pαi

i , so rj does not
divide r/2. But this implies that all of the di must be equal. Why? Because rj all divide r and in fact r is a common
multiple of the rj , so if one of the di has an extra power of 2, then removing this the other should still divide r/2.
But this is what we have shown is not true. So this implies that all of the di must be equal. This will happen with
probability at most 2s−1. Thus we have shown that the probability that a random number x coprime to N , then the
probability that the order of this number is even and does not satisfy xr/2 = −1 mod N is a least

Pr ≥ 1− 1
2s−1

(1)

So are we done in showing that order finding can be used to factor? Almost. We have to worry about the case
where m is a prime to a power: N = pα, α ≥ 2. Actually there is an efficient classical algorithm for this case. In this
case, α will be less than log2 N . Thus we can basically try all possible α’s with only linear overhead. How do we do
this? Work with a fixed α. First compute log2 N with enough precision (what this efficiency needs to be will be clear
from the rest of the algorithm.) Then divide this number by b and compute the two integers nearest to 2x, where x
is log2 N divided by b. This gives us the two integers nearest 2log2 N/α = N1/α. We can then check whether either of
the integers when taken to the αth power is N . All of the manipulations we have described can be done in O(log2

2 N)
operations. Cycling over α we obtain a O(log3

2 N) algorithm for the case of N = pα.
So we’ve done it. We’ve showed that if you can solve the order finding problem, then you can factor. Now this

is good: we’ve reduce the complicated number theoretic task of factoring to a task which is very different from the
original task. A task that a quantum computer can sink its teeth into.

III. ORDER FINDING

The order finding problem is as follows. We are given positive integers x and N with x < N and x coprime to N
(they share no common factors.) Then the order finding problem is to find the smallest positive integer r such that
xr mod N = 1. r is called the order of x in N .

3

A quantum algorithm for order finding works in two steps. One is to make a phase estimation problem and the
second is to use a continued fraction algorithm. We will begin by understanding the phase estimation algorithm.

Consider the following unitary transform on n qubits, 2n−1 < N ≤ 2n

U |y〉 =
{
|xy mod N〉 if 0 ≤ y ≤ N − 1
|y〉 otherwise (2)

Now I have said that this transform is unitary. Why is this so? Well since x is coprime to N , x has a multiplicative
inverse modulo N . This means that the transform described above is a permutation matrix (a matrix with only zeros
and ones and with the condition that there is only one one per column and per row.) All permutation matrices are
unitary.

What are the eigenstates of U? They are given by

|vt〉 =
1√
r

r−1∑
k=0

exp
[
−2πikt

r

]
|xk mod N〉 (3)

To check that they are indeed eigenstates and find their eigenvalues, we calculate

U |vt〉 = U
1√
r

r−1∑
k=0

exp
[
−2πikt

r

]
|xk mod N〉 =

1√
r

r−1∑
k=0

exp
[
−2πikt

r

]
|xk+1 mod N〉

=
1√
r

r−1∑
k=0

exp
[
−2πi(k − 1)t

r

]
|xk mod N〉 = exp

[
−2πit

r

]
|vt〉 (4)

Now we see that the eigenvalues of |vt〉 contain information about the order r. Thus we would like to perform phase
estimation for these eigenstates using the phase estimation algorithm. But there is an immediate problem. How do
we prepare |vt〉? Well we can’t do this directly. But what we can do is prepare a superposition of such states:

1√
r

r−1∑
t=0

|vt〉 =
1√
r

r−1∑
t=0

1√
r

r−1∑
k=0

exp
[
−2πikt

r

]
|xk mod N〉 (5)

which, using
∑r−1

t=0 exp
[−2πikt

r

]
= rδk,0 becomes,

1√
r

r−1∑
t=0

|vt〉 = |1〉 (6)

Now what happens if we feed in a superposition of different eigenstates into the phase estimation algorithm? Well
with one run of the algorithm we obtain an estimate of the eigenvalue of the different eigenstates with a probability
given by the amplitude of the different eigenstates squared. Thus if we run phase estimation on |1〉, we will obtain,
on one run an estimate for the eigenvalue t

r , for uniformly random 0 ≤ t ≤ r − 1. This is good because this will help
us find r!

But can we really perform the phase estimation algorithm? To do this we need to be able to prepare |1〉, which
is pretty darn simple. But what about the controlled U2k

operations? This also can be done and is performed
using a procedure called modular exponentiation. There are many fascinating ways to do this. Here I will discuss a
straightforward, if wasteful method. The transform we wish to enact is

|z〉|y〉 → |z〉Uz|y〉 = |z〉|yxz〉 (7)

We can factor this as

|z〉|y〉 → |z〉Uz12
t−1

Uz22
t−2

· · ·Uzn20
|y〉 (8)

Thus we see that we need to figure out how to implement a controlled U2k

gate. We note, without further comment,
that there exists classical circuits which square modulo N a number x (these may be irreversible, we will use the
tricks we learned before to make these reversible.) Thus we can compute x2 modulo N by squaring x, then calculate
x4 modulo N by squaring x2, etc. This allows us to calculate x2j

modulo N using only j such squarings. Then we
can copy this result (by multiplication, not addition modulo N onto the register we wish to multiply) and get rid of

4

the garbage we previously produced. Using our grade school multiplication techniques, we see that this will require
j(log N)2 multiplications. Doing this for each of the n conditional operators will produce the desired transforms in
O(log3 N) multiplications.

Thus we see that all the tools we need for an efficient quantum algorithm for using the phase estimation algorithm
in this way are in place. What will be the outcome of this algorithm? Well we will obtain a superposition of the form

1√
r

r−1∑
s=0

|s/r〉 (9)

When we measure this register, we will therefore obtain a random s/r for s = 0 to r− 1. How can we use this to find
r?

Well we know that s and r are integers which are bounded integers. Thus we know that s/r is really a rational
number. At the end of our phase estimation algorithm we obtain an estimate for s/r. If this estimate is good enough,
then we may be able to find s/r. We do this using the continued fraction algorithm.

3. Continued Fraction Algorithm

A continued fraction is the representation of a real number by a sequence (possible infinite) of integers:

[a0, a1, . . . , an] = a0 +
1

a1 + 1
a2+

1
···+ 1

an

(10)

where the ai are positive integers. If allow the first a1 to be zero, then any positive rational number will have a
continued fraction expansion which converges. Given a positive rational number we can find this expansion by using
the continued fractions algorithm. The continued fractions algorithm, actually is just a version of Euclid’s algorithm!
How does this work? Well suppose our rational number is p

q . Then we can apply the first step of Euclid’s algorithm
and obtain p

q = (p div q)+(p mod q)/q, where div stands for integer division without remainder. p div q and p mod q

are exactly what we compute in the first step of Euclid’s algorithm. Now we pull a fast one and invert the second
term

p

q
= (p div q) +

1
q

p mod q

(11)

Continuing on in this manner, we can now take the q
p mod q term and do the same thing on it. Thus we see that

we are running Euclid’s algorithm, but keeping around the remainders and the divisors. By the same reasoning that
Euclid’s algorithm converged, we also know that this algorithm will converge and that it will converge quickly.

Now suppose that we have a rational number x which is an approximation to some reduced fraction p
q . How

close does this rational number need to be in order to guarantee that the when we perform the continued fractions
expansion on x, one of the sequences of continued fractions will contain the continued fraction expansion for p

q ?
Well suppose that x = p

q + δ
2q2 with |δ| < 1. Now when we perform the continued fraction expansion for x we will

obtain the continued fraction for p
q as part of this expansion. Why does this work? Well start to run the continued

fractions algorithm on x = 2pq+a
b2q2 , where we have expressed δ as a rational fraction, δ = a

b . Then this the divisor is
2pqb + a div 2q2b. Since a < 2q2b, this will be just be 2pq div 2q2 = p div q. Thus we see that at this point the the
algorithm yields the same continued fraction expansion as for p/q. The modulo left over from this division will be
2pqb+a mod 2q2b. The next division will thus be 2q2b div (2pqb+a mod 2q2b). This will be equal to q div (p mod q)
if a times this answer is less than 2q2b. When will this fail? Recall that the values in the continued fraction are
decreasing exponentially fast. Our answers will be decreasing exponentially and will terminate when after log2 q times
for the exact p/q algorithm. Starting with 2q2b and cutting this in half every iteration we end up with 2qb at this
log2 q iteration. It is at this point, our next step will not necessarily satisfy the inequality a less than this value 2qb.
Thus we see that our algorithm will successful for log2 q iterations.

4. To the Finish Line

Okay, so now are we done? Well we need to show that we can obtain, using the phase estimation algorithm a
detailed enough approximation of s/r. If you recall from our discussion of the phase estimation algorithm, if we use

5

n bits for the QFT part of the phase estimation algorithm, then the probability of getting a phase which differs from
the correct phase by c

2n is bounded by

Pr(c) ≤ 1
4c2

(12)

We can use this to bound the total probability that our algorithm will fail to obtain a m bit approximation of the
true phase.

Pr(fail) ≤ 2
2n−1∑

c=2n−m

Pr(c) ≤ 1
2

2n−1∑
c=2n−m

1
c2
≤ 1

2

∫ 2n−1

2n−m−1

1
c2

dc ≤ 1
2n−m+1

(13)

Thus if we want to obtain an m bit approximation to the true phase, and want the algorithm for fail with probability
at most ε, we should choose n by requiring that

ε =
1

2n−m+1
. (14)

This in turn implies that if we use

n = m + log2

1
2ε

(15)

then we will obtain an algorithm which fails with probability at most ε and produces an m bit approximation to the
true phase.

Okay, so what does this mean for our quantum phase estimation for the order finding problem? Suppose that we
obtain a m = 2 log N + 1 approximation to s/r. Then |s/r − x| ≤ 1

2m = 1
2N2 . This in turn implies that we have

satisfied the continued fraction convergence requirement described above (because r is bounded by N .)
Thus we have all of the pieces put together. We use order finding to produce an estimate of s/r. We can make

the precision of this estimate high enough that our continued fraction will contain a convergent of s/r. Now there is
still one way that the algorithm might fail. This is that s and r may share a common factor. Then the continued
fraction algorithm will return the reduced r and not r itself. How do we deal with this? One way to deal with it is
to simply note that the fraction of number of prime numbers less than r is at least r

2 log r . This implies that if we run
the algorithm O(log r) = O(log N) times, we will obtain an s which is coprime with r and thus the continued fraction
algorithm will succeed. This is a rather wasteful way to do this, but it works. A better way is to run the algorithm
twice, obtain two r’s and s’s and then to take the least common multiple of the two r’s. Provided that the two s’s
share no common factors, this r will be the correct r. One can show that this probability for random s’s is greater
than 1/4.

IV. BREAKING RSA CRYPTOGRAPHY WITH QUANTUM COMPUTERS

Why should we care about efficient algorithms for factoring? A very good reason is that such efficient algorithms
can be used to break many public key cryptosystems, and in particular the public key cryptosystem known as RSA.

RSA has an interesting history. In 1974, Diffie and Hellman, came up with a public key systems for key exchange.
Then in 1978, Rivest, Shamir, and Adleman came up with the RSA public key encryption algorithm. This was
the history most of us knew, up until a few years ago, when it was revealed that British mathematicians working
for the British intelligence agency GCHQ actually had invented these protocols a few years earlier. Indeed Clifford
Cooks in 1973 invented what is essentially the RSA cryptosystem and his friend Malcolm Williamson invented what
is essentially the Diffie-Hellman cryptosystem sometime in 1973. What is amazing about these early derivations was
that they came up with pretty much exactly the same schemes! Now that, is strange.

How does the RSA public key cryptosystem work? Consider two parties, Alice and Bob, who wish to communicate
securely such than an eavesdropper cannot figure out the message that Bob is communicating to Alice. To do
this in the RSA protocol, Alice generates two large primes at random, p and q. She then computes N = pq and
ϕ = (p − 1)(q − 1). ϕ is equal to the number of numbers coprime to N and is called the Euler ϕ function. Alice
then choosing a random number e coprime with ϕ. Alice then computes d such that de = 1 mod ϕ. The public key,
which Alice can reveal to the world, is N and e. The private key is d. Now to exchange a message, Alice reveals her
public key to Bob. Bob then takes his message n and computes cne modN using his message and Alice’s public key.
He then sends this value c to Alice. Alice can now figure out the message n by taking c to the dth power modulo N .
Then cd mod N = ned mod N .

6

We will now show that this expression yields the value of the message, n. We know that there is an integer k
such that de = kϕ + 1. Let x = kϕ. Then nkϕ mod p = (np−1)k(q−1) mod p and by Fermat’s little theorem this is
equal to one: nkϕ mod p = 1. Similarly nkϕ mod q = 1 modq. By the Chinese remainder theorem, this implies that
nkϕ mod pq = 1. Thus we see thatned mod N = nkϕ+1 mod N = n mod N .

Now why is it hard for an eavesdropper to crack this code? Well the eavesdropper knows N and e and c, but not
d. Thus the eavesdropper cannot act like Alice in decoding the message. Further it is thought that it is very difficult,
from a computational complexity standpoint, to identify d from N and e. The exact computational difficulty of this
problem is not known, but it is widely suspect to be hard for classical computers. But it is also known that if you can
efficiently factor, then the problem is easy. Why? If you can efficiently factor, you can determine p and q in N = pq.
This then allows you to act just like Alice: you can computer ϕ and then use e to calculate de = 1 mod ϕ. Then the
eavesdropper can decrypt in the same way that Alice decrypts the message sent from Bob to Alice. Thus efficiently
factoring breaks this public key cryptosystem!

So what does this all mean? Well it means that quantum computers seem to change the security of the RSA
cryptosystem. In fact it is very hard to find public key cryptosystems these days which are not broken by quantum
computers. This has led some to conjecture that there are no public key cryptosystems which are secure against
attacks from quantum computation. The answer to this question is one of the motivations many in the quantum
computing community have for examining these unbroken public key cryptosystems and trying to understand the
hardness of these cryptosystems for quantum computers. Now of course, it could be that there is an efficient classical
algorithm for factoring. This would be an amazing result, but it is totally within the realm of possibility. Should this
keep us from studying quantum computation? No one can answer this question right now, because we don’t know
the exact relationship between the complexity of quantum computers and the complexity of classical computers. But
there the deeper we dig into quantum computing, the more we find that quantum computers do have advantages
over classical computers. For example, we know that there are settings in communication complexity where we
have provable exponential separations between the classical world and the quantum world. This doesn’t prove the
separation between quantum and classical, but it does make us more and more suspicious. In a similar manner,
algorithms like Simon’s algorithm, make us more suspicious. At some point we may well know the answer to whether
quantum computers are more powerful than classical computers for doing things like factoring, but until an efficient
classical algorithm for factoring is found, we should certainly study quantum computing.

Finally, we should note that the public key cryptosystems broken by quantum computers are used fairly ubiquitously
in classical computer science today. It may seem a sort of low level matter whether this is true. Some people, especially
those whose job it is to be paranoid about security, have a different view on this matter. Here is a quote from Simon
Singh which I think perhaps best summarizes this point of view:

Only time will tell if and when the problems of building a quantum computer can be overcome.As informa-
tion becomes the worlds most valuable commodity, the economic, political and military fate of nations will
depend on the strength of ciphers. Consequently, the development of a fully operational quantum computer
would imperil our personal privacy, destroy electronic commerce and demolish the concept of national se-
curity. A quantum computer would jeopardize the stability of the world. Whichever country gets there first
will have the ability to monitor the communications of its citizens, read the minds of its commercial rivals
and eavesdrop on the plans of its enemies. Although it is still in its infancy, quantum computing presents
a potential threat to the individual, to international business and to global security. - Simon Singh

