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Document Retrieval
= JEE
m Goal: Retrieve documents of interest
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Task 1: Find Similar Documents

* JEEE—
m Setup
7 Input: Query article X
1 Output: Set of k similar articles

k-Nearest Neighbor
" S

m Articles X = {z!,...,2"}, z'eR?
m Query: z € R?

= k-NN ‘
0 Goal: Cond ¢ articles X closest x

1 Formulation: N
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Nearest Neighbor with KD Trees
" /
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m Traverse the tree looking for the nearest neighbor of the
query point.

Task 2: Cluster Documents
= JEEE
m Setup

1 Input: Corpus of documents (4 nerts
v
1 Output: Topic assignment per document

B[B[C)
WORLD
NEWS
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A Generative Model
= JEEE

= Documents: z',...,z" T
m Associated topics: z',...,z" ik B,
m Parameters: 0 = {r, 3} 24 Tk
m Generative model:
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Inference
" JEEE
m Two tasks
Point estimation:
= Expectation-Maximization (EM)
Characterize posterior:
= Gibbs sampling

= Variational methods
m Stochastic variational inference
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EM Algorithm
" NN

m Initial guess: 6
m Estimate at iteration t: §(*)

m E-Step
Compute U(6,0") = Ellogp(y | 0) | ,6M)]

m M-Step
Compute o+ = arg max U(@,é(t))
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Collapsed Gibbs Sampling
" S

7 ~ Dir(aq,...,ak) PEE s

m Collapsed sampler
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Task 3: Mixed Membership Model

m Setup: Document may belong to multiple clusters
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Latent Dirichlet Allocation (LDA)
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Variational Methods

" JEE
m Recall task: Characterize the posterior \')(9,,3\' I'x )
?pfwr\s \ldtlﬂt Vars
m Turn posterior inference into an optimization task

m Introduce a “tractable” family of distributions over parameters
and latent variables
1 Family is indexed by a set of “free parameters”
1 Find member of the family closest to: P(Q, 21 X .)

Coll the Ca»m;‘y Q anA wan e 0 thet
's clogest 4o F(O/%“()

S

m Questions:
1 How do we measure “closeness”?

0 If the posterior is intractable, how can we approximate something we do
not have to begin with?

Variational Methods
" S

m  Similarity measure:

Dig(2,6) I p(z,01x)) = E Ll 402 - E(LQch?(%,e\x]J

= Eq/EIOf) 01,(%/9)}“ t 4 [loﬁ p(¥ %)

= Evidence lower bound (ELBO) _ of(?) ¥ ‘03 P CX)
lgple) = DU CE)[ P00 2 5 2,
const. ndd to a const -
m  Therefore, minimizing KL is equivalent to maximizing a lower bound on the
marginal likelihood: &[\{:I‘Of\{
= Max £L(g)=min D(g||p) =max lower bound of log p(x) Kt 4

Z[q> = Eq’ C(Oj ?(e/%l K)] - Eq; IO(b %(9/%>1
Ne——
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Task 2: Cluster Documents
= JEEE
m Setup

I Input: Corpus of documents o A3 nerts
1 Output: Topic assignment per document

B[B[C|
WORLD
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New Approach: Spectral Clustering
" S
m Goal: Cluster observations

m Method:
1 Use similarity metric between observations
1 Form a similarity graph

1 Use standard linear algebra and optimization techniques to cut
graph into connected components (clusters)
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Setup

" JEE
m Data: 331, . ,gsz

m Similarity metric:

m Similarity graph
Nodes
Edge weights G={V,E}

m Problem: Want to partition graph such that edges
between groups have low weights
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Types of Graphs
" JEE—
m g-neighborhood:

Only include edges with distances < €
Treat as unweighted

m k-NN:
Connect v; and v; if v; is a k-NN of v,
Weighted by similarity s;
Directed > undirected

m Mutual k-NN:
Same as k-NN, but only include mutual k-NN
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Issues with Choosing Graph
" JEE
m Choosing graph construction techniques and parameters
is non-trivial

Data points epsilon-graph, epsilon=0.3
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Graph Terminology |
" JEE
m Weighted adjacency matrix
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Graph Cuts

m Problem: Partition graph such that edges between

groups have low weights
m Define: W(A,B)= > wy

i€A,jEB

m MinCut problem:

m Trivial to solve for k=2 o
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Issues with MinCut
" JEE
m MinCut favors isolated clusters

O
)
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Cuts Accounting for Size
* JEE
m Ratio cuts (RatioCut)

m Normalized cuts (Ncut)
m Lead to “balanced” clusters

m First need more graph terminology...

Graph Terminology Il
" JEE
m Two measures of size of a subset
Cardinality:

Al

Volume:

VOI(A)

80 100 120 140
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Cuts Accounting for Size
* JEE
m Ratio cuts (RatioCut)
k=2

General k

m Normalized cuts (Ncut)
k=2

General k

m Problem is NP-hard! Look at relaxation.
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Graph Terminology Il
" S
m Degree

m Degree matrix

ooooooooooooo
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Restating Cut Metric
" JEE
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Restating Cut Metric

“ J—
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Restating Cut Metric
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Graph Laplacian
" JEE

m Definition:

m Facts:
Symmetric, positive semi-definite
Eigenvalues

Invariance to self-edges

Inner product in L space
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Relationship to Identifying

ggnnﬁgted gomgonents

m Proposition:

The multiplicity k of eigenvalue 0 of L is equal to the
number of connected components

m Proof: Assume graph is connected (k=1)
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Relationship to Identifying
nnect mponents

|
m Proposition:
The multiplicity k of eigenvalue 0 of L is equal to the
number of connected components
m Proof: Assume k connected components
Example — Mixture of Gaussians
|

Histogram of the sample
8

o
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Graph Laplacians and Ratio Cuts

= JEE
m Ratio cuts for k=2
m Define cluster indicator variables:

m Properties:

m RatioCut

m Reformulating RatioCut problem
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Relaxation to Formulation
= JEEE

m Let fbe arbitrary continuous vector

m Rayleigh-Ritz Theorem

Which vector maximizes objective subject to constraint that
the vector is orthogonal to the first eigenvector and has
bounded norm?
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Mapping Back to Partition
* JEE

m To obtain partition, transform continuous fto a discrete
indicator

m Cluster coordinates

m Return
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Ratio Cuts for General k
= JEEE

m Define cluster indicator variables:

ry = { VI FiFa=1
1] 0

m RatioCut k
RatioCut(Ay,..., Ap) = > fiLfai = Tr(F4LF4)
i=1
m Reformulating RatioCut problem
in Tr(F4LF
yin, Te(FyLEA)

m Relaxation
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Ratio Cuts for General k
= JEE

m Relaxation:
min Tr(F'LF) st. F'F =1
FeRka

m Solution:

m To obtain partition:
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Graph Laplacians and Norm. Cuts
* JEE—

m Normalized cuts for k=2
m Define cluster indicator variables:

m Properties:

m Ncut

m Reformulating Ncut problem
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Relaxation to Formulation
= JEE

m Let fbe arbitrary continuous vector

m Rayleigh-Ritz Theorem
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Normalized Cuts for General k
" S

m Define cluster indicator variables:
!
Fjj:{ 1/\/V01(Aj) U¢€Aj FAFA:I
0 ow FJ’4DFA =7
m Reformulating RatioCut problem
min Tr(FALFA) S.t. FJ'4DFA =1
k

m Relaxation
min Tr(H'D"Y2LD~Y2H) st. HH=1
HERNxk

m Solution:

H is matrix of first k eigenvectors of L, which is equivalent to
the approximate F being the first k eigenvectors of L,,,
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Random Walks on Graphs
" JE

m Stochastic process with random jumps from v; to v; wp:
m Transition matrix:
m Connection to graph Laplacian:

= Intuitively, want to partition graph s.t. random walk stays in
cluster for a while and rarely jumps between clusters
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Random Walks on Graphs
" S

m Assume that stationary distribution exists and is unique. Then,

m Proposition: Ncut(A4,A) = P(A| A)+ P(A| A)

m Proof:

m Minimizing normalized cuts is equivalent to minimizing the
probability of transitioning between clusters
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Notes
" JEE
m No guarantee to quality of approximation

m Sensitive to choice of similarity graph (see earlier)

m Which graph Laplacian to use?
If degrees in graph vary significantly, then Laplacians are quite different
In general, L,,, behaves the best
Volume gives better measure of within-cluster similarity than cardinality
Normalized cuts has consistency results, Ratio cuts does not
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Notes
= JEEE

m Choosing the number of clusters k can be hard
Easy when clusters are well-separated

Histogram of the sample Histogram of the sample Histogram of the sample
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m k-means to return partition from solution to relaxation is an
approach, but not the only
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