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Sketching Counts
" JEE
Bloom Filter is super cool, but not what we need...

We don't just care about whether a feature existed before, but to keep
track of counts of occurrences of features!

Recall Perceptron update:
wtD) o w® 1 [yu) (w® . x®) < 0} yOx®

Must keep track of counts of each feature (weighed by y®):
E.g., with sparse data, for each non-zero dimension jin x®:

Can we generalize the Bloom Filter?
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Count-Min Sketch: single vector
* JEE—

m  Simpler problem: Count how many times you see each string

m Single hash function:
Keep Count vector of length m
every time see string /:

Count[h(i)] < Count[h(i)] + 1

Again, collisions could be a problem:
= g is the count of element i:

Count-Min Sketch: general case
* JEE

m Keep d by m Count matrix

m d hash functions:
Just like in Bloom Filter, decrease errors with multiple hashes
Every time see string i:

Vie{l,...,d}: Countlj, h(i)] < Count[j, h(i)] + 1
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Querying the Count-Min Sketch
" S
Vie{l,...,d}: Count[j, h(i)] < Count[j, h(i)] + 1

= Query Q(i)?
What is in Count[j,k]?

Thus:

Return:

Analysis of Count-Min Sketch

" J
a; = min Countlj, h(i)] > a;
j

m = [——‘ d= {ln ——‘
€ %)
m Then, after seeing n elements:

&Z-Sa?;—l—en

m With probability at least 1-




Proof of Count-Min for Point Query with

Positive Counts: Part 1 — Expected Bound
"

m |;;, = indicator that i & k collide on hash j:

Bounding expected value:

X, = total colliding mass on estimate of count of i in hash j:

Bounding colliding mass:

Thus, estimate from each hash function is close in expectation
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Proof of Count-Min for Point Query with Positive
Counts: Part 2 — High Probability Bounds
* JEE—

= What we know: Count[j, h(i)] = a; + X, ; E[Xi,j] <-n

QNS

m Markov inequality: For z,,...,z, positive iid random variables

P(Vz : 2z > aE[z]) < a™"

m  Applying to the Count-Min sketch:
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But Our Updates may be positive or

Neﬁative

wtD) o w® 1 [yu) (w® . x®) < 0] yOx®

m  Count-Min sketch for positive & negative case
a; no longer necessarily positive

m Update the same: Observe change A, to element i:

Vi e{l,...,d} : Count[j, h(i)] < Count[j, h(i)] + A;

Each Count]j,h(i)] no longer an upper bound on g,
m How do we make a prediction?

m Bound: |a; — a;| < 3¢€llal|s
With probability at least 1-3"4, where ||a|| = Z; |aj|
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Finally, Sketching for Perceptron
" S
Wt w® 41 [y®(w® . x®) < ] y®Ox®

m Never need to know size of vocabulary!
m Make a mistake, update Count-Min matrix:

m  Making a prediction:

m Scales to huge problems, great practical implications... More next time

©Carlos Guestrin 2013 10




What you need to know
" JEE

m Hash functions

m Bloom filter

Test membership with some false positives, but very small number of bits per element
m Count-Min sketch

Positive counts: upper bound with nice rates of convergence

General case

m Application to Perceptron Learning and Prediction

Case Study 2: Document Retrieval

Task Description:
Finding Similar Documents
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Document Retrieval
= JEE
m Goal: Retrieve documents of interest

m Challenges:
1 Tons of articles out there
1 How should we measure similarity?
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Task 1: Find Similar Documents
" JEEE
m To begin...
O Input: Query article
"1 Output: Set of k similar articles =)
AL

FIFA WORLD CUP
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Document Representation
* JEEE—
m Bag of words model

-
il

I

©Emily Fox 2013

1-Nearest Neighbor
" S

m Articles
m Query:

m 1-NN
1 Goal:

1 Formulation:
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k-Nearest Neighbor
* JEE
m Articles X = {z!,..., 2"}, z'eR?

m Query: z € R?

m k-NN
Goal:

Formulation:
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Distance Metrics — Euclidean
= JEE

d(u,v) Ji

1=1

Or, more generally, d(u,v) = Za — ;)2
Equivalently,
d(w,v) = w—vySw—v) |70
2
where -=1]. .
Other Metrics... 0 0

m Mahalanobis, Rank-based, Correlation-based, cosine similarity...
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Notable Distance Metrics (and their level sets)

Scaled Euclidian (L,)
; L, norm (absolute)

|

L1 (max) norm

Mahalanobis
(= is general sym pos def matrix,

on preVIous SIlde = dlagonal) ©Emily Fox 2013 19

Euclidean Distance + Document Retrieval
"

m Recall distance metric

d

d(u,v) = Z(uZ —v;)?

i=1
m What if each document were (v times longer?
Scale word count vectors

What happens to measure of similarity?

m Good to normalize vectors
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Issues with Document Representation
= JEE

m Words counts are bad for standard similarity metrics

m Term Frequency — Inverse Document Frequency (if-idf)
Increase importance of rare words

©Emily Fox 2013
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TF-IDF
" JE

m  Term frequency:

tE(t, d) =

Could alsouse {0,1},1+log f(¢,d),...
m Inverse document frequency:

idf(t, D) =
m tf-idf:

tfidf(t,d, D) =

High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)
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Issues with Search Techniques

" JE
m Naive approach:
Brute force search
Given a query point X

Scan through each point '

O(N) distance computations
per 1-NN query!
O(Nlogk) per k-NN query!

m What if N is huge???
(and many queries)
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33 Distance Computations
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KD-Trees
" JEE
m Smarter approach: kd-trees
Structured organization of

documents

= Recursively partitions points into axis
aligned boxes.

Enables more efficient pruning of
search space
= Examine nearby points first.

= Ignore any points that are further than
the nearest point found so far.

m kd-trees work “well” in “low-
medium” dimensions
We'll get back to this...
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KD-Tree Construction

Pt X Y

1 | 0.00 | 0.00
2 [1.00 | 4.31
3 |013 | 2.85

m Start with a list of d-dimensional points.

©Emily Fox 2013
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KD-Tree Construction

NO /@\YES

m Split the points into 2 groups by:

©Emily Fox 2013

Pt X Y Pt | X Y
1 10.000.00 2 |1.00|4.31
3 013|285

Choosing dimension d; and value V (methods to be discussed...)
Separating the points into :czlj >V and xfij<= V.

26
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KD-Tree Construction

NO /@\YES

Pt X Y Pt | X Y
1 ]0.000.00 2 11.00 4.3
3 013|285

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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KD-Tree Construction

()

NO \YES
Pt X Y
2 |1.004.31
NO " Vg
Pt | X | Y Pt | X | Y
3 /013|285 1 [0.00 | 0.00

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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KD-Tree Construction

N
TN

. AR iRe d,cs’\b\b d,o’\b\b o] cs’\b\o

m Continue splitting points in each set
creates a binary tree structure

m Each leaf node contains a list of points

©Emily Fox 2013
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4

m Keep one additional piece of information at each node:
The (tight) bounds of the points at or below this node.

ooooooooooooo
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KD-Tree Construction
" JEE
Use heuristics to make splitting decisions:

m Which dimension do we split along?
m Which value do we split at?

m When do we stop?

Many heuristics...
* JEE——

[

4 J“L
7 5]
: : 7l &
o ° J’
< sl

T 9% ° HFE d ‘T"%j
median heuristic center-of-range heuristic
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Nearest Neighbor with KD Trees

e N
T 6/\6 /\

BT iRe O,cs’\b\b d,o’\b\b o] cs’\b\o

m Traverse the tree looking for the nearest neighbor of the
query point.
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Sl O

e | o . / 0
ATl N N
. =:.: i iR} d/\tj,o/\b\b d/d’\b\b

m Examine nearby points first:
Explore branch of tree closest to the query point first.

ooooooooooooo
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Nearest Neighbor with KD Trees

N VN
RS

BT iRe O,cs’\b\b d,o’\b\b o] cs’\b\o

m Examine nearby points first:
Explore branch of tree closest to the query point first.
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B A

<N /\

SiRe 6@’\6\@ d’é/\b\b |§‘| \b

m When we reach a leaf node:
Compute the distance to each point in the node.

ooooooooooooo
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Nearest Neighbor with KD Trees

BN s BN
= v SN N
I S B 0% B

m When we reach a leaf node:
Compute the distance to each point in the node.
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m Then backtrack and try the other branch at each node
visited

ooooooooooooo
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Nearest Neighbor with KD Trees

IR N
T 6/\6 /\

LT o"oo,cs’\b\od,o’\b‘b Of@b\b

m Each time a new closest node is found, update the
distance bound
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Nearest Neighbor with KD Trees
" JEE—

S A 2N
S S AN

e SiRe d/d/\b\b dp’\b\b & d/\b@

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor

ooooooooooooo
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Nearest Neighbor with KD Trees

G,

S N
M o

. e d/\bd/\tj,d/\b\b d’djb\b

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor

Nearest Neighbor with KD Trees

m Using the distance bound and bounding box of each node:
[ Prune parts of the tree that could NOT include the nearest neighbor
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Complexity
" JEE
m For (nearly) balanced, binary trees...
m Construction
Size:
Depth:
Median + send points left right:
Construction time:
= 1-NN query
Traverse down tree to starting point:

Maximum backtrack and traverse:
Complexity range:

m Under some assumptions on distribution of points, we get
O(logN) but exponential in d (see citations in reading)

©Emily Fox 2013 43

Complexity
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Complexity for N Queries
" JEE
m Ask for nearest neighbor to each document

m Brute force 1-NN:

m kd-trees:

©Emily Fox 2013

Inspections vs. N and d
" S

000 2000

ooooooooooooo
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K-NN with KD Trees

e N
Fe T O A

N 2% @

m Exactly the same algorithm, but maintain distance as

distance to furthest of current k nearest neighbors

m Complexity is:
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Approximate K-NN with KD Trees

e (O} /\
eI B NN
e ] SRS \b\bd’d/‘o\b 0/5%

m  Before: Prune when distance to bounding box >
= Now: Prune when distance to bounding box >
= Will prune more than allowed, but can guarantee that if we return a neighbor

at distance 7°, then there is no neighbor closer than 7“/04.

m In practice this bound is loose...Can be closer to optimal.
m  Saves lots of search time at little cost in quality of nearest neighbor.

©Emily Fox 2013 a8
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Wrapping Up — Important Points
" JEE

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

For both...

m High dimensional spaces are hard!
Number of kd-tree searches can be exponential in dimension
= Rule of thumb... N >> 29 Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)
= Need technique to learn what features are important for your task

©Emily Fox 2013 49

" JEE——

m Document retrieval task
Document representation (bag of words)
tf-idf

m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree

Complexity of construction and query
Challenges with large d
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Acknowledgment
" JE——
m This lecture contains some material from Andrew
Moore’s excellent collection of ML tutorials:
0 http://www.cs.cmu.edu/~awm/tutorials
m |In particular, see:

O http://grist.caltech.edu/sc4devol.../files/
sc4devo scalable datamining.ppt
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