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Tackling an Unknown

Number of Features with
Sketching

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

' —Cartos-Guestrin
January 22", 2013

©Carlos Guestrin 2013 1

Sketching Counts
- S T x

o ‘(ﬂlv:')>
Bloom Filter is super cool, but not what we need...

We don't just care about whether a feature existed before, but to keep
track of counts of occurrences of features!

Recall Perceptron update:
wttD  w® 1 [yu) (w®) . x®) < 0} MOMNG

Must keep track of counts of each feature (weighed by y®):
E.g., with sparse data, for eal(ih non-zero dimension i in x®:
& mskake ¥ v Xi\ +0

(¢
w,{t“\ — w;)-t \/&) y'_‘['t)

Can we generalize the Bloom Filter?




Count-Min Sketch: single vector
" JEE

m Simpler problem: Count how many times you see each string

m Single hash function: h NiDIERENT

Keep Count vector of length m

every time see string i: ;\(nuw-,)/‘\]’\(.(m%,) \ Nlﬂnry'}
Count[h(i)] < Count[h(i)] + 1
Corlos’
e ((l:“io.s 2 Count[U) = 2 Q(‘Cw[og') > Couni]¥]
Again, collisions could be a problem: :2. > |

= g is the count of element i:
Count 11 Z o (ounts
4 hG))

AN
Q)= retun 4= ¢ ount [hta)] v da,
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Count-Min Sketch: general case
" JEE

m Keep d by m Count matgigg

¢ hLtols')

k\(‘u\;,)/\,\\(/*cmof\ Ml tiw )

= d hash functions: ERTLY |
Just like in Bloom Filter, decrease errors with multiple hashes
Every time see string i:

Vie{l,...,d}: Count[j, fj(z)] + Countlj, h‘j(z)] +1
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Querying the Count-Min Sketch
"
Vie{l,...,d}: Count[j, hJ(z)] + Countlj, hJ(z)] +1
= Query Q(i)?

What is in Count[j,k]?

Councljk]) » 2 Qs
Al ksli}:k
Thus: &(,1)

L0ch Couwnt E‘l, hd (Al] 20

Return:
Blmin Count [ htid]> 4
J K’b\q‘\%‘s{' “PP” bbﬂnﬁl

Analysis of Count-Min Sketch

" J
a; = min Countl[j, h(i)] > a;
j

e el

] Then,flfter seeing n elements: ot (O;M” 'o‘/ move._
C‘MaiSCLiﬂLg £ Hun €0

m With probability at least 1-0
Sy




Proof of Count-Min for Point Query with
Positive Counts: Part 1 — Expected Bound
" JEE
m |;; = indicator that i & k collide on hash j:
(A1) A ()b ()
Bounding expected value:

!
Elrip]= Plhj=hy 0))= fzé‘

Xi,j = total colliding mass on estimate of count of i in hash j:
: 2 I)jx a, Coun-([d,l\j(i)]‘: a;+ XAJ

£
€

Boundlng collldlng masR
. né
ElX;) - Z BT, To) =0

Thus, estimate from each hash function is close in expectation
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Proof of Count-Min for Point Query with Positive
Counts: Part 2 — High Probability Bounds
" J
= Whatwe know: Countlj, i) = ai + X E[X;;] < n
e
m Markov inequality: For z,,...,z, positive iid random variables
—k B[]
P(Vz; 1 z; > aF[z)]) < « Plz:ve) ¢ =
— —_— o
- . N~ - « Efz:]
m  Applying to the Count-Min sketch: w\J of z.

Pla;s a;*én) l/‘v‘J, Count [J b («)] > 0 cen)
=p(Y), et X3 7/\»5,\\
=209 Y5 > e LY B o <J
4 Los{F‘;jm ¢ o{" Sl fn»L,

uestrin 2013
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But Our Updates may be positive or

i Neﬁative

WD w® L1 [yoe) (w® . x®) < o] yOx®

p——
m  Count-Min sketch for positive & negative case Pos. or r\e}
a; no longer necessarily positive nOoA - e

m Update the same: Observe change A, to element i:
Vi e {l,...,d}: Countlj, lﬁ(z)] «— Countl[j, h(i)] + A;
) =

Each Count[j,h(i)] no longer an upper bound on &

m How do we make a prediction? @'ﬂth,l\\(;;)
ooe mf&lwr\ Cﬂu/\tﬁjll'\‘j U\’) 0y ComtT3 ()
Courtf 2 haA))

= Bound: |(Alz — ai\ < §§ a ]
With probability at least 1-5Y4, where ||a|| = Z; |a
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Finally, Sketching for Perceptron
" S
wttD o w® 1 [ym (w® . x®) < 0] yOx®)

e

Never need to know size of vocabulary!
m Make a mistake, update Count-Min matrix:

vi Y940
VJ Cw&(j,hfi)] - ylH X;['t)

Making a prediction:

S19n (W[t)ay ) = s\‘ﬂn ( _,2 Wd(t) )(ﬂ) > (7%

[t ~ . . R
?W*)X; X %'fb“ W\-CJJM’\ Cauntfd‘,l\a'(a)

m Scalés to huge problems, great practical implications... More next time
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What you need to know
" A

m Hash functions

m Bloom filter

Test membership with some false positives, but very small number of bits per element

m Count-Min sketch

Positive counts: upper bound with nice rates of convergence
General case

m Application to Perceptron Learning and Prediction
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Case Study 2: Document Retrieval

e

Task Description:

Finding Similar Documents
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Document Retrieval

m Goal: Retrieve documents of interest

m Challenges:
1 Tons of articles out there
1 How should we measure similarity?
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Task 1: Find Similar Documents
'_

m To begin...
O Input: Query article X

T Output: Set of k similar articles

=D

IFA WORLD CUP
Brasil
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Document Representation
" JEE

m Bag of words model Word Lount
v N
— we,

14=_—_=——' we, V| = size of vacab.
———— X= [ -d
— = :
—_—

19nore. order Wey J

ofF the word

1-Nearest Neighbor

" JEE
m Articles \(: 3)(‘, EY) XNg y XJGIKCI
m Query: Y
) 1-NGI\:)aI: Cind orticle in X ‘closes¢’ 2 x

e distance metrick

Formulation: & CM; V)

\(NN: O-ftj.m;’] Cl(,\(l;; k>

yre X




k-Nearest Neighbor
" JE

m Articles X = {z!,...,2"}, z'eR?
m Query: z € R?

m k-NN K
Goal: Cond k articles X elosest x

Formulation:
X””,i ML "g QX
st ¥xte X\YNA&W )
d(\( ,X) xpu e
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Distance Metrics — Euclidean
= JEE

Ji i — )% F “ u- V”Z

=1

d
_ 20,
Or, more generally, d(u,v) = J o (u; —v;)? uﬂ kf &
=1 w
Equivalently, T — L
2
d(u,v) = /(w—=0)'S(u—) A S
2 .
where X=1|. .
Other Metrics... 0 0 .. o2

m Mahalanobis, Rank-based, Correlation-based, cosine similarity...
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Notable Distance Metrics (and their level sets)

pes ot LQ“"*‘
5 Xance

Ccore MOre
alo 6wt

C’L\M\ges " YZ

L, norm (absolute)
A

|

Loo (max) norm

Mahalanobis
(X is general sym pos def matrix,
on previous slide = diagonal)
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Euclidean Distance + Document Retrieval
"

m Recall distance metric

d
d(u,v) = JZ(UZ —v)? = “M”V”Z

1=1

m What if each document were (v times longer?
Scale word count vectors
nWE -

V&2— KV
What happens to measure of similarity?

[ au—evll, = & lu-vil, > \A—\/“2
. — oy now |£5S
m Good to normalize vectors Similer

“ \/{“L = “V“L ;l
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Issues with Document Representation
"

m Words counts are bad for standard similarity metrics

S ||
S "p:;?,:\ wvof\\{"d ﬂn& —

common WOVDS lieg “ereg It g0 ) U,
(W\J ll{L\-& 4

m Term Frequency — Inverse Document Frequency (tf-idf)
Increase importance of rare words

/ Tooe. huggers...”
b > lree W

TF-IDF
" JEE

m  Term frequency:
tf(t,d) = ¥ of pcewr of tcd = -(s:(‘& i)
doc CiEd) £ vies g
Could alsouse {0,1},1+log f(¢,d),... _\&
YWM(iF(;&, ) wed§ lond)
! docs

m Inverse document frequency:

i (Xl £ mo
R oy T O M
m  tf-idf: 7 0 ow

thdf(t, d, ) = ch(a,oﬁ x d€ (%, X>

High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)
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Issues with Search Techniques
" JE
m Naive approach:
Brute force search
Given a query point T

Scan through each point z*

O(N) distance computations
per 1-NN query!
O(Nlogk) per k-NN query!

33 Distance Computations

m What if N is huge???
(and many queries)

©Emily Fox 2013 23

KD-Trees
= JEE

m Smarter approach: kd-trees

.
Structured organization of tt el
documents . ..
= Recursively partitions points into axis oo e *
aligned boxes. p o . *
Enables more efficient pruning of * e
search space ‘e ‘. .

= Examine nearby points first.
= Ignore any points that are further than

the nearest point found so far / \
m kd-trees work “well” in “low-
medium” dimensions d d/\b o O
We'll get back to this... §vLEv &
T Sv 4 ‘b cf kS
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KD-Tree Construction

Pt | X Y
0.00 | 0.00 | x!
2 1100|431 | gt
013 ] 2.85 | x3

m Start with a list of d-dimensional points.

©Emily Fox 2013
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KD-Tree Construction

e i ’ 4
o0 o i
[ J .:.. ° [ ]
—>
é§<v" x sV

= Split the points into 2

Choosing dimension d; and value V (methods to be discussed...)

NO /@\YES

—_

X

Pt X Y Pt | X Y
0.00 | 0.00 2 |1.00|4.31
3 [0.13|2.85

. o (rS€ V=05
\n

ups by:/’

Separating the points into xflj >V and xﬁljc V.
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KD-Tree Construction

[ ]
NO YES
B SN
oo.o e ° Pt X Y Pt X Y
. . . 1 |0.00]0.00 2 [100[431
* L° 3 |0.13]285
[ ]

Consider each group separately and possibly split again

(along same/different dimension).
Stoppinf\criterion to be discussed..
D =

<

oW to Choese d

©Emily Fox 2013
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v: D\

KD-Tree Construction

[ b [ b [ @
e NO \YES

. . 5. Pt | x | v

se o ° 2 [1.00]|4.31
[ [ [ NO
[ . e

ot s Pt | X Y Pt | X Y

®e © * 3 |0.13]|285 1 |0.00|0.00

m Consider each group separately and possibly split again

(along same/different dimension).
Stopping criterion to be discussed...

©Emily Fox 2013
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KD-Tree Construction

N N
I C/xy A\

s 5555
Lo IR S

m Continue splitting points in each set
creates a binary tree structure

swtiskying all

m Each leaf node contains a list of points canA.’aons own

_— ft"’ ‘-0\ Nt -\1«:%

KD-Tree Construction
" S IS
™ gs{o O»‘ A‘Ml

) ’ \bd/\bo/\b

: S8 &y

A\ 2

&
~

3. i : : :
m Keep one additional piece of information at each node:
The (tight) bounds of the points at or below this node.

©Emily Fox 2013
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KD-Tree Construction
" JE
Use heuristics to make splitting decisions:
m Which dimension do we split along?
widest (o a(&r,nwbz,)

m Which value do we split at?
median of chosen sP\?t dim (or c,w(:e,r‘)

m When do we stop?

oR
LoX hits Mintmam widdh

©Emily Fox 2013

Many heuristics...
"

i

SELEIN]

7 b bl &

I il Ba *?‘%i

median heuristic center-of-range heuristic
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Nearest Neighbor with KD

i1 —

oll o

/—QMW/V

N

O

<N /\

SiRe d’d/\b\b d/d/\b\b of d/\b\b

m Traverse the tree looking for the nearest neighbor of the

guery point.

Nearest Neighbor with KD

Xo

m Examine nearby points first:

O

/ X 7 X,
N

O,

d/\b <N\

o’\bcs’\tjp’\b\b o’djb\b

Explore branch of tree closest to the query point first.
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Nearest Neighbor with KD

m Examine nearby points first:
Explore branch of tree closest to the query point first.

Nearest Neighbor with KD

LEET N

SN
. :.: . i d/d/\b\b G/O/\b\b{? cs’\b\o

m When we reach a leaf node:
Compute the distance to each point in the node.
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Nearest Neighbor with KD

- m
P Jt:s'mnu_—m closesa

%o o /._:\ ;/ hb‘w()\nbg’ fovnd so Lof
(AN

RN YA
[ A

does NN v

m When we reach a leaf node: tp Lo in ths LﬂR
Compute the distance to each point in the node. N o
Nearest Neighbor with KD
A
. N N
N I R L P PN

m Then backtrack and try the other branch at each node
visited
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Nearest Neighbor with KD

hov& |
%o b /V\OW thoglf y\L‘ﬂLhﬁ/‘

e N

O

AN N
e RY- 6@’\6\6 4 @b})

m Each time a new closest node is found, update the
distance bound

Nearest Neighbor with KD

- Mt

%o b \mk 0/.\, A‘ig"‘
e% e en @) X .
[ e e
e B It d/\b/ X0 tz:ocj
1, abdbab%b )
" T vy ;Q/

m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD

%o * el . 5
SN
L .. : O
e I bd"%@%?’ Rt

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor
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Complexity
" JE
m For (nearly) balanced, binary trees...

m Construction
Size: 1N -\ — OC!\/)
Depth: (og N/
Median +C37end points?eft right: 0(N> ot Luery oze lewl
Construction time: () ( N{DJ N) (,Swwfc>
m 1-NN query
Traverse down tree to starting point: 0( log N )
Maximum backtrack and traverse: O(M) worst caSe_

Complexity range: O((oﬁ Ny — 0(N>

m Under some assumptions on distribution of points, we get

O(logN) but exgonential in d (see citations in reading)

Emily F a3

Complexity

= e TE =
1= W 1B
. g
Py Mot ‘)IMI\LJ only a fe,,
(closer & OLlog™) X%
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Complexity for N Queries
" JE
m Ask for nearest neighbor to each document
N oWr < S

m Brute force 1-NN: OC NL)

m kd-trees: OCN(D@TJ) — O[I\h/)

Inspections vs. N and d
" JEE

23



K-NN with KD Trees

e /\
\ /\
L ™ £ & @

O

m Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

m Complexity is:
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Approximate K-NN with KD Trees
"

a8 A
IO NN

e L ORAR cs’o{\ob 015%

m  Before: Prune when distance to bounding box >
= Now: Prune when distance to bounding box >

= Will prune more than allowed, but can guarantee that if we return a neighbor
at distance 7°, then there is no neighbor closer than 7“/04.

m |n practice this bound is loose...Can be closer to optimal.
m  Saves lots of search time at little cost in quality of nearest neighbor.
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Wrapping Up — Important Points
" JE

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

For both...

m High dimensional spaces are hard!
Number of kd-tree searches can be exponential in dimension
= Rule of thumb... N >> 24 Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)
= Need technique to learn what features are important for your task
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" JEE

m Document retrieval task
Document representation (bag of words)
tf-idf

m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree

Complexity of construction and query
Challenges with large d
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Andrew Moore’s excellent collection of ML
tutorials:
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