
1

1

Tackling an Unknown

Number of Features with

Sketching

Machine Learning/Statistics for Big Data

CSE599C1/STAT592, University of Washington

Carlos Guestrin

January 22nd, 2013
©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

Sketching Counts

 Bloom Filter is super cool, but not what we need…

 We don’t just care about whether a feature existed before, but to keep

track of counts of occurrences of features!

 Recall Perceptron update:

 Must keep track of counts of each feature (weighed by y(t)):

 E.g., with sparse data, for each non-zero dimension i in x(t):

 Can we generalize the Bloom Filter?
©Carlos Guestrin 2013 2

2

Count-Min Sketch: single vector

 Simpler problem: Count how many times you see each string

 Single hash function:

 Keep Count vector of length m

 every time see string i:

 Again, collisions could be a problem:

 ai is the count of element i:

©Carlos Guestrin 2013 3

Count-Min Sketch: general case

 Keep d by m Count matrix

 d hash functions:

 Just like in Bloom Filter, decrease errors with multiple hashes

 Every time see string i:

©Carlos Guestrin 2013 4

3

Querying the Count-Min Sketch

 Query Q(i)?

 What is in Count[j,k]?

 Thus:

 Return:

©Carlos Guestrin 2013 5

Analysis of Count-Min Sketch

 Set:

 Then, after seeing n elements:

 With probability at least 1-δ

©Carlos Guestrin 2013 6

4

Proof of Count-Min for Point Query with

Positive Counts: Part 1 – Expected Bound

 Ii,j,k = indicator that i & k collide on hash j:

 Bounding expected value:

 Xi,j = total colliding mass on estimate of count of i in hash j:

 Bounding colliding mass:

 Thus, estimate from each hash function is close in expectation

 ©Carlos Guestrin 2013 7

Proof of Count-Min for Point Query with Positive

Counts: Part 2 – High Probability Bounds

 What we know:

 Markov inequality: For z1,…,zk positive iid random variables

 Applying to the Count-Min sketch:

©Carlos Guestrin 2013 8

5

But Our Updates may be positive or

Negative

 Count-Min sketch for positive & negative case

 ai no longer necessarily positive

 Update the same: Observe change Δi to element i:

 Each Count[j,h(i)] no longer an upper bound on ai

 How do we make a prediction?

 Bound:

 With probability at least 1-δ1/4, where ||a|| = Σi |ai|

©Carlos Guestrin 2013 9

Finally, Sketching for Perceptron

 Never need to know size of vocabulary!

 Make a mistake, update Count-Min matrix:

 Making a prediction:

 Scales to huge problems, great practical implications… More next time
©Carlos Guestrin 2013 10

6

What you need to know

 Hash functions

 Bloom filter
 Test membership with some false positives, but very small number of bits per element

 Count-Min sketch
 Positive counts: upper bound with nice rates of convergence

 General case

 Application to Perceptron Learning and Prediction

©Carlos Guestrin 2013 11

12

Task Description:

Finding Similar Documents

Machine Learning/Statistics for Big Data

CSE599C1/STAT592, University of Washington

Emily Fox

January 22nd, 2013
©Emily Fox 2013

Case Study 2: Document Retrieval

7

Document Retrieval

©Emily Fox 2013 13

 Goal: Retrieve documents of interest

 Challenges:

 Tons of articles out there

 How should we measure similarity?

Task 1: Find Similar Documents

©Emily Fox 2013 14

 To begin…

 Input: Query article

 Output: Set of k similar articles

8

Document Representation

©Emily Fox 2013 15

 Bag of words model

1-Nearest Neighbor

©Emily Fox 2013 16

 Articles

 Query:

 1-NN

 Goal:

 Formulation:

9

k-Nearest Neighbor

©Emily Fox 2013 17

 Articles

 Query:

 k-NN

 Goal:

 Formulation:

Distance Metrics – Euclidean

©Emily Fox 2013 18

18

Other Metrics…

 Mahalanobis, Rank-based, Correlation-based, cosine similarity…

where

Or, more generally,

Equivalently,

10

©Emily Fox 2013 19

Notable Distance Metrics (and their level sets)

L1 norm (absolute)

L1 (max) norm

Scaled Euclidian (L2)

Mahalanobis

(S is general sym pos def matrix,

on previous slide = diagonal)

 Recall distance metric

 What if each document were times longer?

 Scale word count vectors

 What happens to measure of similarity?

 Good to normalize vectors

Euclidean Distance + Document Retrieval

©Emily Fox 2013 20

20

11

Issues with Document Representation

©Emily Fox 2013 21

 Words counts are bad for standard similarity metrics

 Term Frequency – Inverse Document Frequency (tf-idf)

 Increase importance of rare words

TF-IDF

©Emily Fox 2013 22

 Term frequency:

 Could also use

 Inverse document frequency:

 tf-idf:

 High for document d with high frequency of term t (high “term frequency”) and few
documents containing term t in the corpus (high “inverse doc frequency”)

12

 Naïve approach:

Brute force search
 Given a query point

 Scan through each point

 O(N) distance computations

per 1-NN query!

 O(Nlogk) per k-NN query!

 What if N is huge???

(and many queries)

Issues with Search Techniques

©Emily Fox 2013 23

33 Distance Computations

 Smarter approach: kd-trees

 Structured organization of

documents

 Recursively partitions points into axis

aligned boxes.

 Enables more efficient pruning of

search space

 Examine nearby points first.

 Ignore any points that are further than

the nearest point found so far.

 kd-trees work “well” in “low-

medium” dimensions

 We’ll get back to this…

KD-Trees

©Emily Fox 2013 24

13

KD-Tree Construction

Pt X Y

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

 Start with a list of d-dimensional points.

25 ©Emily Fox 2013

KD-Tree Construction

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YES NO

 Split the points into 2 groups by:

 Choosing dimension dj and value V (methods to be discussed…)

 Separating the points into > V and <= V.

26 ©Emily Fox 2013

14

KD-Tree Construction

X>.5

Pt X Y

2 1.00 4.31

… … …

YES NO

 Consider each group separately and possibly split again

(along same/different dimension).
 Stopping criterion to be discussed…

Pt X Y

1 0.00 0.00

3 0.13 2.85

… … …

27 ©Emily Fox 2013

KD-Tree Construction

Pt X Y

3 0.13 2.85

… … …

X>.5

Pt X Y

2 1.00 4.31

… … …

YES NO

Pt X Y

1 0.00 0.00

… … …

Y>.1

NO
YES

 Consider each group separately and possibly split again

(along same/different dimension).
 Stopping criterion to be discussed…

28 ©Emily Fox 2013

15

KD-Tree Construction

 Continue splitting points in each set

 creates a binary tree structure

 Each leaf node contains a list of points

29 ©Emily Fox 2013

KD-Tree Construction

 Keep one additional piece of information at each node:

 The (tight) bounds of the points at or below this node.

30 ©Emily Fox 2013

16

KD-Tree Construction

Use heuristics to make splitting decisions:

 Which dimension do we split along?

 Which value do we split at?

 When do we stop?

31 ©Emily Fox 2013

Many heuristics…

32

median heuristic center-of-range heuristic

©Emily Fox 2013

17

Nearest Neighbor with KD

Trees

33

 Traverse the tree looking for the nearest neighbor of the

query point.

©Emily Fox 2013

Nearest Neighbor with KD

Trees

34

 Examine nearby points first:

 Explore branch of tree closest to the query point first.

©Emily Fox 2013

18

Nearest Neighbor with KD

Trees

35

 Examine nearby points first:

 Explore branch of tree closest to the query point first.

©Emily Fox 2013

Nearest Neighbor with KD

Trees

36

 When we reach a leaf node:

 Compute the distance to each point in the node.

©Emily Fox 2013

19

Nearest Neighbor with KD

Trees

37

 When we reach a leaf node:

 Compute the distance to each point in the node.

©Emily Fox 2013

Nearest Neighbor with KD

Trees

38

 Then backtrack and try the other branch at each node

visited

©Emily Fox 2013

20

Nearest Neighbor with KD

Trees

39

 Each time a new closest node is found, update the

distance bound

©Emily Fox 2013

Nearest Neighbor with KD

Trees

40

 Using the distance bound and bounding box of each node:

 Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013

21

Nearest Neighbor with KD

Trees

41

 Using the distance bound and bounding box of each node:

 Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013

Nearest Neighbor with KD

Trees

42

 Using the distance bound and bounding box of each node:

 Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013

22

 For (nearly) balanced, binary trees...

 Construction

 Size:

 Depth:

 Median + send points left right:

 Construction time:

 1-NN query

 Traverse down tree to starting point:

 Maximum backtrack and traverse:

 Complexity range:

 Under some assumptions on distribution of points, we get

O(logN) but exponential in d (see citations in reading)

43

Complexity

©Emily Fox 2013

44

Complexity

©Emily Fox 2013

23

 Ask for nearest neighbor to each document

 Brute force 1-NN:

 kd-trees:

45

Complexity for N Queries

©Emily Fox 2013

46

Inspections vs. N and d

©Emily Fox 2013

24

K-NN with KD Trees

47

 Exactly the same algorithm, but maintain distance as

distance to furthest of current k nearest neighbors

 Complexity is:

©Emily Fox 2013

48 ©Emily Fox 2013

Approximate K-NN with KD Trees

 Before: Prune when distance to bounding box >

 Now: Prune when distance to bounding box >

 Will prune more than allowed, but can guarantee that if we return a neighbor

at distance , then there is no neighbor closer than .

 In practice this bound is loose…Can be closer to optimal.

 Saves lots of search time at little cost in quality of nearest neighbor.

25

Wrapping Up – Important Points

49

kd-trees

 Tons of variants

 On construction of trees (heuristics for splitting, stopping, representing branches…)

 Other representational data structures for fast NN search (e.g., ball trees,…)

Nearest Neighbor Search

 Distance metric and data representation are crucial to answer returned

For both…

 High dimensional spaces are hard!

 Number of kd-tree searches can be exponential in dimension
 Rule of thumb… N >> 2d… Typically useless.

 Distances are sensitive to irrelevant features
 Most dimensions are just noise  Everything equidistant (i.e., everything is far away)

 Need technique to learn what features are important for your task

©Emily Fox 2013

What you need to know

 Document retrieval task
 Document representation (bag of words)

 tf-idf

 Nearest neighbor search
 Formulation

 Different distance metrics and sensitivity to choice

 Challenges with large N

 kd-trees for nearest neighbor search
 Construction of tree

 NN search algorithm using tree

 Complexity of construction and query

 Challenges with large d

©Emily Fox 2013 50

26

©Emily Fox 2013 51

Acknowledgment

 This lecture contains some material from

Andrew Moore’s excellent collection of ML

tutorials:

 http://www.cs.cmu.edu/~awm/tutorials

 In particular, see:

 http://grist.caltech.edu/sc4devo/.../files/sc4devo_scala

ble_datamining.ppt

http://www.cs.cmu.edu/~awm/tutorials
http://www.cs.cmu.edu/~awm/tutorials
http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt
http://grist.caltech.edu/sc4devo/.../files/sc4devo_scalable_datamining.ppt

