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Case Study 1: Estimating Click Probabilities 

Sketching Counts 

 Bloom Filter is super cool, but not what we need… 

 We don’t just care about whether a feature existed before, but to keep 

track of counts of occurrences of features! 

 Recall Perceptron update: 

 

 

 Must keep track of counts of each feature (weighed by y(t)): 

 E.g., with sparse data, for each non-zero dimension i in x(t): 

 

 

 

 Can we generalize the Bloom Filter? 
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Count-Min Sketch: single vector 

 Simpler problem: Count how many times you see each string 

 Single hash function:  

 Keep Count vector of length m 

 every time see string i: 

 

   

  

 

 

 Again, collisions could be a problem: 

 ai is the count of element i: 
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Count-Min Sketch: general case 

 Keep d by m Count matrix  

 

 

 

 

 d hash functions:  

 Just like in Bloom Filter, decrease errors with multiple hashes 

 Every time see string i: 
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Querying the Count-Min Sketch 

 Query Q(i)?  

 What is in Count[j,k]? 

 

 

 Thus: 

 

 

 

 Return: 
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Analysis of Count-Min Sketch 

 Set: 

 

 

 

 Then, after seeing n elements: 

 

 

 With probability at least 1-δ  
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Proof of Count-Min for Point Query with 

Positive Counts: Part 1 – Expected Bound 

 Ii,j,k = indicator that i & k collide on hash j: 

 

 

 Bounding expected value: 

 

 

 Xi,j = total colliding mass on estimate of count of i in hash j: 
 

 
 

 Bounding colliding mass: 

 

 

 

 Thus, estimate from each hash function is close in expectation 
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Proof of Count-Min for Point Query with Positive 

Counts: Part 2 – High Probability Bounds 

 What we know: 

 

 Markov inequality: For z1,…,zk positive iid random variables 

 

 

 

 

 

 Applying to the Count-Min sketch: 
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But Our Updates may be positive or 

Negative 

 Count-Min sketch for positive & negative case 

 ai no longer necessarily positive 

 Update the same: Observe change Δi to element i: 

 

 

 Each Count[j,h(i)] no longer an upper bound on ai 

 How do we make a prediction? 

 

 

 Bound: 

 With probability at least 1-δ1/4, where ||a|| = Σi |ai|   
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Finally, Sketching for Perceptron 

 Never need to know size of vocabulary! 

 Make a mistake, update Count-Min matrix: 

 

 

 

 

 Making a prediction: 

 

 

 

 

 Scales to huge problems, great practical implications… More next time 
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What you need to know 

 Hash functions 

 Bloom filter 
 Test membership with some false positives, but very small number of bits per element 

 Count-Min sketch 
 Positive counts: upper bound with nice rates of convergence 

 General case 

 Application to Perceptron Learning and Prediction 
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Case Study 2: Document Retrieval 
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Document Retrieval 
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 Goal: Retrieve documents of interest  

 Challenges:  

 Tons of articles out there 

 How should we measure similarity? 

Task 1: Find Similar Documents 
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 To begin… 

 Input: Query article  

 Output: Set of k similar articles 
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Document Representation 
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 Bag of words model 

1-Nearest Neighbor 
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 Articles 

 

 Query:  

 

 1-NN 

 Goal:  

 

 Formulation: 
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k-Nearest Neighbor 
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 Articles 

 

 Query:  

 

 k-NN 

 Goal:  

 

 Formulation: 

Distance Metrics – Euclidean  
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Other Metrics… 

 Mahalanobis, Rank-based, Correlation-based, cosine similarity…  

where 

Or, more generally, 

Equivalently, 
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Notable Distance Metrics (and their level sets) 

L1 norm (absolute) 

L1 (max) norm 

Scaled Euclidian (L2) 

Mahalanobis           

(S is general sym pos def matrix, 

on previous slide = diagonal) 

 Recall distance metric  

 

 

 

 What if each document were      times longer? 

 Scale word count vectors 

 

 What happens to measure of similarity?  

 

 

 Good to normalize vectors 

Euclidean Distance + Document Retrieval 
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Issues with Document Representation 
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 Words counts are bad for standard similarity metrics 

 

 

 

 

 

 

 

 Term Frequency – Inverse Document Frequency (tf-idf) 

 Increase importance of rare words 

TF-IDF 
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 Term frequency: 

 

 
 

 

 Could also use  

 Inverse document frequency: 

 

 

 

 

 tf-idf: 
 

 

 High for document d with high frequency of term t (high “term frequency”) and few 
documents containing term t in the corpus (high “inverse doc frequency”) 
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 Naïve approach:  

Brute force search 
 Given a query point 

 Scan through each point 

 O(N) distance computations 

per 1-NN query! 

 O(Nlogk) per k-NN query! 

 

 

 What if N is huge??? 

(and many queries) 

 

Issues with Search Techniques 
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33 Distance Computations 

 Smarter approach: kd-trees 

 Structured organization of 

documents 

 Recursively partitions points into axis 

aligned boxes. 

 Enables more efficient pruning of 

search space 

 Examine nearby points first. 

 Ignore any points that are further than 

the nearest point found so far. 

 kd-trees work “well” in “low-

medium” dimensions 

 We’ll get back to this… 

KD-Trees 
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KD-Tree Construction 

Pt X Y 

1 0.00 0.00 

2 1.00 4.31 

3 0.13 2.85 

… … … 

 Start with a list of d-dimensional points. 
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KD-Tree Construction 

Pt X Y 

1 0.00 0.00 

3 0.13 2.85 

… … … 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

 Split the points into 2 groups by: 

 Choosing dimension dj and value V (methods to be discussed…) 

 Separating the points into       > V and      <= V. 
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KD-Tree Construction 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 

Pt X Y 

1 0.00 0.00 

3 0.13 2.85 

… … … 
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KD-Tree Construction 

Pt X Y 

3 0.13 2.85 

… … … 

X>.5 

Pt X Y 

2 1.00 4.31 

… … … 

YES NO 

Pt X Y 

1 0.00 0.00 

… … … 

Y>.1 

NO 
YES 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 
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KD-Tree Construction 

 Continue splitting points in each set  

 creates a binary tree structure 

 Each leaf node contains a list of points 
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KD-Tree Construction 

 Keep one additional piece of information at each node: 

  The (tight) bounds of the points at or below this node. 
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KD-Tree Construction 

Use heuristics to make splitting decisions: 

 Which dimension do we split along?  

 

 Which value do we split at?   

 

 When do we stop?    

31 ©Emily Fox 2013 

Many heuristics… 

32 

median heuristic center-of-range heuristic 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

33 

 Traverse the tree looking for the nearest neighbor of the 

query point. 
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Nearest Neighbor with KD 

Trees 

34 

 Examine nearby points first:  

 Explore branch of tree closest to the query point first. 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

35 

 Examine nearby points first:  

 Explore branch of tree closest to the query point first. 
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Nearest Neighbor with KD 

Trees 

36 

 When we reach a leaf node:  

 Compute the distance to each point in the node. 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

37 

 When we reach a leaf node:  

 Compute the distance to each point in the node. 
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Nearest Neighbor with KD 

Trees 

38 

 Then backtrack and try the other branch at each node 

visited 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

39 

 Each time a new closest node is found, update the 

distance bound 
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Nearest Neighbor with KD 

Trees 

40 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 

©Emily Fox 2013 
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Nearest Neighbor with KD 

Trees 

41 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 

©Emily Fox 2013 

Nearest Neighbor with KD 

Trees 

42 

 Using the distance bound and bounding box of each node: 

 Prune parts of the tree that could NOT include the nearest neighbor 

©Emily Fox 2013 
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 For (nearly) balanced, binary trees... 

 Construction 

 Size: 

 Depth:  

 Median + send points left right: 

 Construction time:  

 1-NN query 

 Traverse down tree to starting point: 

 Maximum backtrack and traverse: 

 Complexity range: 

 

 Under some assumptions on distribution of points, we get 

O(logN) but exponential in d (see citations in reading) 

43 

Complexity 
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Complexity 
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 Ask for nearest neighbor to each document 

 

 Brute force 1-NN: 

 

 kd-trees: 

45 

Complexity for N Queries 

©Emily Fox 2013 
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Inspections vs. N and d 

©Emily Fox 2013 
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K-NN with KD Trees 

47 

 Exactly the same algorithm, but maintain distance as 

distance to furthest of current k nearest neighbors 

 Complexity is: 

©Emily Fox 2013 
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Approximate K-NN with KD Trees 

 Before: Prune when distance to bounding box >  

 Now: Prune when distance to bounding box >  

 Will prune more than allowed, but can guarantee that if we return a neighbor 

at distance   , then there is no neighbor closer than         . 

 In practice this bound is loose…Can be closer to optimal. 

 Saves lots of search time at little cost in quality of nearest neighbor. 
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Wrapping Up – Important Points 

49 

kd-trees 

 Tons of variants 

 On construction of trees (heuristics for splitting, stopping, representing branches…) 

 Other representational data structures for fast NN search (e.g., ball trees,…) 

 

Nearest Neighbor Search 

 Distance metric and data representation are crucial to answer returned 

 

For both… 

 High dimensional spaces are hard! 

 Number of kd-tree searches can be exponential in dimension 
 Rule of thumb…  N >> 2d… Typically useless. 

 Distances are sensitive to irrelevant features  
 Most dimensions are just noise  Everything equidistant (i.e., everything is far away) 

 Need technique to learn what features are important for your task 
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What you need to know 

 Document retrieval task 
 Document representation (bag of words) 

 tf-idf 

 Nearest neighbor search 
 Formulation 

 Different distance metrics and sensitivity to choice 

 Challenges with large N 

 kd-trees for nearest neighbor search 
 Construction of tree 

 NN search algorithm using tree 

 Complexity of construction and query 

 Challenges with large d 
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