Case Study 3: fMRI Prediction

- Stochastic Coordinate Descent (SCD) for LASSO (Shooting)
- Parallel SCD (Shotgun)
- Parallel SGD
- Averaging Solutions

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington
Carlos Guestrin
February 21st, 2013

Today
- One way to solve LASSO problem
- Stochastic Coordinate Descent (SCD)
- Minimizing a coordinate in LASSO
- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation! 😊
- Analysis of SCD
- Parallel SCD (Shotgun)
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging
Coordinate Descent

- Given a function F
 - Want to find minimum

- Often, hard to find minimum for all coordinates, but easy for one coordinate

- Coordinate descent:
 - How do we pick a coordinate?
 - When does this converge to optimum?

LASSO Regression

- **LASSO**: least absolute shrinkage and selection operator

- New objective:
 \[
 \min_{\beta} \sum_{i=1}^{N} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda \|\beta\|_1
 \]

 \[
 \min_\beta \text{RSS}(\beta) \quad \text{s.t.} \quad \|\beta\|_1 \leq B
 \]
Soft Threshholding

\[f(\beta) = \text{RSS}(\beta) + \lambda \| \beta \|_1 \]

- Gradient of RSS term:
 \[
 \frac{\partial}{\partial \beta_j} \text{RSS}(\beta) = a_j \beta_j - c_j < 0 \rightarrow \frac{\partial}{\partial \beta_j} \text{RSS}(\beta) = 2 \sum_{i=1}^{N} \left(y_i - \beta_j x_{ij} \right)^2
 \]

- Subgradient of full objective:
 \[
 \frac{\partial}{\partial \beta_j} F(\beta) = (a_j \beta_j - c_j) + \lambda \frac{\partial}{\partial \beta_j} \| \beta \|_1
 \]

 - \[a_j \beta_j - c_j - \lambda \beta_j < 0 \rightarrow a_j \beta_j - c_j + \lambda \beta_j > 0 \]
 - \[[-c_j - \lambda, -c_j + \lambda] \beta_j = 0 \]
 - \[a_j \beta_j - c_j + \lambda \beta_j > 0 \]

- Set subgradient = 0:
 \[
 \partial_{\beta_j} F(\beta) = \begin{cases}
 a_j \beta_j - c_j - \lambda & \beta_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \beta_j = 0 \\
 a_j \beta_j - c_j + \lambda & \beta_j > 0
 \end{cases}
 \]

 - If \(\beta_j < 0 \)
 \[a_j \beta_j - c_j - \lambda = 0 \Rightarrow \beta_j = \frac{c_j - \lambda}{a_j} < 0 \Rightarrow c_j < -\lambda \text{ strong neg. corr.} \]
 then \(\beta_j < 0 \)

 - If \(\beta_j > 0 \)
 \[a_j \beta_j - c_j + \lambda = 0 \Rightarrow \beta_j = \frac{c_j - \lambda}{a_j} > 0 \Rightarrow c_j > \lambda \text{ strong pos. corr.} \]
 then \(\beta_j > 0 \)

 - If \(\beta_j = 0 \)
 \[-\lambda < c_j < \lambda \text{ otherwise, } \beta_j = 0 \]

- The value of \[c_j = 2 \sum_{i=1}^{N} x_{ij}^2 (y_i - \beta'_{-j} x_{-ij}) \] constrains \(\beta_j \)

©Carlos Guestrin 2013
Soft Threshholding

\[\hat{\beta}_j = \begin{cases}
(c_j + \lambda)/a_j & c_j < -\lambda \\
0 & c_j \in [-\lambda, \lambda] \\
(c_j - \lambda)/a_j & c_j > \lambda
\end{cases} = \text{sign}(c_j/a_j) \left(|c_j| - \frac{\lambda}{a_j} \right)_+ \]

From Kevin Murphy textbook

In LASSO, all coeff \(\hat{\beta}_j \) are shrunk relative to \(\hat{\beta}_j^{\text{OLS}} \)

Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - Pick a coordinate \(j \) at random
 - Set:
 \[\hat{\beta}_j = \begin{cases}
(c_j + \lambda)/a_j & c_j < -\lambda \\
0 & c_j \in [-\lambda, \lambda] \\
(c_j - \lambda)/a_j & c_j > \lambda
\end{cases} \]
 - Where:
 \[a_j = 2 \sum_{i=1}^{N} (x_{ij})^2 \quad c_j = 2 \sum_{i=1}^{N} x_{ij}(y_i - \hat{\beta}_{-j}'x_{-j}) \]
Analysis of SCD [Shalev-Shwartz, Tewari ’09/11]

- Analysis works for LASSO, L1 regularized logistic regression, and other objectives!
- For (coordinate-wise) strongly convex functions:
 - Theorem:
 - Starting from
 - After T iterations
 - Where \(E[] \) is wrt random coordinate choices of SCD
- Natural question: How does SCD & SGD convergence rates differ?

Shooting: Sequential SCD

Lasso: \(\min_\beta F(\beta) \) where \(F(\beta) = \| X\beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Stochastic Coordinate Descent (SCD)
(e.g., Shalev-Shwartz & Tewari, 2009)

While not converged,
- Choose random coordinate \(j \),
- Update \(\beta_j \) (closed-form minimization)
Shotgun: Parallel SCD [Bradley et al ’11]

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = \| X\beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Shotgun (Parallel SCD)

While not converged,
- On each of \(P \) processors,
 - Choose random coordinate \(j \),
 - Update \(\beta_j \) (same as for Shooting)

Is SCD inherently sequential?

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = \| X\beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Coordinate update:
\(\beta_j \leftarrow \beta_j + \delta \beta_j \)
(closed-form minimization)

Collective update:
\[
\Delta \beta = \begin{pmatrix}
\delta \beta_i \\
0 \\
0 \\
\delta \beta_j \\
0
\end{pmatrix}
\]
Is SCD inherently sequential?

Lasso: \[\min_{\beta} F(\beta) \text{ where } F(\beta) = \| X\beta - y \|_2^2 + \lambda \| \beta \|_1 \]

Theorem: If \(X \) is normalized s.t. \(\text{diag}(X^TX) = 1 \),

\[
F(\beta + \Delta \beta) - F(\beta) \\
\leq - \sum_{i,j \in P} (\delta \beta_{ij})^2 + \sum_{i,j \in P, j \neq k} (X^TX)_{ij,ik} \delta \beta_{ij} \delta \beta_{ik}
\]

Is SCD inherently sequential?

Theorem: If \(X \) is normalized s.t. \(\text{diag}(X^TX) = 1 \),

\[
F(\beta + \Delta \beta) - F(\beta) \\
\leq - \sum_{i,j \in P} (\delta \beta_{ij})^2 + \sum_{i,j \in P, j \neq k} (X^TX)_{ij,ik} \delta \beta_{ij} \delta \beta_{ik}
\]

Nice case: Uncorrelated features

Bad case: Correlated features
Shotgun: Convergence Analysis

Lasso: \(\min_{\beta} F(\beta) \) where \(F(\beta) = \| X\beta - y \|_2^2 + \lambda \| \beta \|_1 \)

Assume \# parallel updates \(P < d / \rho + 1 \)

Generalizes bounds for Shooting (Shalev-Shwartz & Tewari, 2009)

Convergence Analysis

Theorem: Shotgun Convergence

Assume \(P < d / \rho + 1 \) where \(\rho = \) spectral radius of \(X^TX \)

\[
E \left[F(\beta^{(T)}) \right] - F(\beta^*) \
\leq d \left(\frac{1}{2} \| \beta^* \|_2^2 + F(\beta^{(0)}) \right) / TP \
\]

Nice case: Uncorrelated features
\(\rho = _ _ _ \Rightarrow P_{max} = _ _ _ \)

Bad case: Correlated features
\(\rho = _ _ _ \Rightarrow P_{max} = _ _ _ \) (at worst)
Empirical Evaluation

Stepping Back...
- Stochastic coordinate ascent
 - Optimization:
 - Parallel SCD:
 - Issue:
 - Solution:

- Natural counterpart:
 - Optimization:
 - Parallel
 - Issue:
 - Solution:
Parallel SGD with No Locks

- Each processor in parallel:
 - Pick data point \(i \) at random
 - For \(j = 1 \ldots d \):

- Assume atomicity of:

Addressing Interference in Parallel SGD

- Key issues:
 - Old gradients
 - Processors overwrite each other’s work

- Nonetheless:
 - Can achieve convergence and some parallel speedups
 - Proof uses weak interactions, but through sparsity of data points
Problem with Parallel SCD and SGD

- Both Parallel SCD & SGD assume access to current estimate of weight vector
- Works well on shared memory machines
- Very difficult to implement efficiently in distributed memory
- Open problem: Good parallel SGD and SCD for distributed setting…
 - Let’s look at a trivial approach

Simplest Distributed Optimization Algorithm Ever Made

- Given N data points & m machines
- Stochastic optimization problem:
- Distribute data:
 - Solve problems independently
 - Merge solutions
- Why should this work at all????
For Convex Functions…

- Convexity:

 - Thus:

Hopefully…

- Convexity only guarantees:

 - But, estimates from independent data!
Analysis of Distribute-then-Average

Under some conditions, including strong convexity, lots of smoothness, and more...

If all data were in one machine, converge at rate:

With m machines converge at a rate:

Tradeoffs, tradeoffs, tradeoffs, ...

Distribute-then-Average:
- "Minimum possible" communication
- Bias term can be a killer with finite data
 - Issue definitely observed in practice
- Significant issues for L1 problems:

Parallel SCD or SGD
- Can have much better convergence in practice for multicore setting
- Preserves sparsity (especially SCD)
- But, hard to implement in distributed setting
What you need to know

- One way to solve LASSO problem
- Stochastic Coordinate Descent (SCD)
- Minimizing a coordinate in LASSO
- A simple SCD for LASSO (Shooting)
 - Your HW, a more efficient implementation!
- Analysis of SCD
- Parallel SCD (Shotgun)
- Other parallel learning approaches for linear models
 - Parallel stochastic gradient descent (SGD)
 - Parallel independent solutions then averaging