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Case Study 3: fMRI Prediction 

Today 

n  One way to solve LASSO problem 
n  Stochastic Coordinate Descent (SCD) 
n  Minimizing a coordinate in LASSO 
n  A simple SCD for LASSO (Shooting) 

¨  Your HW, a more efficient implementation! J 

n  Analysis of SCD 
n  Parallel SCD (Shotgun) 
n  Other parallel learning approaches for linear models 

¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick a coordinate? 

n  When does this converge to optimum?  
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LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Soft Threshholding  

n  Gradient of RSS term: 

n  Subgradient of full objective: 
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Soft Threshholding  

n  Set subgradient = 0: 

n  The value of              constrains 
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Soft Threshholding  
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Stochastic Coordinate Descent for LASSO 
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at random 

n  Set: 

n  Where:  
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Analysis of SCD [Shalev-Shwartz, Tewari ’09/’11] 
n  Analysis works for LASSO, L1 regularized logistic regression, and other objectives! 

n  For (coordinate-wise) strongly convex functions: 

n  Theorem:  
¨  Starting from 
¨  After T iterations 

¨  Where E[ ] is wrt random coordinate choices of SCD 
 

n  Natural question: How does SCD & SGD convergence rates differ? 
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Shooting: Sequential SCD 

Stochastic Coordinate Descent (SCD) 
(e.g., Shalev-Shwartz & Tewari, 2009) 

While not converged, 
" Choose random coordinate j, 
" Update βj (closed-form minimization) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 

F(β) contour 
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Shotgun: Parallel SCD [Bradley et al ‘11] 

Shotgun (Parallel SCD) 

While not converged, 
" On each of P processors, 
" Choose random coordinate j, 
" Update βj (same as for Shooting) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Is SCD inherently sequential? 

Coordinate update: 

β j ← β j +δβ j

(closed-form minimization) 

Δβ =
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Collective update: 
δβi

δβ j

0
0

0

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Is SCD inherently sequential? 

Theorem: 

F(β +Δβ)−F(β)

≤ − δβij( )
2

ij∈P
∑ + XTX( )ij ,ik δβijδβik

ij ,ik∈P,

j≠k

∑

If X is normalized s.t. diag(XTX)=1, 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Is SCD inherently sequential? 

Nice case: 
Uncorrelated 
features 

Bad case: 
Correlated 
features 

Theorem: 

F(β +Δβ)−F(β)

≤ − δβij( )
2

ij∈P
∑ + XTX( )ij ,ik δβijδβik

ij ,ik∈P,

j≠k

∑

If X is normalized s.t. diag(XTX)=1, 
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Shotgun: Convergence Analysis 

Assume # parallel updates 

€ 

P < d /ρ +1

Generalizes bounds for Shooting (Shalev-Shwartz & Tewari, 2009) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Convergence Analysis 

≤
d 1

2 || β* ||2
2 +F(β (0) )( )
TP
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Theorem: Shotgun Convergence 

Assume 

€ 

P < d /ρ +1
where  

€ 

ρ = spectral radius of XTX 

Nice case: 
Uncorrelated 
features 

ρ = __⇒ Pmax = __

Bad case: 
Correlated 
features 
ρ = __⇒ Pmax = __(at worst) 

min
β
F(β) F(β) =|| Xβ − y ||2

2 +λ || β ||1where Lasso: 
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Stepping Back… 
n  Stochastic coordinate ascent 

¨  Optimization: 

¨  Parallel SCD: 

¨  Issue: 

¨  Solution: 

n  Natural counterpart: 
¨  Optimization: 

¨  Parallel 

¨  Issue: 

¨  Solution: 
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Parallel SGD with No Locks        [e.g., Hogwild!, Niu et al. ‘11]  
n  Each processor in parallel: 

¨  Pick data point i at random 
¨  For j = 1…d:  

n  Assume atomicity of: 
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Addressing Interference in Parallel SGD 

n  Key issues: 
¨  Old gradients 

¨  Processors overwrite each other’s work 

n  Nonetheless:  
¨  Can achieve convergence and some parallel speedups  
¨  Proof uses weak interactions, but through sparsity of data points 
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Problem with Parallel SCD and SGD 

n  Both Parallel SCD & SGD assume access to current estimate of 
weight vector 

n  Works well on shared memory machines 

n  Very difficult to implement efficiently in distributed memory 

n  Open problem: Good parallel SGD and SCD for distributed setting… 
¨  Let’s look at a trivial approach 
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Simplest Distributed Optimization 
Algorithm Ever Made 

n  Given N data points & m machines 
n  Stochastic optimization problem: 
n  Distribute data: 

n  Solve problems independently 

n  Merge solutions 

n  Why should this work at all???? 

©Carlos Guestrin 2013 22 



12 

For Convex Functions… 
n  Convexity: 

n  Thus: 
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Hopefully… 
n  Convexity only guarantees: 

n  But, estimates from independent data! 
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The average mixture algorithm

Two pictures:

θ̂1
θ̂2

θ̂3
θ̂4

Duchi (UC Berkeley) Communication Efficient Optimization CDC 2012 7 / 21

Figure from John Duchi 
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Analysis of Distribute-then-Average        [Zhang et al. ‘12]  

n  Under some conditions, including strong convexity, lots of 
smoothness, and more…  

n  If all data were in one machine, converge at rate: 

n  With m machines converge at a rate: 
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Tradeoffs, tradeoffs, tradeoffs,… 
n  Distribute-then-Average: 

¨  “Minimum possible” communication 
¨  Bias term can be a killer with finite data  

n  Issue definitely observed in practice 
¨  Significant issues for L1 problems: 

n  Parallel SCD or SGD 
¨  Can have much better convergence in practice for multicore setting 
¨  Preserves sparsity (especially SCD) 
¨  But, hard to implement in distributed setting 
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What you need to know 

n  One way to solve LASSO problem 
n  Stochastic Coordinate Descent (SCD) 
n  Minimizing a coordinate in LASSO 
n  A simple SCD for LASSO (Shooting) 

¨  Your HW, a more efficient implementation! J 

n  Analysis of SCD 
n  Parallel SCD (Shotgun) 
n  Other parallel learning approaches for linear models 

¨  Parallel stochastic gradient descent (SGD) 
¨  Parallel independent solutions then averaging 

©Carlos Guestrin 2013 27 


