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Case Study 1: Estimating Click Probabilities 

Online Learning Problem 

n  At each time step t: 
¨  Observe features of data point: 

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course   

¨  Make a prediction:  
n  Note: many models are possible, we focus on linear models 
n  For simplicity, use vector notation 

¨  Observe true label: 
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details 

beyond scope of course 

¨  Update model: 
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62] 
n  Classification setting: y in {-1,+1} 
n  Linear model 

¨  Prediction:  
 

n  Training:  
¨  Initialize weight vector:  
¨  At each time step: 

n  Observe features: 
n  Make prediction: 
n  Observe true class: 

n  Update model:   
¨  If prediction is not equal to truth 
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What if the data is not linearly separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Higher order polynomials 
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m – input features 
d – degree of polynomial 

grows fast! 
d = 6, m = 100 
about 1.6 billion terms 

Perceptron Revisited 
n  Given weight vector w(t), predict point x by: 

n  Mistake at time t: w(t+1) = w(t) + y(t) x(t) 

n   Thus, write weight vector in terms of mistaken data points only: 
¨  Let M(t) be time steps up to t when mistakes were made: 

n  Prediction rule now: 

n  When using high dimensional features: 
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Dot-product of polynomials 

exactly d 

Finally the Kernel Trick!!! 
(Kernelized Perceptron  

n  Every time you make a mistake, remember (x(t),y(t)) 

n  Kernelized Perceptron prediction for x: 
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Polynomial kernels 

n  All monomials of degree d in O(d) operations: 

n  How about all monomials of degree up to d? 
¨ Solution 0:  

¨ Better solution: 

exactly d 
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Common kernels 

n  Polynomials of degree exactly d 

n  Polynomials of degree up to d 

n  Gaussian (squared exponential) kernel 

n  Sigmoid 
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Fundamental Practical Problem for All Online 
Learning Methods: Which weight vector to report? 

n  Suppose you run online learning method and want to sell 
your learned weight vector… Which one do you sell??? 

n  Last one? 

n    

n    

n    
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Choice can make a huge difference!! 
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[Freund & Schapire ’99] 
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What you need to know 

n  Notion of online learning 
n  Perceptron algorithm 
n  Mistake bounds and proofs 
n  The kernel trick 
n  Kernelized Perceptron 
n  Derive polynomial kernel 
n  Common kernels 
n  In online learning, report averaged weights at the end 
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What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨ Started from maximizing conditional log-likelihood 

n  When we discussed the Perceptron: 
¨ Started from description of an algorithm 

n  What is the Perceptron optimizing???? 
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Perceptron Prediction: Margin of 
Confidence 
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Hinge Loss 

n  Perceptron prediction: 

n  Makes a mistake when:  

n  Hinge loss (same as maximizing the margin used by SVMs) 
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Minimizing hinge loss in Batch Setting 

n  Given a dataset: 

n  Minimize average hinge loss: 

n  How do we compute the gradient? 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Subgradient of Hinge  

n  Hinge loss: 

 

n  Subgradient of hinge loss: 
¨  If  y(t) (w.x(t)) > 0: 
¨  If  y(t) (w.x(t)) < 0: 
¨  If  y(t) (w.x(t)) = 0: 
¨  In one line: 
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Announcements 

n  No recitation this week 
n  Comments on readings: 

¨  Material in readings are superset of what you need 
¨  Read foundations, e.g., from Kevin Murphy’s book, before class 
¨  Fill in details after class 

n  Homework out today 
¨  Start early, start early, start early, start early, start early, start early, start early, 

start early, start early, start early, start early, start early, start early… 

¨  Warm-up part of programming due on 1/22 
¨  Full homework due on 1/29, beginning of class 
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Subgradient Descent for Hinge Minimization 

n  Given data: 

n  Want to minimize: 

n  Subgradient descent works the same as gradient descent: 
¨  But if there are multiple subgradients at a point, just pick (any) one:  

©Carlos Guestrin 2013 22 



12 

Perceptron Revisited 
n  Perceptron update: 

 
 

n  Batch hinge minimization update: 

n  Difference? 
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Learning Problems as Expectations 

n  Minimizing loss in training data: 
¨  Given dataset: 

n  Sampled iid from some distribution p(x) on features: 

¨  Loss function, e.g., hinge loss, logistic loss,… 
¨  We often minimize loss in training data: 

n  However, we should really minimize expected loss on all data: 

n  So, we are approximating the integral by the average on the training data 
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Gradient descent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient descent rule: 

 
n  How do we estimate expected gradient? 
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SGD: Stochastic Gradient Descent (or Ascent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient descent  

n  Among many other names 
¨  VERY useful in practice!!! 
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Perceptron & Stochastic Gradient descent 

n  Perceptron update: 

 
 

n  Batch hinge minimization update: 
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Stochastic Gradient Descent: 
general case 

n  Given a stochastic function of parameters: 
¨  Want to find minimum 

n  Start from w(0) 
n  Repeat until convergence: 

¨  Get a sample data point x(t) 
¨  Update parameters: 

n  Works on the online learning setting! 
n  Complexity of gradient computation is constant in number of 

examples! 
n  In general, step size changes with iterations 
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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Convergence rate of SGD 

n  Theorem:  
¨  (see Nemirovski et al ‘09 from readings) 
¨  Let f be a strongly convex stochastic function 
¨  Assume gradient of f is Lipschitz continuous and bounded 

¨  Then, for step sizes: 

¨  The expected loss decreases as O(1/t): 
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Convergence rates for gradient 
descent/ascent versus SGD 

n  Number of Iterations to get to accuracy 

n  Gradient descent: 
¨  If func is strongly convex: O(ln(1/ϵ)) iterations 
 

n  Stochastic gradient descent: 
¨  If func is strongly convex: O(1/ϵ) iterations 

n  Seems exponentially worse, but much more subtle: 
¨  Total running time, e.g., for logistic regression: 

n  Gradient descent: 
n  SGD: 
n  SGD can win when we have a lot of data 

¨  And, when analyzing true error, situation even more subtle… expected 
running time about the same, see readings 
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What you need to know 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
n  Objective functions in ML as expectations 
n  Gradient estimation, rather than objective estimation 
n  Stochastic gradient descent -> estimate gradient from single training 

example 
¨  Mini-batches possible and useful 

n  Stochastic gradient ascent for logistic regression 
n  Analysis of stochastic gradient descent 

¨  Decreasing step size fundamental here 

n  Comparing analysis of stochastic gradient descent with gradient 
descent 
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