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Online Learning Problem
* JEE
m At each time step t:

Observe features of data point'

= Note: many as! e possible, eg, d l d data is adversarially chosen... details beyond scope of course
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The Perceptron Algorithm wess e
" JEE

m Classification setting: y in {-1,+1}

m Linear model

1 Prediction: \\') = Sio‘)r\ (W - X)

m Training:
[ Initialize weight vector:

wi =0
1 At each time step: M T2 . Atl A‘*‘”’
= Observe features: X( & » PV
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s Observe true class:
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Feature space can get really large really quickly!,




Higher order polynomials

* JEEE
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number of input dimensions q,=/6, m = 100
—= about 1.6 billion terms

Perceptron Revisited
" JEE

= Given weight vector w®, predict point x by:
A

)
4 = Sin (w*x)
m  Mistake at time t: wit*D) = w(®) + y() x()

m  Thus, write weight vector in terms of mistaken data points only:
O Let M® be time steps up to t when mistakes were made:
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) Wi b ay)
Dot-product of polynomials v-w, v
* JEE——
d(u) - d(v) = polynomials of degree exactly d
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Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)

m Kernelized Perceptron prediction for x:

Sign(w(t) cp(x)) = Z (b(X(i)) P(x)
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Polynomial kernels
* JEE—

m All monomials of degree d in O(d) operations:
P(u)d(v) = (u-v)d = polynomials of degree exactlyd

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels
* JEE——
m Polynomials of degree exactly d
K(u,v) = (u-v)*
m Polynomials of degree up to d
K(u,v) = (u-v+ 1)4

m Gaussian (squared exponential) kernel
K(u,v) =exp (—HHQ;QVH)
m Sigmoid o

K(u,v) =tanh(nu-v +v)
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Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?

* JEE
m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???

m Last one?
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Choice can make a huge difference!!
" JEE—
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[Freund & Schapire '99]
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What you need to know
" JE
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels
m In online learning, report averaged weights at the end

Case Study 1: Estimating Click Probabilities

Stochastic Gradient
Descent

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
January 15t, 2013

©Carlos Guestrin 2013 14




What is the Perceptron Doing???
* JEEE
m WWhen we discussed logistic regression:
Started from maximizing conditional log-likelihood

m When we discussed the Perceptron:
Started from description of an algorithm

m What is the Perceptron optimizing????

Perceptron Prediction: Margin of
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Hinge Loss
" JEE
m Perceptron prediction:

m Makes a mistake when:

m Hinge loss (same as maximizing the margin used by SVMs)
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Minimizing hinge loss in Batch Setting
" S

m Given a dataset:

m  Minimize average hinge loss:

m How do we compute the gradient?
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:

m Gradients are unique at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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Subgradient of Hinge
" S

m Hinge loss:

m Subgradient of hinge loss:
If yO (w.x®)>0:
If y® (w.x®) < 0:
If yO (w.x®)=0:
In one line:
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Announcements
* JEE—

m No recitation this week

m Comments on readings:

Material in readings are superset of what you need
Read foundations, e.g., from Kevin Murphy’s book, before class
Fill in details after class

m Homework out today

Start early, start early, start early, start early, start early, start early, start early,
start early, start early, start early, start early, start early, start early...

Warm-up part of programming due on 1/22
Full homework due on 1/29, beginning of class
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Subgradient Descent for Hinge Minimization

= JEE
m Given data:

= Want to minimize:

m Subgradient descent works the same as gradient descent:
But if there are multiple subgradients at a point, just pick (any) one:
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Perceptron Revisited
" JE

m Perceptron update:

wtD) o w® 1 [yu) (w® . x®) < 0] yOx®

m Batch hinge minimization update:

N
1 ‘ ‘ N
wttD  w® v 3 {1 [y@)(W(t) x@) < 0] yu)X(z)}

=1

m Difference?
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Learning Problems as Expectations
" JE

m  Minimizing loss in training data:

Given dataset:
= Sampled iid from some distribution p(x) on features:

Loss function, e.g., hinge loss, logistic loss,...
We often minimize loss in training data:

1Y .
tow) = 37 3w x)
m However, we should really minimize expected loss on all data:
t(w) = Ex £ )] = [ po0)t(w,x)ix

m  So, we are approximating the integral by the average on the training data
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Gradient descent in Terms of Expectations
=

m “True” objective function:

l(w) = Ex [l(w,x)] = /p(x)f(w,x)dx
m Taking the gradient:

m “True” gradient descent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Descent (or Ascent)
"
m “True” gradient: Vﬁ(w) = F, [V@(W,X)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient descent
= Among many other names
VERY useful in practice!!!
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Perceptron & Stochastic Gradient descent
"

m Perceptron update:

wtD) o w® 1 [yu) (w® . x®) < 0] yOx®

m Batch hinge minimization update:

N
1 . . N
wttD)  w® o n~ ; {1 [ym(W(t) x@) < 0] yu)X(z)}
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Stochastic Gradient Descent:

_ general case

m Given a stochastic function of parameters:
Want to find minimum

m Start from w(©®

m Repeat until convergence:
Get a sample data point x®
Update parameters:

m  Works on the online learning setting!

m  Complexity of gradient computation is constant in number of
examples!

m In general, step size changes with iterations
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Stochastic Gradient Ascent for

_ Loaistic Reﬁression

m Logistic loss as a stochastic function:

By [((w,x)] = Ex [In P(y|x, w) — Al|wl|3]
m Batch gradient ascent updates:

N
1 Ve (i :
w™ w4 {—Awﬁ” ty o P = 1|x<f>,w<“>1}

m Stochastic gradient ascent updates:
Online setting:

wgtﬂ) — wﬁt) + 1 {—)\wgt) + .rgt) " — Py =1x, W(t))]}
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Convergence rate of SGD
" JE
m Theorem:
(see Nemirovski et al ‘09 from readings)

Let fbe a strongly convex stochastic function
Assume gradient of fis Lipschitz continuous and bounded

Then, for step sizes:

The expected loss decreases as O(1/1):
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Convergence rates for gradient

_ _descent/ascent versus SGD
o
m  Number of lterations to get to accuracy

(w*) —Ll(w) < e

m  Gradient descent:
If func is strongly convex: O(In(1/€)) iterations

m  Stochastic gradient descent:
If func is strongly convex: O(1/e) iterations

m  Seems exponentially worse, but much more subtle:

Total running time, e.g., for logistic regression:
= Gradient descent:
= SGD:
= SGD can win when we have a lot of data

And, when analyzing true error, situation even more subtle
running time about the same, see readings
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What you need to know
" JEE—

Perceptron is optimizing hinge loss

Subgradients and hinge loss

(Sub)gradient decent for hinge objective

Objective functions in ML as expectations

Gradient estimation, rather than objective estimation

example
Mini-batches possible and useful
Stochastic gradient ascent for logistic regression

m Analysis of stochastic gradient descent
Decreasing step size fundamental here

m Comparing analysis of stochastic gradient descent with gradient

descent
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Stochastic gradient descent -> estimate gradient from single training
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