
1

1

Perceptron Algorithm
Kernels (continued)

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 15th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

Online Learning Problem

n  At each time step t:
¨  Observe features of data point:

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course

¨  Make a prediction:
n  Note: many models are possible, we focus on linear models
n  For simplicity, use vector notation

¨  Observe true label:
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details

beyond scope of course

¨  Update model:

©Carlos Guestrin 2013 2

2

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]
n  Classification setting: y in {-1,+1}
n  Linear model

¨  Prediction:

n  Training:
¨  Initialize weight vector:
¨  At each time step:

n  Observe features:
n  Make prediction:
n  Observe true class:

n  Update model:
¨  If prediction is not equal to truth

©Carlos Guestrin 2013 3

©Carlos Guestrin 2013 4

What if the data is not linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

3

©Carlos Guestrin 2013 5

Higher order polynomials

number of input dimensions

nu
m

be
r o

f m
on

om
ia

l t
er

m
s

d=2

d=4

d=3

m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Perceptron Revisited
n  Given weight vector w(t), predict point x by:

n  Mistake at time t: w(t+1) = w(t) + y(t) x(t)

n  Thus, write weight vector in terms of mistaken data points only:
¨  Let M(t) be time steps up to t when mistakes were made:

n  Prediction rule now:

n  When using high dimensional features:

©Carlos Guestrin 2013 6

4

©Carlos Guestrin 2013 7

Dot-product of polynomials

exactly d

Finally the Kernel Trick!!!
(Kernelized Perceptron

n  Every time you make a mistake, remember (x(t),y(t))

n  Kernelized Perceptron prediction for x:

©Carlos Guestrin 2013 8

sign(w(t) · �(x)) =
X

i2M(t)

�(x(i)) · �(x)

=
X

i2M(t)

k(x(i),x)

5

©Carlos Guestrin 2013 9

Polynomial kernels

n  All monomials of degree d in O(d) operations:

n  How about all monomials of degree up to d?
¨ Solution 0:

¨ Better solution:

exactly d

©Carlos Guestrin 2013 10

Common kernels

n  Polynomials of degree exactly d

n  Polynomials of degree up to d

n  Gaussian (squared exponential) kernel

n  Sigmoid

6

Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?

n  Suppose you run online learning method and want to sell
your learned weight vector… Which one do you sell???

n  Last one?

n 

n 

n 

©Carlos Guestrin 2013 11

Choice can make a huge difference!!

©Carlos Guestrin 2013 12

[Freund & Schapire ’99]

7

©Carlos Guestrin 2013 13

What you need to know

n  Notion of online learning
n  Perceptron algorithm
n  Mistake bounds and proofs
n  The kernel trick
n  Kernelized Perceptron
n  Derive polynomial kernel
n  Common kernels
n  In online learning, report averaged weights at the end

14

Stochastic Gradient
Descent

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 15th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

8

What is the Perceptron Doing???

n  When we discussed logistic regression:
¨ Started from maximizing conditional log-likelihood

n  When we discussed the Perceptron:
¨ Started from description of an algorithm

n  What is the Perceptron optimizing????

©Carlos Guestrin 2013 15

©Carlos Guestrin 2013 16

Perceptron Prediction: Margin of
Confidence

9

Hinge Loss

n  Perceptron prediction:

n  Makes a mistake when:

n  Hinge loss (same as maximizing the margin used by SVMs)

©Carlos Guestrin 2013 17

Minimizing hinge loss in Batch Setting

n  Given a dataset:

n  Minimize average hinge loss:

n  How do we compute the gradient?

©Carlos Guestrin 2013 18

10

Subgradients of Convex Functions

n  Gradients lower bound convex functions:

n  Gradients are unique at x if function differentiable at x

n  Subgradients: Generalize gradients to non-differentiable points:
¨  Any plane that lower bounds function:

©Carlos Guestrin 2013 19

Subgradient of Hinge

n  Hinge loss:

n  Subgradient of hinge loss:
¨  If y(t) (w.x(t)) > 0:
¨  If y(t) (w.x(t)) < 0:
¨  If y(t) (w.x(t)) = 0:
¨  In one line:

©Carlos Guestrin 2013 20

11

Announcements

n  No recitation this week
n  Comments on readings:

¨  Material in readings are superset of what you need
¨  Read foundations, e.g., from Kevin Murphy’s book, before class
¨  Fill in details after class

n  Homework out today
¨  Start early, start early, start early, start early, start early, start early, start early,

start early, start early, start early, start early, start early, start early…

¨  Warm-up part of programming due on 1/22
¨  Full homework due on 1/29, beginning of class

©Carlos Guestrin 2013 21

Subgradient Descent for Hinge Minimization

n  Given data:

n  Want to minimize:

n  Subgradient descent works the same as gradient descent:
¨  But if there are multiple subgradients at a point, just pick (any) one:

©Carlos Guestrin 2013 22

12

Perceptron Revisited
n  Perceptron update:

n  Batch hinge minimization update:

n  Difference?

©Carlos Guestrin 2013 23

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t))  0

i
y(t)x(t)

w

(t+1) w

(t) + ⌘
1

N

N
X

i=1

n h

y(i)(w(t) · x(i))  0
i

y(i)x(i)
o

Learning Problems as Expectations

n  Minimizing loss in training data:
¨  Given dataset:

n  Sampled iid from some distribution p(x) on features:

¨  Loss function, e.g., hinge loss, logistic loss,…
¨  We often minimize loss in training data:

n  However, we should really minimize expected loss on all data:

n  So, we are approximating the integral by the average on the training data
©Carlos Guestrin 2013 24

`D(w) =
1

N

NX

i=1

`(w,x(i))

`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

13

Gradient descent in Terms of Expectations

n  “True” objective function:

n  Taking the gradient:

n  “True” gradient descent rule:

n  How do we estimate expected gradient?

©Carlos Guestrin 2013 25

`(w) = E
x

[`(w,x)] =

Z
p(x)`(w,x)dx

SGD: Stochastic Gradient Descent (or Ascent)

n  “True” gradient:

n  Sample based approximation:

n  What if we estimate gradient with just one sample???
¨  Unbiased estimate of gradient
¨  Very noisy!
¨  Called stochastic gradient descent

n  Among many other names
¨  VERY useful in practice!!!

©Carlos Guestrin 2013 26

r`(w) = E
x

[r`(w,x)]

14

Perceptron & Stochastic Gradient descent

n  Perceptron update:

n  Batch hinge minimization update:

©Carlos Guestrin 2013 27

w

(t+1) w

(t) +
h
y(t)(w(t) · x(t))  0

i
y(t)x(t)

w

(t+1) w

(t) + ⌘
1

N

N
X

i=1

n h

y(i)(w(t) · x(i))  0
i

y(i)x(i)
o

Stochastic Gradient Descent:
general case

n  Given a stochastic function of parameters:
¨  Want to find minimum

n  Start from w(0)
n  Repeat until convergence:

¨  Get a sample data point x(t)
¨  Update parameters:

n  Works on the online learning setting!
n  Complexity of gradient computation is constant in number of

examples!
n  In general, step size changes with iterations

©Carlos Guestrin 2013 28

15

Stochastic Gradient Ascent for
Logistic Regression

n  Logistic loss as a stochastic function:

n  Batch gradient ascent updates:

n  Stochastic gradient ascent updates:
¨  Online setting:

©Carlos Guestrin 2013 29

E
x

[`(w,x)] = E
x

⇥
lnP (y|x,w)� �||w||22

⇤

w

(t+1)
i w

(t)
i + ⌘

8
<

:��w
(t)
i +

1

N

NX

j=1

x

(j)
i [y(j) � P (Y = 1|x(j)

,w

(t))]

9
=

;

w

(t+1)
i w

(t)
i + ⌘t

n

��w(t)
i + x

(t)
i [y(t) � P (Y = 1|x(t)

,w

(t))]
o

Convergence rate of SGD

n  Theorem:
¨  (see Nemirovski et al ‘09 from readings)
¨  Let f be a strongly convex stochastic function
¨  Assume gradient of f is Lipschitz continuous and bounded

¨  Then, for step sizes:

¨  The expected loss decreases as O(1/t):

©Carlos Guestrin 2013 30

16

Convergence rates for gradient
descent/ascent versus SGD

n  Number of Iterations to get to accuracy

n  Gradient descent:
¨  If func is strongly convex: O(ln(1/ϵ)) iterations

n  Stochastic gradient descent:
¨  If func is strongly convex: O(1/ϵ) iterations

n  Seems exponentially worse, but much more subtle:
¨  Total running time, e.g., for logistic regression:

n  Gradient descent:
n  SGD:
n  SGD can win when we have a lot of data

¨  And, when analyzing true error, situation even more subtle… expected
running time about the same, see readings

©Carlos Guestrin 2013 31

`(w⇤)� `(w)  ✏

What you need to know
n  Perceptron is optimizing hinge loss
n  Subgradients and hinge loss
n  (Sub)gradient decent for hinge objective
n  Objective functions in ML as expectations
n  Gradient estimation, rather than objective estimation
n  Stochastic gradient descent -> estimate gradient from single training

example
¨  Mini-batches possible and useful

n  Stochastic gradient ascent for logistic regression
n  Analysis of stochastic gradient descent

¨  Decreasing step size fundamental here

n  Comparing analysis of stochastic gradient descent with gradient
descent

©Carlos Guestrin 2013 32

