Case Study 1: Estimating Click Probabilities

Online Learning Problem

- At each time step t:
 - Observe features of data point:
 - Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course
 - Make a prediction:
 - Note: many models are possible, we focus on linear models
 - For simplicity, use vector notation
 - Observe true label:
 - Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details beyond scope of course
 - Update model:
 - $w(t+1) = w(t) + \Delta$ (something)
The Perceptron Algorithm

Classification setting: y in {-1,+1}

Linear model
- Prediction:
 \[\hat{y} = \text{Sign}(w \cdot x) \]

Training:
- Initialize weight vector: \(w(0) = 0 \)
- At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth

What if the data is not linearly separable?

Use features of features of features of features:

\[\Phi(x) : \mathbb{R}^m \mapsto F \]

Feature space can get really large really quickly!
Higher order polynomials

\[\text{num. terms} = \binom{d + m - 1}{d} = \frac{(d + m - 1)!}{d!(m - 1)!} \]

- \(m \) – input features
- \(d \) – degree of polynomial

- grows fast!
- \(d = 6, m = 100 \)
- about 1.6 billion terms

Perceptron Revisited

- Given weight vector \(w^{(i)} \), predict point \(x \) by:
 \[y = \text{Sign} (w^{(i)} \cdot x) \]

- Mistake at time \(t \): \(w^{(i+1)} = w^{(i)} + y^{(i)} x^{(i)} \)

- Thus, write weight vector in terms of mistaken data points only:
 - Let \(M^{(i)} \) be time steps up to \(t \) when mistakes were made:
 \[w^{(i)} = \sum_{i \in M^{(i)}} y^{(i)} x^{(i)} \]

- Prediction rule now:
 \[\text{Sign} (w^{(i)} \cdot x) = \text{Sign} \left(\sum_{i \in M^{(i)}} y^{(i)} x^{(i)} \cdot x \right) = \text{Sign} \left(\sum_{i \in M^{(i)}} y^{(i)} x^{(i)} \cdot x \right) \]

- When using high dimensional features:
 \[\text{Sign} \left(\sum_{i \in M^{(i)}} y^{(i)} \phi(x^{(i)}) \cdot \phi(x^{(i)}) \right) \]
 \[\text{dot product between } x \text{ and mistakes} \]
Dot-product of polynomials

\[\Phi(u) \cdot \Phi(v) = \text{polynomials of degree exactly } d \]

\[\Phi(u) \cdot \Phi(v) = (u_1, u_2, \ldots, u_d) \cdot (v_1, v_2, \ldots, v_d) = u_1v_1 + \cdots + u_dv_d = u \cdot v \]

Proof by one step of induction

If \(\Phi() \) is poly of degree exactly \(d \),

\[\Phi(u) \cdot \Phi(v) = (u \cdot v)^d \]

\[\text{compute in the } d \text{th basic poly } u \cdot v \]

Finally the Kernel Trick!!!

Kernelized Perceptron

- Every time you make a mistake, remember \((x^{(t)}, y^{(t)})\)

 \[\text{Keep indices } M(t) \text{ of mistakes up to } t \]

 \[\text{predict } x^{(t)} \text{ for these mistakes} \]

- Kernelized Perceptron prediction for \(x\):

\[\text{sign}(w^{(t)} \cdot \phi(x)) = \sum_{i \in M(t)} y^{(i)} \phi(x^{(i)}) \cdot \phi(x) \]

\[\text{predict at any } x = \sum_{i \in M(t)} y^{(i)} k(x^{(i)}, x) \cdot \phi(x) \]
Polynomial kernels

- All monomials of degree d in $O(d)$ operations:
 $$\Phi(u) \cdot \Phi(v) = (u \cdot v)^d$$
 polynomials of degree exactly d

- How about all monomials of degree up to d?

 □ Solution 0: $$\sum_{i=0}^{d} \binom{d}{i} (u \cdot v)^i$$

 □ Better solution:
 $$\sum_{k=1}^{d} (u \cdot v)^k = (u \cdot v + 1)^d$$

Common kernels

- Polynomials of degree exactly d
 $$K(u, v) = (u \cdot v)^d$$

- Polynomials of degree up to d
 $$K(u, v) = (u \cdot v + 1)^d$$

- Gaussian (squared exponential) kernel
 $$K(u, v) = \exp\left(-\frac{||u - v||^2}{2\sigma^2}\right)$$

- Sigmoid
 $$K(u, v) = \tanh(\eta u \cdot v + \nu)$$
Fundamental Practical Problem for All Online Learning Methods: **Which weight vector to report?**

- Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
 - Last one?
 - Random time step?
 - Average!! \(\bar{w} = \frac{1}{T+20} \sum_{t=0}^{T} w(t) \) (easy to keep track of)
 - Voting, see Freund, Schapire from readings

Choice can make a huge difference!!

[Freund & Schapire '99]
What you need to know

- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proofs
- The kernel trick
- Kernelized Perceptron
- Derive polynomial kernel
- Common kernels
- In online learning, report averaged weights at the end

Case Study 1: Estimating Click Probabilities

Stochastic Gradient Descent

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington
Carlos Guestrin
January 15th, 2013
What is the Perceptron Doing???

- When we discussed logistic regression:
 - Started from maximizing conditional log-likelihood

- When we discussed the Perceptron:
 - Started from description of an algorithm

- What is the Perceptron optimizing????
Hinge Loss

- Perceptron prediction: \(\text{Sign}(w \cdot x) \)
- Makes a mistake when: \(y(w \cdot x) < 0 \)
- Hinge loss (same as maximizing the margin used by SVMs)

\[
\ell(w, x) = \begin{cases}
0 & \text{if } y(w \cdot x) > 0 \\
-y(w \cdot x), & \text{otherwise}
\end{cases}
\]

\[\ell(w, x) = -y \cdot (w \cdot x) \]

Minimizing hinge loss in Batch Setting

- Given a dataset: \((x^{(1)}, y^{(1)}) \ldots (x^{(N)}, y^{(N)}) \)
- Minimize average hinge loss:
 \[
 \min_w \frac{1}{N} \sum_{i=1}^{N} \ell(y^{(i)}(w \cdot x^{(i)}))
 \]
- How do we compute the gradient?

\[\nabla \ell(w, x) = -y x \]
Subgradients of Convex Functions

- Gradients lower bound convex functions:
 \[f(y) \geq f(x) + \nabla f(x) \cdot (y-x) \]

- Gradients are unique at \(x \) if function differentiable at \(x \)

- Subgradients: Generalize gradients to non-differentiable points:
 - Any plane that lower bounds function:
 \[v \in \partial f(x) \text{ is a subgradient} \]
 \[f(y) \geq f(x) + v \cdot (y-x) \]

Subgradient of Hinge

- Hinge loss:

- Subgradient of hinge loss:
 - If \(y^{(i)} (w \cdot x^{(i)}) > 0 \):
 \[\nabla l(w, x^{(i)}) = 0 \]
 - If \(y^{(i)} (w \cdot x^{(i)}) < 0 \):
 \[\nabla l(w, x^{(i)}) = -y x \]
 - If \(y^{(i)} (w \cdot x^{(i)}) = 0 \):
 \[\nabla l(w, x^{(i)}) = [-y x, 0] \text{, e.g., choose } -y x \]
 - In one line:
 \[\nabla l(w, x^{(i)}) = \mathbb{1}(y^{(i)}(w \cdot x^{(i)}) \leq 0) [-y x] \]

Think of this as gradient of hinge loss
Announcements

- No recitation this week
- Comments on readings:
 - Material in readings are superset of what you need
 - Read foundations, e.g., from Kevin Murphy’s book, before class
 - Fill in details after class
- Homework out today
 - Start early, start early...
 - Warm-up part of programming due on 1/22
 - Full homework due on 1/29, beginning of class

Subgradient Descent for Hinge Minimization

- Given data: \((x_i^0, y_i^0), \ldots, (x_i^N, y_i^N)\)

- Want to minimize:
 \[
 \frac{1}{N} \sum_{i=1}^{N} \ell(w, x_i^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} (1 - y_i^{(i)})(w \cdot x_i^{(i)})
 \]

- Subgradient descent works the same as gradient descent:
 - But if there are multiple subgradients at a point, just pick (any) one:
 \[
 w^{(t+1)} \leftarrow w^{(t)} - \eta \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i^{(i)}(w \cdot x_i^{(i)}) \leq 0) \left[-y_i^{(i)} x_i^{(i)} \right]
 \]
Perceptron Revisited

- Perceptron update:
 \[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta \left(\mathbb{1} \left[y^{(t)} \left(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)} \right) \leq 0 \right] y^{(t)} \mathbf{x}^{(t)} \right) \]

- Batch hinge minimization update:
 \[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta \frac{1}{N} \sum_{i=1}^{N} \left\{ \mathbb{1} \left[y^{(i)} \left(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(i)} \right) \leq 0 \right] y^{(i)} \mathbf{x}^{(i)} \right\} \]

- Difference?

Learning Problems as Expectations

- Minimizing loss in training data:
 - Given dataset:
 - Sampled iid from some distribution \(p(\mathbf{x}) \) on features:
 - Loss function, e.g., hinge loss, logistic loss, etc.
 - We often minimize loss in training data:
 \[\min_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell(\mathbf{w}, \mathbf{x}^{(i)}) \]

- However, we should really minimize expected loss on all data:
 \[\min_{\mathbf{w}} \ell(\mathbf{w}) = \mathbb{E}_{\mathbf{x}} [\ell(\mathbf{w}, \mathbf{x})] = \int p(\mathbf{x}) \ell(\mathbf{w}, \mathbf{x}) d\mathbf{x} \]

- So, we are approximating the integral by the average on the training data.
Gradient descent in Terms of Expectations

- "True" objective function:
 \[
 \min w \{ \ell(w) = E_x [\ell(w, x)] = \int p(x) \ell(w, x) dx \}
 \]

- Taking the gradient:
 \[
 \nabla w \ell(w) = \nabla w \left[E_x [\ell(w, x)] \right] = \mathbb{E}_x [\nabla w \ell(w, x)]
 \]

- "True" gradient descent rule:
 \[
 w(t+1) \leftarrow w(t) - \eta \mathbb{E}_x [\nabla w \ell(w, x)]
 \]

- How do we estimate expected gradient?

SGD: Stochastic Gradient Descent (or Ascent)

- "True" gradient:
 \[
 \nabla \ell(w) = E_x [\nabla \ell(w, x)]
 \]

- Sample based approximation: take iid samples \(x^{(i)} \)
 \[
 \nabla \ell(w) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla \ell(w, x^{(i)})
 \]

 - What if we estimate gradient with just one sample???
 - Unbiased estimate of gradient
 - Very noisy!
 - Called stochastic gradient descent
 - Among many other names
 - VERY useful in practice!!!
Perceptron & Stochastic Gradient descent

Perceptron update:

\[w^{(t+1)} \leftarrow w^{(t)} + \mathbb{I} \left[y^{(t)} (w^{(t)} \cdot x^{(t)}) \leq 0 \right] y^{(t)} x^{(t)} \]

Batch hinge minimization update:

\[w^{(t+1)} \leftarrow w^{(t)} + \frac{1}{N} \sum_{i=1}^{N} \left\{ \mathbb{I} \left[y^{(i)} (w^{(t)} \cdot x^{(i)}) \leq 0 \right] y^{(i)} x^{(i)} \right\} \]

Stochastic Gradient Descent:

general case

- Given a stochastic function of parameters: \(f(w) = E_x [f(w, x)] \)
- Want to find minimum \(w^* = \min_w E_x [f(w, x)] \)
- Start from \(w^{(0)} \)
- Repeat until convergence:
 - Get a sample data point \(x^{(i)} \)
 - Update parameters:
 \[w^{(t+1)} \leftarrow w^{(t)} - \eta_t \alpha f(w^{(t)}, x^{(i)}) \]
 - \(\eta_t \) decreases with iterations
 - Complexity of gradient computation is constant in number of examples!
- Works on the online learning setting!
- In general, step size changes with iterations, e.g., \(\eta_t = \frac{K}{t} \) for \(K > 0 \)
Stochastic Gradient Ascent for Logistic Regression

- Logistic loss as a stochastic function:
 \[E_x [\ell(w, x)] = E_x [\ln P(y|x, w) - \lambda ||w||^2] \]

- Batch gradient ascent updates:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \frac{1}{N} \sum_{j=1}^{N} x_j^{(i)} y_j^{(i)} - P(Y = 1|x_j^{(i)}, w^{(t)}) \right\} \]

- Stochastic gradient ascent updates:
 - Online setting:
 \[w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + x_i^{(t)} y_i^{(t)} - P(Y = 1|x_i^{(t)}, w^{(t)}) \right\} \]