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Collaborative Filtering
= JEEE
m Goal: Find movies of interest to a user based on
movies watched by the user and others

m Methods: matrix factorization, GraphLab
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Cold-Start Problem
" JEE
m Challenge: Cold-start problem (new movie or user)

m Methods: use features of movie/user }
I
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Matrix Completion Problem

Xi; known for black cells
X;; unknown for white cells

Rows index users
Columns index movies °
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Interpreting Low-Rank Matrix Completion

(aka Matrix Factorization),
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Matrix Completion via Rank Minimization
" JEE

= Given observed values: (W V, V) € X Somt fuy 2

m
m  Find matrix "G‘)

= Such that: w = Fav ¥ ruv # 7
F-f Lo :I.'? f“-fdb

Loww b o
= Introduce bias: min """K( )
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= But...
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Approximate Matrix Completion
* JEE

m  Minimize squared error:
(Other loss functions are possible)

m Choose rank k:

m  Optimization problem:
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Coordinate Descent for Matrix Factorization
"

: 2
min E L,-R,—r
TR ( i v uv)
(U, 0,70 ) EX T y0 7

m Fix movie factors, optimize for user factors

m First Observation:
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Minimizing Over User Factors
* JEE—

m Foreach user u: min Z (Lu - Ry — T)?
Lo, v
v u

m |n matrix form:

m Second observation: Solve by

©Carlos Guestrin 2013 1

Coordinate Descent for Matrix
Factorization: Alternating Least-Squares

: 2
min E L,-R,—r
e ( i v uv)
(U, 0,70 ) EX T y0 7

Fix movie factors, optimize for user factors
i (Lu - Ry = 1up)?
Independent least-squares over users HLllIl U v — Tuw
“ veV,

Fix user factors, optimize for movie factors
Independent least-squares over movies min (Lu . RU — Tuv)Q

v

uelU,

System may be underdetermined:

Converges to
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Effect of Regularization
" SN
1}}1}{1 Z (Lu - Ry, — ru’u)Z

’ (0,700 ) EX i Typ #?

What you need to know...
* JEE
m Matrix completion problem for collaborative
filtering
m Over-determined -> low-rank approximation
m Rank minimization is NP-hard

m Minimize least-squares prediction for known
values for given rank of matrix
Must use regularization

m Coordinate descent algorithm = “Alternating
Least Squares”
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Stochastic Gradient Descent

" JEE
! Ay Ay
min o (Lu'Rv_Tuv)2+7’|LH%’+7HRH%’

Tuv
m Observe one rating at a time r,

m Gradient observing r,,:

m Updates:




Local Optima v. Global Optima
= JEE
m We are solving:
min D (Lu - Ry = ruw)? + Ml [LI[F + | Rl

Tuv

m We (kind of) wanted to solve:

m Which is NP-hard...
How do these things relate???
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Eigenvalue Decompositions for PSD Matrices

" JEE
m Given a (square) symmetric positive semidefinite matrix:

Eigenvalues:
m Thus rank is:

m  Approximation:

m Property of trace:

m Thus, approximate rank minimization by:
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Generalizing the Trace Trick
" S

m Non-square matrices ain’t got no trace

m For (square) positive definite matrices, matrix factorization:

m For rectangular matrices, singular value decomposition:

= Nuclear norm:
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Nuclear Norm Minimization
" JEEE

m  Optimization problem:

m Possible to relax equality constraints:

m Both are convex problems!
(solved by semidefinite programming)
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Analysis of Nuclear Norm
" I

m Nuclear norm minimization is a convex relaxation of rank minimization

problem:
i min ||©
min rank(©) g O]
ruv:G)uv,‘v’ruv EX,T’M, 757 Tuv:@uvavruv EXyruv 7é?

m Theorem [Candes, Recht ‘08]:
If there is a true matrix of rank k,

And, we observe at least
C k nt?logn

random entries of true matrix

Then true matrix is recovered exactly with high probability with convex nuclear norm
minimization!
= Under certain conditions
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Nuclear Norm Minimization versus

Direct ‘Bilinearz Low Rank Solutions

= Nuclear norm minimization: mén Z(@uv — 1)+ |||«
ru'u

Annoying because:

Instead: i o 2 2 2
m Instead IS},?Z(LU Ry — ruw)” + M| L7 + Mol R||

Tuv

Annoying because:

. 1 1
But [[©]]. = lnf{rﬁl}ggHLH% +5lIRl[F: 0= LR/}

= So
= And

= Under certain conditions [Burer, Monteiro ‘04]
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What you need to know...
* JEE
m Stochastic gradient descent for matrix
factorization

m Norm minimization as convex relaxation of rank
minimization
Trace norm for PSD matrices
Nuclear norm in general

m Intuitive relationship between nuclear norm
minimization and direct (bilinear) minimization
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Matrix factorization solutions can

Rﬁ HnintHitivg...

m  Many, many, many applications of matrix factorization

m E.g, intext data, can do topic modeling (alternative to LDA):

R’

X
|
-

= Would like:

m But...
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Nonnegative Matrix Factorization
* JEE—

R’

X =| L

m Just like before, but

i Lu v qu uL2 v :
g > (L By —7 )"+ Al Ll + Aol [R5

Tuv

m Constrained optimization problem
Many, many, many, many solution methods... we’ll check out a simple one
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Projected Gradient
* JEE—

m Standard optimization:

Want to minimize: Hgnf(@)

Use gradient updates:

o+ . o) _ me(@(t))

m Constrained optimization:

Given convex set C of feasible solutions

Want to find minima within C: mein f(©)

OcC

m Projected gradient:

Take a gradient step (ignoring constraints):

Projection into feasible set:
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Projected Stochastic Gradient Descent

. for Nonneﬁative Matrix Factorization

1 Ay Ay
LZI&%ZO 5 Z(Lu Ry — Tuv)Q + ?HL”% + EHRH%

Tuv

m Gradient step observing r,, ignoring constraints:

L(fﬂ) (1- nt)\u)Lgbt) - Utfth(;t)
RiHD (I —mAy) o _ nthLg)

m Convex set:
m Projection step:
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What you need to know...
* JE
m |[n many applications, want factors to be
nonnegative

m Corresponds to constrained optimization
problem

m Many possible approaches to solve, e.g.,
projected gradient
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