Case Study 2: Document Retrieval

Parallel Programming
Map-Reduce

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
January 31st, 2013

©Carlos Guestrin 2013 1

Needless to Say, We Need
Machine Learning for Big Data

flickr V([Tube

6 Billion . 1 Billion 72 Hours a Minute
Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages

Ehe New Jork Times
SundayReview
WORLD US. NY./

REGION BUSINESS TEC

“... data a new class of economic
asset, like currency or gold.”

The Age of Big Data

EEEEEEEEE

CPUs Stopped Getting Faster...

10 £ g

N [|

T

0 1 u N

D B constant

8 B

[7)]

5 01— @FQ O

2 o

(8}

e :

Q-O.Ol f f f f f f ——t—t+—t—+ |
0 o I <) © o o <) © o
%) o) o) Lo Io) o) S o =) o S —
o)) o)) o)) o)) Is)) o)) S o =) =) S o
— — — — — ~— N N (o] (o] (o] (o]

release date

ML in the Context of Parallel
Architectures

Sy i
‘i',":l 2 z
= (R amazon,
GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability
2. Data distribution
3. Failures

©Carlos Guestrin 2013 4

Programmability Challenge 1:
Designing Parallel programs

m SGD for LR:

For each data point x®:

w1l o { Xl + o)y - PY = 1]o(x), w)] |

©Carlos Guestrin 2013 5

Programmability Challenge 2:
Race Conditions
S

m We are used to sequential programs:

Read data, think, write data, read data, think, write data, read data, think, write data, read
data, think, write data, read data, think, write data, read data, think, write data...

m But, in parallel, you can have non-deterministic effects:
One machine reading data will other is writing

m Called a race-condition:
Very annoying
One of the hardest problems to debug in practice:
= because of non-determinism, bugs are hard to reproduce

©Carlos Guestrin 2013 6

Data Distribution Challenge
" JEE—

m Accessing data:
Main memory reference: 100ns (107s)
Round trip time within data center: 500,000ns (5 * 10-4s)
Disk seek: 10,000,000ns (10-2s)
m Reading 1MB sequentially:
Local memory: 250,000ns (2.5 * 10s)
Network: 10,000,000ns (10-2s)
Disk: 30,000,000ns (3*10-2s)

m Conclusion: Reading data from local memory is much faster = Must have
data locality:

Good data partitioning strategy fundamental!
“Bring computation to data” (rather than moving data around)

©Carlos Guestrin 2013 7

Robustness to Failures Challenge
" SN

m From Google’s Jeff Dean, about their clusters of 1800 servers, in
first year of operation:
1,000 individual machine failures
thousands of hard drive failures
one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
20 racks will fail, each time causing 40 to 80 machines to vanish from the network
5 racks will “go wonky,” with half their network packets missing in action

the cluster will have to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span

50% chance cluster will overheat, taking down most of the servers in less than 5 minutes
and taking 1 to 2 days to recover

m How do we design distributed algorithms and systems robust
to failures?

It's not enough to say: run, if there is a failure, do it again... because
you may never finish

©Carlos Guestrin 2013 8

Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:
Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...
Generally, you are still on your own WRT designing parallel algorithms

m Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers
Higher-level:
= Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
= GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013 9

Simplest Type of Parallelism:

. Data Parallel Problems

m You have already learned a classifier
What'’s the test error?
m You have 10B labeled documents and 1000 machines

m Problems that can be broken into independent subproblems are
called data-parallel (or embarrassingly parallel)
m Map-Reduce is a great tool for this...
Focus of today’s lecture

but first a simple example
©Carlos Guestrin 2013 10

Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Counting Words on a Single Processor

" JEEE
m (This is the “Hello World!” of Map-Reduce)
m Suppose you have 10B documents and 1 machine

m You want to count the number of appearances of each word on this
corpus

[Similar ideas useful, e.g., for building Naive Bayes classifiers and
computing TF-IDF

m Code:

©Carlos Guestrin 2013 12

Naive Parallel Word Counting
" JEE

m Simple data parallelism approach:

m Merging hash tables: annoying, potentially not parallel =
no gain from parallelism???

©Carlos Guestrin 2013 13

Counting Words in Parallel &
Merging Hash Tables in Parallel

m Generate pairs (word,count)
m Merge counts for each word in parallel
Thus parallel merging hash tables

©Carlos Guestrin 2013 14

Map-Reduce Abstraction

* JEE
m Map:
Data-parallel over elements, e.g., documents

Generate (key,value) pairs
= ‘“value” can be any data type

m Reduce:
Aggregate values for each key
Must be commutative-associate operation
Data-parallel over keys
Generate (key,value) pairs

m Map-Reduce has long history in functional programming
But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013 15

Map Code (Hadoop): Word Count
" S

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws <stuff>
{

String line = value.toString(Q);

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

©Carlos Guestrin 2013

Reduce Code (Hadoop): Word Count
" S

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get(Q);
1

context.write(Ckey, new IntWritable(sum));

©Carlos Guestrin 2013 17

Map-Reduce Parallel Execution
" JEE—

©Carlos Guestrin 2013 18

Big Data < >

-

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

(Kq,V4) (k1,v4)

/ M1 > (ky0v,) ‘ [(ko)

(ky V) . 8 (k3.v3)
—> ey —

_é /I M2 (ky,v2) S _:;g-/ 7 (Ky,Va)
ot X =
gé 209

¢ =
N5, ;]
& "a 2 £
)]
<
T (ko %)
M1000 > (lc, .. v, _>(kZ,VZ)

Map-Reduce — Robustness to Failures 1:
Protecting Data: Save To Disk Constantly

Map Phase Shuffle Phase Reduce Phase
(ky,v4) (kq,v4)
M1 = (k,v,) —> (k,,V,)
U / (Kp,Vve) (K3,v3)
M2 [(kov2) L > (ksVa)
g / Sz
S E s
o K58 - 5.
s N2s : g,
a |Y®°s.. : 53
o RN 9 E
m : <
\ (KpVy) (Ks.Vs)
mi000 = (KyVyr) —> (Kq.V5)

©Carlos Guestrin 2013 20

Distributed File Systems
" JEE

m Saving to disk locally is not enough = If disk or machine fails, all data is lost
m Replicate data among multiple machines!

m Distributed File System (DFS)
Write a file anywhere =» automatically replicated

Can read a file anywhere =» read from closest copy
= [f failure, try next closest copy

= Common implementations:
Google File System (GFS)
Hadoop File System (HDFS)

m Important practical considerations:

Write large files
= Many small files & becomes way too slow

Typically, files can’t be “modified”, just “replaced” =» makes robustness much simpler

©Carlos Guestrin 2013 21

Map-Reduce — Robustness to Failures 2:
Recovering From Failures: Read from DFS

]
[\ Map Phase Shuffle Phase Reduce Phase - Communication
W[) > () in initial
U / ‘ distribution &
(k1) v
A > () N & [(o) shuffle phase
o zz “automatic”
g <5‘E L Done by DFS
=3 g Tra 58
@ 2

m If failure, don’t
restart everything
> (o) Otherwise,
) never finish

(Kyvi)
M1000 [(Ky,Vy)

-

m Only restart Map/
Reduce jobs in
dead machines

©Carlos Guestrin 2013 22

11

Improving Performance: Combiners
* JEEE

m Naive implementation of M-R very wasteful in communication during shuffle:

m Combiner: Simple solution, perform reduce locally before communicating
for global reduce
Works because reduce is commutative-associative

©Carlos Guestrin 2013 23

(A few of the) Limitations of Map-Reduce

|
- TOO mUCh Synchrony [\ Map Phase Shuffle Phase Reduce Phase
E.g., reducers don't start until all Mt > {E;X;i —> Em;;
mappers are done U /
« ” (KqVy))
= “Too much” robustness A > v o > (o)
Writing to disk all the time of = .
s < . V22
.y - © &8 : 25
m Not all problems fit in S By 58
Map-Reduce @ 2
E.g., you can’t communicate
between mappers
(Kyvq) (Ks,Vs)
= Oblivious to structure in data U oo [() > (ko)
E.g., if data is a graph, can be
much more efficient
= For example, no need to shuffle nearly as much
m Nonetheless, extremely useful;

industry standard for Big Data

Though many many companies are moving

away from Map-Reduce (Hadoop)
©Carlos Guestrin 2013 24

12

What you need to know about Map-Reduce
" JEE

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures

m High-level abstractions help a lot!

m Data-parallel problems & Map-Reduce

n Map:

Data-parallel transformation of data
= Parallel over data points

= Reduce:

Data-parallel aggregation of data
= Parallel over keys

m Combiner helps reduce communication
m Distributed execution of Map-Reduce:
Map, shuffle, reduce

Robustness to failure by writing to disk
Distributed File Systems

©Carlos Guestrin 2013 25

Case Study 2: Document Retrieval

Parallel K-Means on
Map-Reduce

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
January 31st, 2013

©Carlos Guestrin 2013 26

13

= Auton’s Graphics &=
Some Data |
"
0.8 I
0.6 8
0.4 I
0,2 T
/N I I i I 4
T T T T T T
4 0.2 0.4 0.6 0.8 1)
x0
©2005-2009 Carlos Guestrin 27
= Auton’s Graphics &=
K-means |

1. Ask user how many
clusters they’d like.
(e.g. k=5)

0.8

0.6

0.4

0,2

n it it it 4 }
T T T T T 1
1 0.2 0.4 0.6 0.8 1 1
x0
28

©2005-2009 Carlos Guestrin

14

Auton’s Graphics el

K-means
" I

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guessk | %
cluster Center
locations

0.8

0.4

0,2

0,2

0.4 0.6 0.8 1

x07

©2005-2009 Carlos Guestrin

29

Auton’s Graphics =l

K-means |
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k | %
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints) | °2

0,2

0.4 0.6 0.8 1

x0

©2005-2009 Carlos Guestrin

30

15

= Auton’s Graphics [

K-means
" I

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4, Each Center finds
the centroid of the
points it owns

0.8

0.6

0.4

0.2

x07

©2005-2009 Carlos Guestrin

31

= Auton’s Graphics (=]

K-means
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it’s
closest to.

4. Each Center finds
the centroid of the
points it owns...

0.4 T

0.2 T

x0

5. ...and jumps there
6. ...Repeat until
«terminated!

32

16

K-means
" JEE
m Randomly initialize k centers
uO =@, O

m Classify: Assign each point j&{1,...m} to nearest
center:
2 4= argmin ||u; —x7|[3

m Recenter: u, becomes centroid of its point:

p) e argmin 37—

jizi=i
Equivalent to u, < average of its points!

©2005-2009 Carlos Guestrin 33

Special case: spherical Gaussians

Mleres and hard assignments

Pla=ixD (2n)'"/2 IS, 11" Xp[2(—u) = (X ‘“z)]P(Z‘l)

m If P(Z=i|X) is spherical, with same o for all classes:

]

P(z=ilx")xexp|-

e
o’ '

m If each xi belongs to one class z (hard assignment), marginal likelihood:

2
—U jl

[T

j=1 i=1

exp

m Same as K-means!!!

©2005-2009 Carlos Guestrin 34

17

Map-Reducing One lteration of

K-Means
» SN

m Classify: Assign each point j&{1,...m} to nearest center:

20— arg min ||p; —xj||§
K3

m Recenter: y; becomes centroid of its point:

t+1 . i
p ™ e argmin 3 {lu— 7|3

jizi=q

Equivalent to u; < average of its points!

= Map:
= Reduce:

©2005-2009 Carlos Guestrin

35

Classification Step as Map
" JEE—

m Classify: Assign each point j&{1,...m} to nearest center:

' argmin||u; — x'|[3
2

= Map:

©Carlos Guestrin 2013

36

18

Recenter Step as Reduce
" JE

m Recenter: u, becomes centroid of its point:
i e argmin 37 - |3

jizi=i

Equivalent to y; <— average of its points!

m Reduce:

©Carlos Guestrin 2013 37

Some Practical Considerations
" JEE
m K-Means needs an iterative version of Map-

Reduce
Not standard formulation

m Mapper needs to get data point and all centers
A lot of data!
Better implementation: mapper gets many data points

©Carlos Guestrin 2013 38

19

What you need to know about

. aedrallel K-Means on Map-Reduce

m K-Means = EM for mixtures of spherical
Gaussians with hard assignments

m Map: classification step; data parallel over data
point

m Reduce: recompute means; data parallel over
centers

20

