

Programmability Challenge 1: Designing Parallel programs

- SGD for LR:
 - □ For each data point x^(t):

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta_t \left\{ -\lambda w_i^{(t)} + \phi_i(\mathbf{x}^{(t)}) [y^{(t)} - P(Y = 1 | \phi(\mathbf{x}^{(t)}), \mathbf{w}^{(t)})] \right\}$$

©Carlos Guestrin 201

Programmability Challenge 2: Race Conditions

- We are used to sequential programs:
 - Read data, think, write data, read data, think, write data...
- But, in parallel, you can have non-deterministic effects:
 - □ One machine reading data will other is writing
- Called a race-condition:
 - Very annoying
 - □ One of the hardest problems to debug in practice:
 - because of non-determinism, bugs are hard to reproduce

©Carlos Guestrin 2013

Data Distribution Challenge

- Accessing data:
 - ☐ Main memory reference: 100ns (10⁻⁷s)
 - □ Round trip time within data center: 500,000ns (5 * 10-4s)
 - □ Disk seek: 10,000,000ns (10⁻²s)
- Reading 1MB sequentially:
 - □ Local memory: 250,000ns (2.5 * 10-4s)
 - □ Network: 10,000,000ns (10⁻²s)
 - □ Disk: 30,000,000ns (3*10⁻²s)
- Conclusion: Reading data from local memory is much faster → Must have data locality:
 - ☐ Good data partitioning strategy fundamental!
 - ☐ "Bring computation to data" (rather than moving data around)

©Carlos Guestrin 2013

7

Robustness to Failures Challenge

- From Google's Jeff Dean, about their clusters of 1800 servers, in first year of operation:
 - □ 1,000 individual machine failures
 - □ thousands of hard drive failures
 - $\hfill \Box$ one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
 - $\hfill \Box$ 20 racks will fail, each time causing 40 to 80 machines to vanish from the network
 - □ 5 racks will "go wonky," with half their network packets missing in action
 - the cluster will have to be rewired once, affecting 5 percent of the machines at any given moment over a 2-day span
 - 50% chance cluster will overheat, taking down most of the servers in less than 5 minutes and taking 1 to 2 days to recover
- How do we design distributed algorithms and systems robust to failures?
 - ☐ It's not enough to say: run, if there is a failure, do it again... because you may never finish

©Carlos Guestrin 2013

Move Towards Higher-Level Abstraction

- Distributed computing challenges are hard and annoying!
 - Programmability
 - 2. Data distribution
 - 3 Failures
- High-level abstractions try to simplify distributed programming by hiding challenges:
 - Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 - ☐ Generally, you are still on your own WRT designing parallel algorithms
- Some common parallel abstractions:
 - □ Lower-level:
 - Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - □ Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013

.

Simplest Type of Parallelism: Data Parallel Problems

- You have already learned a classifier
 - □ What's the test error?
- You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this...
 - □ Focus of today's lecture
 - □ but first a simple example

©Carlos Guestrin 2013

Data Parallelism (MapReduce) Compared to the second of th

Counting Words on a Single Processor

- (This is the "Hello World!" of Map-Reduce)
- Suppose you have 10B documents and 1 machine
- You want to count the number of appearances of each word on this corpus
 - □ Similar ideas useful, e.g., for building Naïve Bayes classifiers and computing TF-IDF
- Code:

©Carlos Guestrin 2013

Naïve Parallel Word Counting

Simple data parallelism approach:

■ Merging hash tables: annoying, potentially not parallel → no gain from parallelism???

©Carlos Guestrin 2013

13

Counting Words in Parallel & Merging Hash Tables in Parallel

- Generate pairs (word,count)
- Merge counts for each word in parallel
 - □ Thus parallel merging hash tables

©Carlos Guestrin 2013

Map-Reduce Abstraction

- Map:
 - □ Data-parallel over elements, e.g., documents
 - □ Generate (key,value) pairs
 - "value" can be any data type
- Reduce:
 - Aggregate values for each key
 - □ Must be commutative-associate operation
 - □ Data-parallel over keys
 - □ Generate (key,value) pairs
- Map-Reduce has long history in functional programming
 - □ But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013

15

Map Code (Hadoop): Word Count


```
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

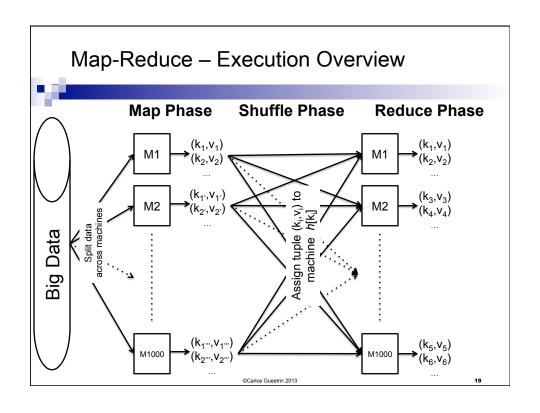
    public void map(LongWritable key, Text value, Context context) throws <stuff>
        {
            String line = value.toString();
            StringTokenizer tokenizer = new StringTokenizer(line);
            while (tokenizer.hasMoreTokens()) {
                 word.set(tokenizer.nextToken());
                 context.write(word, one);
            }
        }
    }
}
```

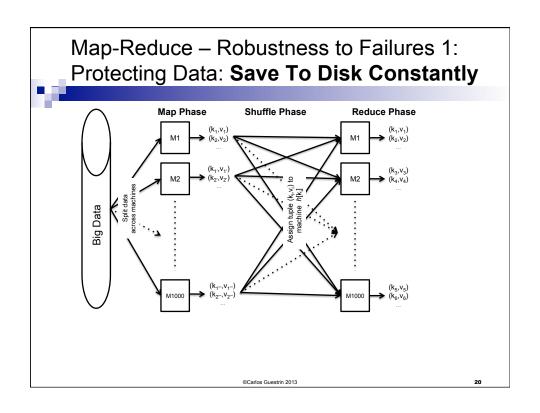
Carlos Guestrin 2013

Reduce Code (Hadoop): Word Count

```
public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {
   public void reduce(Text key, Iterable<IntWritable> values,
                       Context context)
      throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        context.write(key, new IntWritable(sum));
   }
}
```

Map-Reduce Parallel Execution





Distributed File Systems

- Saving to disk locally is not enough → If disk or machine fails, all data is lost
 - Replicate data among multiple machines!
 - Distributed File System (DFS)
 - □ Write a file anywhere → automatically replicated
 - □ Can read a file anywhere → read from closest copy
 - If failure, try next closest copy
 - Common implementations:
 - □ Google File System (GFS)
 - □ Hadoop File System (HDFS)
 - Important practical considerations:
 - Write large files
 - Many small files → becomes way too slow
 - □ Typically, files can't be "modified", just "replaced" → makes robustness much simpler

©Carlos Guestrin 2013

21

Map-Reduce – Robustness to Failures 2: Recovering From Failures: Read from DFS Map Phase Shuffle Phase Reduce Phase Communication in initial distribution & shuffle phase "automatic" □ Done by DFS If failure, don't restart everything □ Otherwise, never finish Only restart Map/ Reduce jobs in dead machines

Improving Performance: Combiners

- Naïve implementation of M-R very wasteful in communication during shuffle:
- Combiner: Simple solution, perform reduce locally before communicating for global reduce
 - □ Works because reduce is commutative-associative

©Carlos Guestrin 2013

23

(A few of the) Limitations of Map-Reduce Reduce Phase Too much synchrony □ E.g., reducers don't start until all mappers are done "Too much" robustness □ Writing to disk all the time Big Data Not all problems fit in Map-Reduce □ E.g., you can't communicate between mappers Oblivious to structure in data □ E.g., if data is a graph, can be much more efficient For example, no need to shuffle nearly as much Nonetheless, extremely useful; industry standard for Big Data Though many many companies are moving away from Map-Reduce (Hadoop)

What you need to know about Map-Reduce

- Distributed computing challenges are hard and annoying!
 - Programmability
 - Data distribution
 - Failures
- High-level abstractions help a lot!
- Data-parallel problems & Map-Reduce
- Map
 - □ Data-parallel transformation of data
 - Parallel over data points
- Reduce:
 - Data-parallel aggregation of data
 - Parallel over keys
- Combiner helps reduce communication
- Distributed execution of Map-Reduce:
 - □ Map, shuffle, reduce
 - □ Robustness to failure by writing to disk
 - □ Distributed File Systems

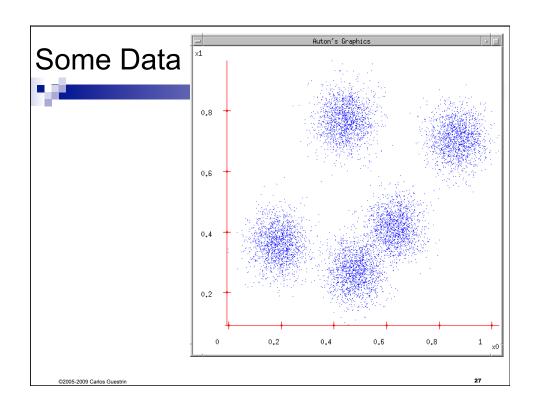
©Carlos Guestrin 2013

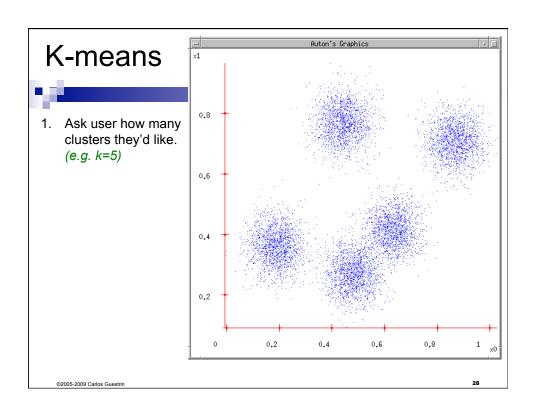
25

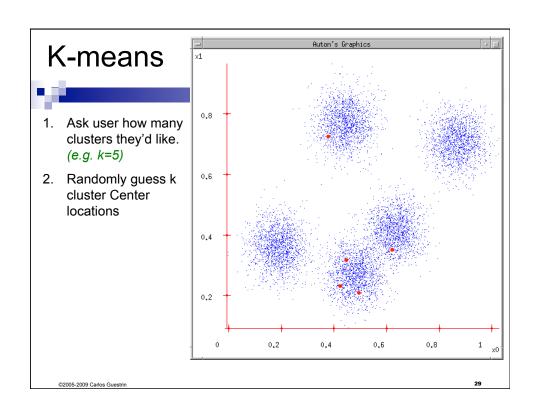
Case Study 2: Document Retrieval

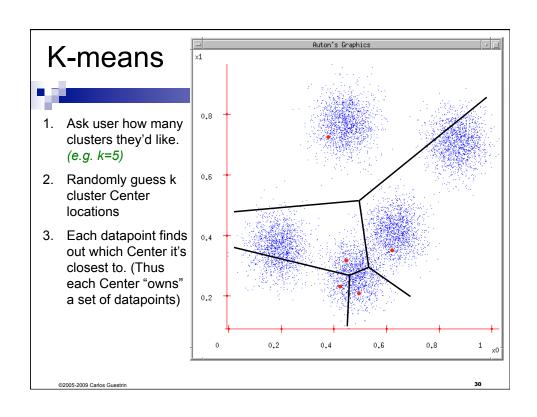
Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 31st, 2013

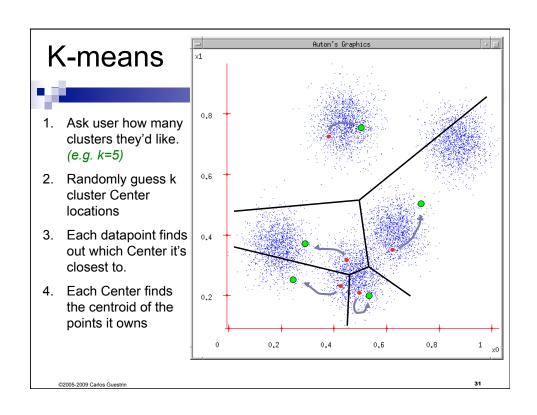
©Carlos Guestrin 2013

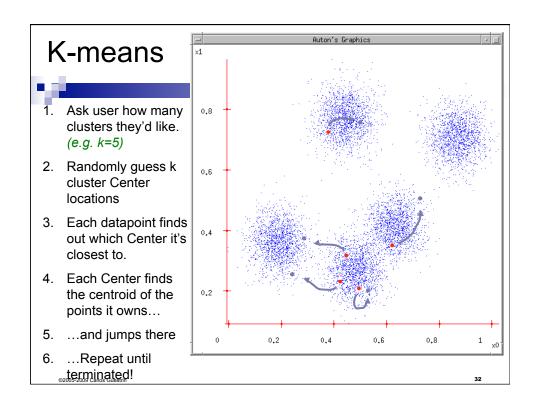












K-means

Randomly initialize k centers

$$\square$$
 $\mu^{(0)} = \mu_1^{(0)}, ..., \mu_k^{(0)}$

■ Classify: Assign each point j∈{1,...m} to nearest center:

$$\square z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Recenter: μ_i becomes centroid of its point:

$$\square \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

□ Equivalent to μ_i ← average of its points!

©2005-2009 Carlos Guestria

Special case: spherical Gaussians Mixtures and hard assignments

$$P(z = i \mid \mathbf{x}^{j}) \propto \frac{1}{(2\pi)^{m/2} \|\Sigma_{i}\|^{1/2}} \exp \left[-\frac{1}{2} \left(\mathbf{x}^{j} - \mu_{i}\right)^{T} \Sigma_{i}^{-1} \left(\mathbf{x}^{j} - \mu_{i}\right) \right] P(z = i)$$

• If P(Z=i|X) is spherical, with same σ for all classes:

$$P(z = i \mid \mathbf{x}^{j}) \propto \exp\left[-\frac{1}{2\sigma^{2}} \left\|\mathbf{x}^{j} - \mu_{i}\right\|^{2}\right]$$

■ If each x^j belongs to one class z^j (hard assignment), marginal likelihood:

$$\prod_{j=1}^{m} \sum_{i=1}^{k} P(\mathbf{x}^{j}, z = i) \propto \prod_{j=1}^{m} \exp \left[-\frac{1}{2\sigma^{2}} \left\| \mathbf{x}^{j} - \mu_{z^{j}} \right\|^{2} \right]$$

Same as K-means!!!

©2005-2009 Carlos Guestrin

Map-Reducing One Iteration of K-Means

■ Classify: Assign each point j∈{1,...m} to nearest center:

$$\Box z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Recenter: μ_i becomes centroid of its point:

$$\label{eq:multiple} \quad \square \ \ \mu_i^{(t+1)} \leftarrow \arg \min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

- □ Equivalent to μ_i ← average of its points!
- Map:
- Reduce:

©2005-2009 Carlos Guestrin

35

Classification Step as Map

■ Classify: Assign each point j∈{1,...m} to nearest center:

$$\square z^j \leftarrow \arg\min_i ||\mu_i - \mathbf{x}^j||_2^2$$

Map:

©Carlos Guestrin 2013

__

Recenter Step as Reduce

Recenter: μ_i becomes centroid of its point:

$$\square \, \mu_i^{(t+1)} \leftarrow \arg \min_{\mu} \sum_{j:z^j=i} ||\mu - \mathbf{x}^j||_2^2$$

- □ Equivalent to μ_i ← average of its points!
- Reduce:

©Carlos Guestrin 2013

37

Some Practical Considerations

- K-Means needs an iterative version of Map-Reduce
 - □ Not standard formulation
- Mapper needs to get data point and all centers
 - □ A lot of data!
 - □ Better implementation: mapper gets many data points

©Carlos Guestrin 2013

What you need to know about Parallel K-Means on Map-Reduce

- K-Means = EM for mixtures of spherical Gaussians with hard assignments
- Map: classification step; data parallel over data point
- Reduce: recompute means; data parallel over centers

©Carlos Guestrin 2013