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Needless to Say, We Need
Machine Learning for Big Data

flickr V([ Tube

6 Billion . 1 Billion 72 Hours a Minute
Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages

Ehe New Jork Times
SundayReview
WORLD US. NY./

REGION BUSINESS  TEC

“... data a new class of economic
asset, like currency or gold.”

The Age of Big Data
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CPUs Stopped Getting Faster...
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ML in the Context of Parallel
Architectures

Dy i
‘i',":l 2 z
< (SRR amazon,
GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability
2. Data distribution
3. Failures
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Programmability Challenge 1:
Designing Parallel programs

m SGD for LR:

For each data point x®:
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Programmability Challenge 2:
Race Conditions

TN
m We are used to sequenti . Jres gll othy wriker

data, think, write data, e

m But, in parallel, you can have non- determlnlstlc effects
One machine reading data will other is writing

6 /—\‘ \_’
ot Yow )= 5/‘0 fj'/s -

m Called a race-condition:
Very annoying
One of the hardest problems to debug in practice:
= because of non-determinism, bugs are hard to reproduce
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Data Distribution Challenge
* JEE—

m  Accessing data: ( | p( ‘b\
Main memory reference: 100ns (107s) e o “
Round trip time within data center: 500,000ns (5 * 10*s) &— et acces
Disk seek: 10,000,000ns (10-2s)

m  Reading 1MB sequentially:
Local memory: 250,000ns (2.5 * 10s)
Network: 10,000,000ns (10-2s)
Disk: 30,000,000ns (3*10-2s) v

'L owi.ﬂ:s c)ﬂc "’\‘\jﬂh('\‘ﬂ(.

m  Conclusion: Reading data from local memory is much faster = Must have
data locality:
Good data partitioning strategy fundamental!
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Robustness to Failures Challenge
" SN

m From Google’s Jeff Dean, about their clusters of 1800 servers, in
first year of operation:

1,000 individual machine failures
thousands of hard drive failures
one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
20 racks will fail, each time causing 40 to 80 machines to vanish from the network
5 racks will “go wonky,” with half their network packets missing in action
the cluster will have to be rewired once, affecting 5 percent of the machines at any given
moment over a 2-day span
50% chance cluster will overheat, taking down most of the servers in less than 5 minutes
and taking 1 to 2 days to recover

m How do we design distributed algorithms and systems robust
to failures?

It's not enough to say: run, if there is a failure, do it again... because
you may never finish
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Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:
Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...
Generally, you are still on your own WRT designing parallel algorithms

m  Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers
Higher-level:
= Map-Reduce (Hadoop: open-source version): mostly data-parallel problem J‘L\" s ‘\Ih"
= GraphLab: for graph-structured distributed problems
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Simplest Type of Parallelism:

. Data Parallel Problems

e WA
m You have already learned a classifier () . T
\ ~ AWy b

What's the test error? 4w = - 2'2_ ‘ '3 S'ﬂ ( X M
m You have 10B labeled documents and 1000 machines

— .

'ng |a ’<
lcor~— PJI' [§ ' T 7 logo
(yvor 0

faSyet of

Jortn Quirp

L"ﬂ;l’
m Problems that can be broken into independent subproblems are

called data-parallel (or embarrassingly parallel)

m Map-Reduce is a great tool for this...
Focus of today’s lecture
but first a simple example
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Data Parallelism (MapReduce)
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Solve a huge number of independent subproblems,
e.qg., extract features in images

Counting Words on a Single Processor

" JEEE
m (This is the “Hello World!” of Map-Reduce)
m Suppose you have 10B documents and 1 machine

m You want to count the number of appearances of each word on this
corpus
[ Similar ideas useful, e.g., for building Naive Bayes classifiers and
computing TE-IDF -
m Code:

(W\'\M)x/ 'MJ' < hash h&&

{:w A n A“"MJ’J’
fv "uorok '|I\ D\

Connd (w..k}f B
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Naive Parallel Word Counting

m Simple data parallelism approach:

lvea
gl\«,}‘l% ﬁ - \?_’:

* D) SR (ot

o

bu\ \ “‘}Aﬂ/

Lesh loo

bl ( Ouat (word ) Z Cout; Cwerd]

[ pMerging hash tables: annoying, potentially not parallel =»
no gain from parallelism???
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Counting Words in Parallel &

. Merﬁing Hash Tables in Parallel

= Generate pairs (word,count),('“'v',l?) Which wods fjo D edyra |

m  Merge counts for each word in parallel ‘ _
01 Thus parallel merging hash tables k: % —9 L] . -# M},m?
M1 N I} !
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Map-Reduce Abstraction

A~ Gt
= Map: Tﬂ-—\fwn‘ o\n‘o"* dk-‘“’ wer -
1 Data-parallel over elements, e.g., documents {vﬁP ( A{, M«J’)
1 Generate (key,value) pairs . p(
= “value” can be any data type fbl W QV'A n o
‘oW’ .
( 1 ‘?) (/,4‘»7'[ l) Amit (‘vwl' |)
in thiy Lpemle i [Uw)))
D ] L MM‘?" 1)
m  Reduce: Tak ¢ (I Yo Assogid Ltk o By MH fas et
[ Aggregate values for each key &nA ’\17']“41 w ( Oﬂ(l ('MA' {'S“(‘k{))
1 Must be commutative-associate operation (=0
1 Data-parallel over keys . {ur RPN (o-“‘l'
1 Generate (key,value) pairs 4 _'.5
3 - Cr= (o~
m redva (W{,Llll?,al'l‘zy | (o
trit (0w, 30) emit (wavd, “)

m  Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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Map Code (Hadoop): Word Count
" S

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(l);
private Text word = new Text(){',doC

public void map(Lon@tab@y, Text value, Context context) throws <stuff>
{

String line = value.toString();

StringTokenizer tokenizgﬁ:ﬁ\ew 6&€‘ilng%k€lt(izer‘(line);
while (tokenizer.hasMoreTokens())
b

word. set(toke;\ize(wlﬂxf

context.write(word, one);
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Reduce Code (Hadoop): Word Count
" S

public static class Reduce extends Reducer<Text, IntWritable,

Text, IntWritable> { /" Jl;nl ol wl

public void reduce(Text key, Iterable<IntWritable> values,
Context context)

throws IOException, In?frrgatggg§&_ptlon {

1nt sum = Q;
for (IntWritsbte ‘vﬁ&d 'walues) {

sum += val.get(Q);
¥ & ond | word, {-ov’kl)

context.write(Ckey, new Intertable(sum)),
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Map-Reduce Parallel Execution
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Map-Reduce — Execution Overview

\

PN
Split data

across machines

v

Big Data < >
N

Map Phase Shuffle Phase Reduce Phase
(kq,v4) (Kq,v4)
M1 = (g) S — (ko)
((STAD) . L (Ks,Vs3)
M2 [ligv;) < S5/ — (k)
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Map-Reduce — Robustness to Failures 1:

Protecting Data: Save To Disk Constantly
" JEE—

Map Phase Shuffle Phase

Mok

M1

(ky,v4)

> (kz.v2)

M2

[(SR2D)
—> (k2v2) G

Assign tuple (k;,v;) to
machine hlk]

M1000

(kpvy) fo
—> (kzVz)
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Reduce Phase

(kq,v4)

—> (k,.v;) \9

(k3,v3)
—> (k,.V.)

(ksVs) /
> (Ke,V5)

20
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Distributed File Systems
" JEE

m  Saving to disk locally is not enough = If disk or machine fails, all data is lost

m  Replicate data among multiple machines! 2)
Usally 3 q i ,07 ﬁ\'

m Distributed File System (DFS) T T o df -
f”— e [y N 2 b
Write a file angéwhere => automatically replicated W'fk(ﬁo.*#) k‘t } . 6“2}1
Can read a file anywhere =» read from closest copy

= [ffailure, try next closestcopy ~,, + .
P .41 ‘*&‘ et hon ik
X u
6 .

i X ho-g - 8
= Common implementations:
Google File System (GES)

Hadoop File System (HDF'S)

m  Important practical considerations:

Write large files e
= Many siTikfiles & becomes way too slow

Typically, files can’t be m% just “replaced” =» makes robustness much simpler
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Map-Reduce — Robustness to Failures 2:

Recovering From Failures: Read from DFS
e Shrhs peboe g

]
[\ Map Phase Shuffle Phase Reduce Phase m Communication
() (e N*ﬂ in initial

M1 = (k) > (k;.v2)
- - distribution &
y (kyvy)

(k3,v3)

[ (o “’m shuffle phase

“automatic”

;z‘lb‘ Done by DFS
]

dodll |m If failure, don’t
"y restart everything

> (ks.Ve) Otherwise,
- ﬂﬂ, never finish

Split data
across machines

Big Data
AN

. Assign tuple (k;,v;) to
. machine hlk]

,,4,, Only restart Map/
- Reduce jobs in
45| 4ead machines
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Improving Performance: Combiners

m Naive implementation of M-R very wasteful in communication during shuffle:

{ '(/w" | ) \'\(0"‘):‘)
! o

[oun | o —— I
: ’U\J, |)
(Vw1
m Combiner: Simple solution, perform reduce locally before communicating
for global reduce
Works because reduce is cor_n_wmive

@ ('u,\u',ﬂ v(\w‘ (‘W foo)) — My
./
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(A few of the) Limitations of Map-Reduce

|
- 'TOO mUCH.S nchrony [\ Map Phase Shuffle Phase Reduce Phase
Eg., redmstart until all Mt > {E;X;i —> {E;X;i
mappers are done U /
« ” (Kgvy) kg
= “Too much” robustness L > (vl € s > (o)
Writing to disk all the time of 2 8
o < e 2e
.y - © &8 25
= Not all problems fit in SME, 58
Map-Reduce @ 2
E.g., you can’t communicate
between mappers
(Kyvq) (Ks,Vs)
= Oblivious to structure in data U oo [ () > (ko)

E.g., if data is a graph, can be
much more efficient
= For example, no need to shuffle nearly as much

m  Nonetheless, extremely useful;

industry standard for Big Data

Though many many companies are moving

away from Map-Reduce (Hadoop)
©Carlos Guestrin 2013 24

12



What you need to know about Map-Reduce
" JEE

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures

m High-level abstractions help a lot!
m Data-parallel problems & Map-Reduce
n  Map:

Data-parallel transformation of data
= Parallel over data points

= Reduce:

Data-parallel aggregation of data
= Parallel over keys

m  Combiner helps reduce communication
m Distributed execution of Map-Reduce:
Map, shuffle, reduce

Robustness to failure by writing to disk
Distributed File Systems

©Carlos Guestrin 2013 25

Case Study 2: Document Retrieval

Parallel K-Means on
Map-Reduce

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
January 31st, 2013
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Auton’s Graphics a|=l

Some Data
= JEE

0.8
0.6
0.4

0,2

- 4 4 e 4 e
T T T T T T
4 0.2 0.4 0.6 0.8 1 )
x0
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= Auton’s Graphics (=]

K-means |
" A

1. Ask user how many o
clusters they’d like.
(e.g. k=5)
0.6
0.4
0.2

n it it it 4 }
T T T T T 1
1 0.2 0.4 0.6 0.8 1 1
x0
28
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Auton’s Graphics

[Fais]

K-means |
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

0.2 0.4

0.6 0.8 1

x07
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Auton’s Graphics

3 5]

K-means |
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k | %
cluster Center
locations

0.8

3. Each datapoint finds | o.4
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints) | °2

0.2 0.4

0.6 0.8 1

x0
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= Auton’s Graphics [

K-means
" I

1. Ask user how many
clusters they’d like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to.

4, Each Center finds
the centroid of the
points it owns

0.8

0.6

0.4

0.2

x07
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= Auton’s Graphics (=]

K-means
" A

1. Ask user how many
clusters they’d like.
(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

0.4 T

0.2 T

x0

> ...Repeat until
terminated!

32
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K-means
* JEE
m Randomly initialize k centers
=0, O

m Classify: Assign each point j&{1,...m} to nearest

center: LS5 pm«‘s Ll

2 argmin|[p; — xI|)F (ke ek
1

m Recenter: u, becomes centroid of its point:

>(')
P e argmin 3l — |1 = G

jizi=i

Equivalent to u; < average of its points! o
§ak

©2005-2009 Carlos Guestrin

Special case: spherical Gau33|ans

. Mlerﬁg and hard assignments ** *

o 1 L/ (o N
P(Z=Z|X ) Wexp[—E(X _Mi) Zi (X K_Mi :|P(Z—l)
b ik EM bt

m |f P(Z=i|X) is spherical, with sameofor aléc;l‘asses - I ““7""":,
? 22 m ?(Ei\“l&)

m If each xi belongs to one class z (hard a33|gnment) marg‘inal likelihood:

P(z=ilx")xexp|-

_Mf

%
P L I~ gl
12z exp ] 'L‘" y=!
m Same as K-means!!! \£ 00\‘] Sol\ll ﬁ"’ M-
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Map-Reducing One lteration of
K-Means D

"
m Classify: Assign each point J€{1,...m} to nearest center:
2 ¢ argmin| | — 7|3
7

m Recenter: y; becomes centroid of its point:

t+1 . i
p ™ e argmin 3 {lu— 7|3

jizi=q

Equivalent to u; < average of its points! )
Aa-l-\ . PJ&":I R CL\S&‘\‘[‘J P‘v& i P mid (¥ [‘lj

. Map: 4‘1’/ ndh Ao ?D\\‘l f);vln (}A|\£) <2

: “ 0'4‘15 1) (I‘Sbi
= Reduce: Lc‘v\l'ff ?‘\(}k 5\‘4«;,, owvw A rl

Classification Step as Map
" JEE

m Classify: Assign each point j&{1,...m} to nearest center:
2 ¢ argmin||u; — x’[|3
K3

= Map: g ((}x.,‘,.,p‘),f’)
2.) (S “"J:’\;/\ “}A,")(’“-);

tmd (B,Y)
Py
!
2y ], (17, 0p, ',%,29
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Recenter Step as Reduce
* JEE

m Recenter: u, becomes centroid of its point:
i e argmin 37 - |3
JE= which ass.‘ym(
b chy

Equivalent to y; <— average of its points!

s Reduce: Nduel !, l‘,;’r,)(:f)(',»(‘/.‘.'ﬂ)
(()\M“':'O

Sum -0

(’"v Y l'\$‘|-)(

S 'I':X
(ont 4+ = |

Lt (_i, SK%J)
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Some Practical Considerations
" JEE
m K-Means needs an iterative version of Map-

Reduce
Not standard formulation

m Mapper needs to get data point and all centers

A lot of data!
Better implementation:@pper gets many data points

©Carlos Guestrin 2013 38
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What you need to know about

. aedrallel K-Means on Map-Reduce

m K-Means = EM for mixtures of spherical
Gaussians with hard assignments '~ { - ¥,

m Map: classification step; data parallel over data
point

m Reduce: recompute means; data parallel over
centers
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