
1

1

Parallel Programming
Map-Reduce

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 31st, 2013

©Carlos Guestrin 2013

Case Study 2: Document Retrieval

Needless to Say, We Need
Machine Learning for Big Data

72	
 Hours	
 a	
 Minute	

YouTube	
 28	
 Million	
 	

Wikipedia	
 Pages	

1	
 Billion	

Facebook	
 Users	

6	
 Billion	
 	

Flickr	
 Photos	

“… data a new class of economic
asset, like currency or gold.”

2

CPUs Stopped Getting Faster…

0.01

0.1

1

10

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

exp
one

nti
ally

 inc
rea

sin
g

constant

pr
oc

es
so

r
sp

ee
d

G
H

z

release date

3

ML in the Context of Parallel
Architectures

n  But scalable ML in these systems is hard,
especially in terms of:
1.  Programmability
2.  Data distribution
3.  Failures

©Carlos Guestrin 2013 4

GPUs Multicore Clusters Clouds Supercomputers

3

Programmability Challenge 1:
Designing Parallel programs

n  SGD for LR:
¨  For each data point x(t):

©Carlos Guestrin 2013 5

w(t+1)
i w(t)

i + ⌘t
n

��w(t)
i + �i(x

(t))[y(t) � P (Y = 1|�(x(t)),w(t))]
o

Programmability Challenge 2:
Race Conditions

n  We are used to sequential programs:
¨  Read data, think, write data, read data, think, write data, read data, think, write data, read

data, think, write data, read data, think, write data, read data, think, write data…

n  But, in parallel, you can have non-deterministic effects:
¨  One machine reading data will other is writing

n  Called a race-condition:
¨  Very annoying
¨  One of the hardest problems to debug in practice:

n  because of non-determinism, bugs are hard to reproduce

©Carlos Guestrin 2013 6

4

Data Distribution Challenge
n  Accessing data:

¨  Main memory reference: 100ns (10-7s)
¨  Round trip time within data center: 500,000ns (5 * 10-4s)
¨  Disk seek: 10,000,000ns (10-2s)

n  Reading 1MB sequentially:
¨  Local memory: 250,000ns (2.5 * 10-4s)
¨  Network: 10,000,000ns (10-2s)
¨  Disk: 30,000,000ns (3*10-2s)

n  Conclusion: Reading data from local memory is much faster è Must have
data locality:
¨  Good data partitioning strategy fundamental!
¨  “Bring computation to data” (rather than moving data around)

©Carlos Guestrin 2013 7

Robustness to Failures Challenge

n  From Google’s Jeff Dean, about their clusters of 1800 servers, in
first year of operation:
¨  1,000 individual machine failures
¨  thousands of hard drive failures
¨  one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours
¨  20 racks will fail, each time causing 40 to 80 machines to vanish from the network
¨  5 racks will “go wonky,” with half their network packets missing in action
¨  the cluster will have to be rewired once, affecting 5 percent of the machines at any given

moment over a 2-day span
¨  50% chance cluster will overheat, taking down most of the servers in less than 5 minutes

and taking 1 to 2 days to recover

n  How do we design distributed algorithms and systems robust
to failures?
¨  It’s not enough to say: run, if there is a failure, do it again… because

you may never finish

©Carlos Guestrin 2013 8

5

Move Towards Higher-Level
Abstraction

n  Distributed computing challenges are hard and annoying!
1.  Programmability
2.  Data distribution
3.  Failures

n  High-level abstractions try to simplify distributed programming by
hiding challenges:
¨  Provide different levels of robustness to failures, optimizing data

movement and communication, protect against race conditions…
¨  Generally, you are still on your own WRT designing parallel algorithms

n  Some common parallel abstractions:
¨  Lower-level:

n  Pthreads: abstraction for distributed threads on single machine
n  MPI: abstraction for distributed communication in a cluster of computers

¨  Higher-level:
n  Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
n  GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013 9

Simplest Type of Parallelism:
Data Parallel Problems

n  You have already learned a classifier
¨  What’s the test error?

n  You have 10B labeled documents and 1000 machines

n  Problems that can be broken into independent subproblems are

called data-parallel (or embarrassingly parallel)
n  Map-Reduce is a great tool for this…

¨  Focus of today’s lecture
¨  but first a simple example

©Carlos Guestrin 2013 10

6

CPU 1 CPU 2 CPU 3 CPU 4

Data	
 Parallelism	
 (MapReduce)	

1
2	

.
9

4
2	

.
3

2
1	

.
3

2
5	

.
8

2	

4	

.	

1	

8	

4	

.	

3	

1	

8	

.	

4	

8	

4	

.	

4	

1
7	

.
5

6
7	

.
5

1
4	

.
9

3
4	

.
3

Solve	
 a	
 huge	
 number	
 of	
 independent	
 subproblems,	

e.g.,	
 extract	
 features	
 in	
 images	

Counting Words on a Single Processor

n  (This is the “Hello World!” of Map-Reduce)
n  Suppose you have 10B documents and 1 machine
n  You want to count the number of appearances of each word on this

corpus
¨  Similar ideas useful, e.g., for building Naïve Bayes classifiers and

computing TF-IDF
n  Code:

©Carlos Guestrin 2013 12

7

Naïve Parallel Word Counting

n  Simple data parallelism approach:

n  Merging hash tables: annoying, potentially not parallel è
no gain from parallelism???

©Carlos Guestrin 2013 13

Counting Words in Parallel &
Merging Hash Tables in Parallel

n  Generate pairs (word,count)
n  Merge counts for each word in parallel

¨  Thus parallel merging hash tables

©Carlos Guestrin 2013 14

8

Map-Reduce Abstraction
n  Map:

¨  Data-parallel over elements, e.g., documents
¨  Generate (key,value) pairs

n  “value” can be any data type

n  Reduce:
¨  Aggregate values for each key
¨  Must be commutative-associate operation
¨  Data-parallel over keys
¨  Generate (key,value) pairs

n  Map-Reduce has long history in functional programming
¨  But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013 15

Map Code (Hadoop): Word Count

©Carlos Guestrin 2013 16

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {	
 private final static IntWritable one = new IntWritable(1);	
 private Text word = new Text();	
 	
 public void map(LongWritable key, Text value, Context context) throws <stuff>

	{	
 String line = value.toString();	
 StringTokenizer tokenizer = new StringTokenizer(line);	
 while (tokenizer.hasMoreTokens()) {	
 word.set(tokenizer.nextToken());	
 context.write(word, one);	
 }	
 	}	
 }	

9

Reduce Code (Hadoop): Word Count

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable> {	

 public void reduce(Text key, Iterable<IntWritable> values,

	 	 	 Context context) 	
 throws IOException, InterruptedException {	
 int sum = 0;	
 for (IntWritable val : values) {	
 sum += val.get();	
 }	
 context.write(key, new IntWritable(sum));	
 }	
 }	

©Carlos Guestrin 2013 17

Map-Reduce Parallel Execution

©Carlos Guestrin 2013 18

10

Map-Reduce – Execution Overview

©Carlos Guestrin 2013 19

B
ig

 D
at

a

M1

M2

M1000

Map Phase

(k1,v1)
(k2,v2)
…

(k1’,v1’)
(k2’,v2’)

…

(k1’’’,v1’’’)
(k2’’’,v2’’’)

…

S
pl

it
da

ta

ac
ro

ss
 m

ac
hi

ne
s

M1

M2

M1000

Reduce Phase Shuffle Phase

(k1,v1)
(k2,v2)
…

(k3,v3)
(k4,v4)
…

(k5,v5)
(k6,v6)
…

A
ss

ig
n

tu
pl

e
(k

i,v
i)

to

m
ac

hi
ne

 h
[k

i]

Map-Reduce – Robustness to Failures 1:
Protecting Data: Save To Disk Constantly

©Carlos Guestrin 2013 20

B
ig

 D
at

a

M1

M2

M1000

Map Phase

(k1,v1)
(k2,v2)
…

(k1’,v1’)
(k2’,v2’)

…

(k1’’’,v1’’’)
(k2’’’,v2’’’)

…

S
pl

it
da

ta

ac
ro

ss
 m

ac
hi

ne
s

M1

M2

M1000

Reduce Phase Shuffle Phase

(k1,v1)
(k2,v2)
…

(k3,v3)
(k4,v4)
…

(k5,v5)
(k6,v6)
…

A
ss

ig
n

tu
pl

e
(k

i,v
i)

to

m
ac

hi
ne

 h
[k

i]

11

Distributed File Systems
n  Saving to disk locally is not enough è If disk or machine fails, all data is lost
n  Replicate data among multiple machines!

n  Distributed File System (DFS)
¨  Write a file anywhere è automatically replicated
¨  Can read a file anywhere è read from closest copy

n  If failure, try next closest copy

n  Common implementations:
¨  Google File System (GFS)
¨  Hadoop File System (HDFS)

n  Important practical considerations:
¨  Write large files

n  Many small files è becomes way too slow

¨  Typically, files can’t be “modified”, just “replaced” è makes robustness much simpler

©Carlos Guestrin 2013 21

Map-Reduce – Robustness to Failures 2:
Recovering From Failures: Read from DFS

©Carlos Guestrin 2013 22

B
ig

 D
at

a

M1

M2

M1000

Map Phase

(k1,v1)
(k2,v2)
…

(k1’,v1’)
(k2’,v2’)

…

(k1’’’,v1’’’)
(k2’’’,v2’’’)

…

S
pl

it
da

ta

ac
ro

ss
 m

ac
hi

ne
s

M1

M2

M1000

Reduce Phase Shuffle Phase

(k1,v1)
(k2,v2)
…

(k3,v3)
(k4,v4)
…

(k5,v5)
(k6,v6)
…

A
ss

ig
n

tu
pl

e
(k

i,v
i)

to

m
ac

hi
ne

 h
[k

i]

n  Communication
in initial
distribution &
shuffle phase
“automatic”
¨  Done by DFS

n  If failure, don’t
restart everything
¨  Otherwise,

never finish

n  Only restart Map/
Reduce jobs in
dead machines

12

Improving Performance: Combiners

n  Naïve implementation of M-R very wasteful in communication during shuffle:

n  Combiner: Simple solution, perform reduce locally before communicating
for global reduce
¨  Works because reduce is commutative-associative

©Carlos Guestrin 2013 23

(A few of the) Limitations of Map-Reduce

©Carlos Guestrin 2013 24

B
ig

 D
at

a

M1

M2

M1000

Map Phase

(k1,v1)
(k2,v2)
…

(k1’,v1’)
(k2’,v2’)

…

(k1’’’,v1’’’)
(k2’’’,v2’’’)

…

S
pl

it
da

ta

ac
ro

ss
 m

ac
hi

ne
s

M1

M2

M1000

Reduce Phase Shuffle Phase

(k1,v1)
(k2,v2)
…

(k3,v3)
(k4,v4)
…

(k5,v5)
(k6,v6)
…

A
ss

ig
n

tu
pl

e
(k

i,v
i)

to

m
ac

hi
ne

 h
[k

i]

n  Too much synchrony
¨  E.g., reducers don’t start until all

mappers are done

n  “Too much” robustness
¨  Writing to disk all the time

n  Not all problems fit in
Map-Reduce
¨  E.g., you can’t communicate

between mappers

n  Oblivious to structure in data
¨  E.g., if data is a graph, can be

much more efficient
n  For example, no need to shuffle nearly as much

n  Nonetheless, extremely useful;
industry standard for Big Data
¨  Though many many companies are moving

away from Map-Reduce (Hadoop)

13

What you need to know about Map-Reduce

n  Distributed computing challenges are hard and annoying!
1.  Programmability
2.  Data distribution
3.  Failures

n  High-level abstractions help a lot!
n  Data-parallel problems & Map-Reduce
n  Map:

¨  Data-parallel transformation of data
n  Parallel over data points

n  Reduce:
¨  Data-parallel aggregation of data

n  Parallel over keys

n  Combiner helps reduce communication
n  Distributed execution of Map-Reduce:

¨  Map, shuffle, reduce
¨  Robustness to failure by writing to disk
¨  Distributed File Systems

©Carlos Guestrin 2013 25

26

Parallel K-Means on
Map-Reduce

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 31st, 2013

©Carlos Guestrin 2013

Case Study 2: Document Retrieval

14

Some Data

©2005-2009 Carlos Guestrin 27

K-means

1.  Ask user how many
clusters they’d like.
(e.g. k=5)

©2005-2009 Carlos Guestrin 28

15

K-means

1.  Ask user how many
clusters they’d like.
(e.g. k=5)

2.  Randomly guess k
cluster Center
locations

©2005-2009 Carlos Guestrin 29

K-means

1.  Ask user how many
clusters they’d like.
(e.g. k=5)

2.  Randomly guess k
cluster Center
locations

3.  Each datapoint finds
out which Center it’s
closest to. (Thus
each Center “owns”
a set of datapoints)

©2005-2009 Carlos Guestrin 30

16

K-means

1.  Ask user how many
clusters they’d like.
(e.g. k=5)

2.  Randomly guess k
cluster Center
locations

3.  Each datapoint finds
out which Center it’s
closest to.

4.  Each Center finds
the centroid of the
points it owns

©2005-2009 Carlos Guestrin 31

K-means

1.  Ask user how many
clusters they’d like.
(e.g. k=5)

2.  Randomly guess k
cluster Center
locations

3.  Each datapoint finds
out which Center it’s
closest to.

4.  Each Center finds
the centroid of the
points it owns…

5.  …and jumps there

6.  …Repeat until
terminated! ©2005-2009 Carlos Guestrin 32

17

K-means

n  Randomly initialize k centers
¨  µ(0) = µ1

(0),…, µk
(0)

n  Classify: Assign each point j∈{1,…m} to nearest
center:
¨ 

n  Recenter: µi becomes centroid of its point:
¨ 

¨ Equivalent to µi ← average of its points!
©2005-2009 Carlos Guestrin 33

zj argmin
i

||µi � x

j ||22

µ(t+1)
i argmin

µ

X

j:zj=i

||µ� x

j ||22

34

Special case: spherical Gaussians
Mixtures and hard assignments

n  If P(Z=i|X) is spherical, with same σ for all classes:

n  If each xj belongs to one class zj (hard assignment), marginal likelihood:

n  Same as K-means!!!

P(z = i | x j)∝ exp − 1
2σ 2 x

j −µi

2#

$%
&

'(

P(x j , z = i)
i=1

k

∑
j=1

m

∏ ∝ exp − 1
2σ 2 x

j −µ
z j

2%

&'
(

)*j=1

m

∏

P(z = i | x j)∝ 1
(2π)m/2 || Σi ||

1/2 exp −
1
2
x j −µi()

T
Σi
−1 x

j
−µi

$
%
&

'
(
)

*

+,
-

./
P(z = i)

©2005-2009 Carlos Guestrin

18

Map-Reducing One Iteration of
K-Means

n  Classify: Assign each point j∈{1,…m} to nearest center:
¨ 

n  Recenter: µi becomes centroid of its point:
¨ 

¨  Equivalent to µi ← average of its points!

n  Map:

n  Reduce:

©2005-2009 Carlos Guestrin 35

zj argmin
i

||µi � x

j ||22

µ(t+1)
i argmin

µ

X

j:zj=i

||µ� x

j ||22

Classification Step as Map
n  Classify: Assign each point j∈{1,…m} to nearest center:

¨ 

n  Map:

©Carlos Guestrin 2013 36

zj argmin
i

||µi � x

j ||22

19

Recenter Step as Reduce
n  Recenter: µi becomes centroid of its point:

¨ 

¨  Equivalent to µi ← average of its points!

n  Reduce:

©Carlos Guestrin 2013 37

µ(t+1)
i argmin

µ

X

j:zj=i

||µ� x

j ||22

Some Practical Considerations

n  K-Means needs an iterative version of Map-
Reduce
¨ Not standard formulation

n  Mapper needs to get data point and all centers
¨ A lot of data!
¨ Better implementation: mapper gets many data points

©Carlos Guestrin 2013 38

20

What you need to know about
Parallel K-Means on Map-Reduce

n  K-Means = EM for mixtures of spherical
Gaussians with hard assignments

n  Map: classification step; data parallel over data
point

n  Reduce: recompute means; data parallel over
centers

©Carlos Guestrin 2013 39

