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Case Study 2: Document Retrieval 

Needless to Say, We Need 
Machine Learning for Big Data 

72	
  Hours	
  a	
  Minute	
  
YouTube	
  28	
  Million	
  	
  

Wikipedia	
  Pages	
  

1	
  Billion	
  
Facebook	
  Users	
  

6	
  Billion	
  	
  
Flickr	
  Photos	
  

“… data a new class of economic 
asset, like currency or gold.” 
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CPUs Stopped Getting Faster… 
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ML in the Context of Parallel 
Architectures 

n  But scalable ML in these systems is hard, 
especially in terms of: 
1.  Programmability  
2.  Data distribution 
3.  Failures 
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GPUs Multicore Clusters Clouds Supercomputers 
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Programmability Challenge 1: 
Designing Parallel programs 

n  SGD for LR: 
¨  For each data point x(t): 

©Carlos Guestrin 2013 5 

w(t+1)
i  w(t)

i + ⌘t
n

��w(t)
i + �i(x

(t))[y(t) � P (Y = 1|�(x(t)),w(t))]
o

Programmability Challenge 2: 
Race Conditions 

n  We are used to sequential programs: 
¨  Read data, think, write data, read data, think, write data, read data, think, write data, read 

data, think, write data, read data, think, write data, read data, think, write data… 

n  But, in parallel, you can have non-deterministic effects: 
¨  One machine reading data will other is writing 

n  Called a race-condition: 
¨  Very annoying 
¨  One of the hardest problems to debug in practice:   

n  because of non-determinism, bugs are hard to reproduce 
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Data Distribution Challenge 
n  Accessing data: 

¨  Main memory reference: 100ns (10-7s) 
¨  Round trip time within data center: 500,000ns (5 * 10-4s) 
¨  Disk seek: 10,000,000ns (10-2s) 

n   Reading 1MB sequentially: 
¨  Local memory: 250,000ns (2.5 * 10-4s) 
¨  Network: 10,000,000ns (10-2s) 
¨  Disk: 30,000,000ns (3*10-2s) 

n  Conclusion: Reading data from local memory is much faster è Must have 
data locality: 
¨  Good data partitioning strategy fundamental! 
¨  “Bring computation to data” (rather than moving data around) 
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Robustness to Failures Challenge 

n  From Google’s Jeff Dean, about their clusters of 1800 servers, in 
first year of operation: 
¨  1,000 individual machine failures 
¨  thousands of hard drive failures 
¨  one power distribution unit will fail, bringing down 500 to 1,000 machines for about 6 hours 
¨  20 racks will fail, each time causing 40 to 80 machines to vanish from the network  
¨  5 racks will “go wonky,” with half their network packets missing in action 
¨  the cluster will have to be rewired once, affecting 5 percent of the machines at any given 

moment over a 2-day span 
¨  50% chance cluster will overheat, taking down most of the servers in less than 5 minutes 

and taking 1 to 2 days to recover 

n  How do we design distributed algorithms and systems robust 
to failures? 
¨  It’s not enough to say: run, if there is a failure, do it again… because 

you may never finish 
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Move Towards Higher-Level 
Abstraction 

n  Distributed computing challenges are hard and annoying! 
1.  Programmability  
2.  Data distribution 
3.  Failures 

n  High-level abstractions try to simplify distributed programming by 
hiding challenges: 
¨  Provide different levels of robustness to failures, optimizing data 

movement and communication, protect against race conditions… 
¨  Generally, you are still on your own WRT designing parallel algorithms 

n  Some common parallel abstractions: 
¨  Lower-level: 

n  Pthreads: abstraction for distributed threads on single machine 
n  MPI: abstraction for distributed communication in a cluster of computers 

¨  Higher-level: 
n  Map-Reduce (Hadoop: open-source version): mostly data-parallel problems 
n  GraphLab: for graph-structured distributed problems 
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Simplest Type of Parallelism: 
Data Parallel Problems 

n  You have already learned a classifier 
¨  What’s the test error? 

n  You have 10B labeled documents and 1000 machines 

 
n  Problems that can be broken into independent subproblems are 

called data-parallel (or embarrassingly parallel) 
n  Map-Reduce is a great tool for this…  

¨  Focus of today’s lecture 
¨  but first a simple example 
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Solve	
  a	
  huge	
  number	
  of	
  independent	
  subproblems,	
  
e.g.,	
  extract	
  features	
  in	
  images	
  

Counting Words on a Single Processor 

n  (This is the “Hello World!” of Map-Reduce) 
n  Suppose you have 10B documents and 1 machine 
n  You want to count the number of appearances of each word on this 

corpus 
¨  Similar ideas useful, e.g., for building Naïve Bayes classifiers and 

computing TF-IDF 
n  Code: 

©Carlos Guestrin 2013 12 
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Naïve Parallel Word Counting 

n  Simple data parallelism approach: 

n  Merging hash tables: annoying, potentially not parallel è 
no gain from parallelism???  

©Carlos Guestrin 2013 13 

Counting Words in Parallel & 
Merging Hash Tables in Parallel 

n  Generate pairs (word,count) 
n  Merge counts for each word in parallel 

¨  Thus parallel merging hash tables 

©Carlos Guestrin 2013 14 
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Map-Reduce Abstraction 
n  Map:  

¨  Data-parallel over elements, e.g., documents 
¨  Generate (key,value) pairs 

n  “value” can be any data type 

n  Reduce: 
¨  Aggregate values for each key 
¨  Must be commutative-associate operation 
¨  Data-parallel over keys 
¨  Generate (key,value) pairs 
 

 

n  Map-Reduce has long history in functional programming 
¨  But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo! 
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Map Code (Hadoop): Word Count  
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public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {	
    private final static IntWritable one = new IntWritable(1);	
    private Text word = new Text();	
        	
    public void map(LongWritable key, Text value, Context context) throws <stuff> 

	{	
        String line = value.toString();	
        StringTokenizer tokenizer = new StringTokenizer(line);	
        while (tokenizer.hasMoreTokens()) {	
            word.set(tokenizer.nextToken());	
            context.write(word, one);	
        }	
    	}	
 }	
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Reduce Code (Hadoop): Word Count  

public static class Reduce extends Reducer<Text, IntWritable, 
Text, IntWritable> {	
 
    public void reduce(Text key, Iterable<IntWritable> values, 

	 	 	   Context context) 	
      throws IOException, InterruptedException {	
        int sum = 0;	
        for (IntWritable val : values) {	
            sum += val.get();	
        }	
        context.write(key, new IntWritable(sum));	
    }	
 }	
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Map-Reduce Parallel Execution 
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Map-Reduce – Execution Overview 
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Map-Reduce – Robustness to Failures 1: 
Protecting Data: Save To Disk Constantly 
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Distributed File Systems 
n  Saving to disk locally is not enough è If disk or machine fails, all data is lost 
n  Replicate data among multiple machines! 

n  Distributed File System (DFS) 
¨  Write a file anywhere è automatically replicated 
¨  Can read a file anywhere è read from closest copy 

n  If failure, try next closest copy 

n  Common implementations: 
¨  Google File System (GFS) 
¨  Hadoop File System (HDFS) 

n   Important practical considerations: 
¨  Write large files 

n  Many small files è becomes way too slow 

¨  Typically, files can’t be “modified”, just “replaced” è makes robustness much simpler 
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Map-Reduce – Robustness to Failures 2: 
Recovering From Failures: Read from DFS 
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n  Communication 
in initial 
distribution & 
shuffle phase 
“automatic” 
¨  Done by DFS 

n  If failure, don’t 
restart everything 
¨  Otherwise, 

never finish 

n  Only restart Map/
Reduce jobs in 
dead machines 
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Improving Performance: Combiners 

n  Naïve implementation of M-R very wasteful in communication during shuffle: 

n  Combiner: Simple solution, perform reduce locally before communicating  
for global reduce 
¨  Works because reduce is commutative-associative  
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(A few of the) Limitations of Map-Reduce 
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n  Too much synchrony 
¨  E.g., reducers don’t start until all  

mappers are done 

n  “Too much” robustness 
¨  Writing to disk all the time 

n  Not all problems fit in  
Map-Reduce 
¨  E.g., you can’t communicate  

between mappers 

n  Oblivious to structure in data 
¨  E.g., if data is a graph, can be  

much more efficient 
n  For example, no need to shuffle nearly as much 
 

n  Nonetheless, extremely useful; 
industry standard for Big Data 
¨  Though many many companies are moving 

away from Map-Reduce (Hadoop) 
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What you need to know about Map-Reduce 

n  Distributed computing challenges are hard and annoying! 
1.  Programmability  
2.  Data distribution 
3.  Failures 

n  High-level abstractions help a lot! 
n  Data-parallel problems & Map-Reduce 
n  Map: 

¨  Data-parallel transformation of data  
n  Parallel over data points 

n  Reduce: 
¨  Data-parallel aggregation of data 

n  Parallel over keys 

n  Combiner helps reduce communication 
n  Distributed execution of Map-Reduce: 

¨  Map, shuffle, reduce 
¨  Robustness to failure by writing to disk 
¨  Distributed File Systems 

©Carlos Guestrin 2013 25 
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Some Data 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

©2005-2009 Carlos Guestrin 28 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

©2005-2009 Carlos Guestrin 29 

K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. (Thus 
each Center “owns” 
a set of datapoints) 

©2005-2009 Carlos Guestrin 30 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns 
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K-means 

1.  Ask user how many 
clusters they’d like. 
(e.g. k=5)  

2.  Randomly guess k 
cluster Center 
locations 

3.  Each datapoint finds 
out which Center it’s 
closest to. 

4.  Each Center finds 
the centroid of the 
points it owns… 

5.  …and jumps there 

6.  …Repeat until 
terminated! ©2005-2009 Carlos Guestrin 32 
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K-means 

n  Randomly initialize k centers 
¨   µ(0) = µ1

(0),…, µk
(0) 

n  Classify: Assign each point j∈{1,…m} to nearest 
center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨ Equivalent to µi ← average of its points! 
©2005-2009 Carlos Guestrin 33 
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Special case: spherical Gaussians 
Mixtures and hard assignments 

n  If P(Z=i|X) is spherical, with same σ for all classes: 

n  If each xj belongs to one class zj (hard assignment), marginal likelihood: 

n  Same as K-means!!! 

P(z = i | x j )∝ exp − 1
2σ 2 x

j −µi
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Map-Reducing One Iteration of  
K-Means 

n  Classify: Assign each point j∈{1,…m} to nearest center: 
¨    

n  Recenter: µi becomes centroid of its point: 
¨     

¨  Equivalent to µi ← average of its points! 
 

n  Map: 

n  Reduce: 

©2005-2009 Carlos Guestrin 35 
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Classification Step as Map 
n  Classify: Assign each point j∈{1,…m} to nearest center: 

¨    

 
n  Map: 
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Recenter Step as Reduce 
n  Recenter: µi becomes centroid of its point: 

¨     

¨  Equivalent to µi ← average of its points! 

n  Reduce: 
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Some Practical Considerations 

n  K-Means needs an iterative version of Map-
Reduce 
¨ Not standard formulation 

n  Mapper needs to get data point and all centers 
¨ A lot of data! 
¨ Better implementation: mapper gets many data points 

©Carlos Guestrin 2013 38 
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What you need to know about 
Parallel K-Means on Map-Reduce 

n  K-Means = EM for mixtures of spherical 
Gaussians with hard assignments 

n  Map: classification step; data parallel over data 
point 

n  Reduce: recompute means; data parallel over 
centers 
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