
1

1

Finding Similar Documents
Using Nearest Neighbors

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Emily Fox
January 22nd, 2013

©Emily Fox 2013

Case Study 2: Document Retrieval

Nearest Neighbor with KD Trees

2

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013

2

Nearest Neighbor with KD Trees

3

n  Using the distance bound and bounding box of each node:
¨  Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013

n  For (nearly) balanced, binary trees...
n  Construction

¨  Size:
¨  Depth:
¨  Median + send points left right:
¨  Construction time:

n  1-NN query
¨  Traverse down tree to starting point:
¨  Maximum backtrack and traverse:
¨  Complexity range:

n  Under some assumptions on distribution of points, we get
O(logN) but exponential in d (see citations in reading)

4

Complexity

©Emily Fox 2013

3

5

Inspections vs. N and d

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

©Emily Fox 2013

K-NN with KD Trees

6

n  Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

n  Complexity is:

©Emily Fox 2013

4

7 ©Emily Fox 2013

Approximate K-NN with KD Trees

n  Before: Prune when distance to bounding box >
n  Now: Prune when distance to bounding box >
n  Will prune more than allowed, but can guarantee that if we return a neighbor

at distance , then there is no neighbor closer than .
n  In practice this bound is loose…Can be closer to optimal.
n  Saves lots of search time at little cost in quality of nearest neighbor.

r/↵r

Wrapping Up – Important Points

8

kd-trees
n  Tons of variants

¨  On construction of trees (heuristics for splitting, stopping, representing branches…)
¨  Other representational data structures for fast NN search (e.g., ball trees,…)

Nearest Neighbor Search
n  Distance metric and data representation are crucial to answer returned

For both…
n  High dimensional spaces are hard!

¨  Number of kd-tree searches can be exponential in dimension
n  Rule of thumb… N >> 2d… Typically useless.

¨  Distances are sensitive to irrelevant features
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away)
n  Need technique to learn what features are important for your task

©Emily Fox 2013

5

What you need to know

n  Document retrieval task
¨  Document representation (bag of words)
¨  tf-idf

n  Nearest neighbor search
¨  Formulation
¨  Different distance metrics and sensitivity to choice
¨  Challenges with large N

n  kd-trees for nearest neighbor search

¨  Construction of tree
¨  NN search algorithm using tree
¨  Complexity of construction and query
¨  Challenges with large d

©Emily Fox 2013 9

10

Locality-Sensitive Hashing
Hash Kernels
Multi-task Learning

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 24th, 2013

©Carlos Guestrin 2013

6

Using Hashing to Find Neighbors
n  KD-trees are cool, but…

¨  Non-trivial to implement efficiently
¨  Problems with high-dimensional data

n  Approximate neighbor finding…
¨  Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data

n  What if we could use hash functions:
¨  Hash elements into buckets:

¨  Look for neighbors that fall in same bucket as x:

n  But, by design…

©Carlos Guestrin 2013 11

Locality Sensitive Hashing (LSH)

n  A LSH function h satisfies (for example), for
some some similarity function d, for r>0, α>1:
¨ d(x,x’) ≤ r, then P(h(x)=h(x’)) is high
¨ d(x,x’) > α.r, then P(h(x)=h(x’)) is low
¨  (in between, not sure about probability)

©Carlos Guestrin 2013 12

7

Random Projection Illustration

n  Pick a random vector v:
¨  Independent Gaussian coordinates

n  Preserves separability for most vectors
¨  Gets better with more random vectors

©Carlos Guestrin 2013 13

Multiple Random Projections:
Approximating Dot Products

n  Pick m random vectors v(i):
¨  Independent Gaussian coordinates

n  Approximate dot products:
¨  Cheaper, e.g., learn is smaller m dimensional space

n  Only need logarithmic number of dimensions!
¨  N data points, approximate dot-product within ε>0:

n  But all sparsity is lost

©Carlos Guestrin 2013 14

m = O
✓
logN

✏2

◆

8

LSH Example: Sparser Random Projection
for Dot products

n  Pick random vectors v(i)

n  Simple 0/1 projection: hi(x) =

n  Now, each vector is approximated by a bit-vector

n  Dot-product approximation:

©Carlos Guestrin 2013 15

LSH for Approximate Neighbor Finding

n  Very similar elements fall in exactly same bin:

n  And, nearby bins are also nearby:

n  Simple neighbor finding with LSH:
¨  For bins b of increasing hamming distance to h(x):

n  Look for neighbors of x in bin b

¨  Stop when run out of time

n  Pick m such that N/2m is “smallish”

©Carlos Guestrin 2013 16

9

Hash Kernels: Even Sparser LSH for
Learning

n  Two big problems with random projections:
¨  Data is sparse, but random projection can be a lot less sparse
¨  You have to sample m huge random projection vectors

n  And, we still have the problem with new dimensions, e.g., new words

n  Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
n  Pick 2 hash functions:

¨  h : Just like in Min-Count hashing

¨  ξ : Sign hash function
n  Removes the bias found in Min-Count hashing (see homework)

n  Define a “kernel”, a projection ϕ for x:

©Carlos Guestrin 2013 17

Hash Kernels, Random Projections and
Sparsity

n  Hash Kernel as a random projection:

n  Random projection vector for coordinate i of ϕi:

n  Implicitly define projection by h and ξ, so no need to compute a priory and
automatically deal with new dimensions

n  Sparsity of ϕ, if x has s non-zero coordinates:

©Carlos Guestrin 2013 18

�i(x) =
X

j:h(j)=i

⇠(j)xj

10

Hash Kernels Preserve Dot Products

n  Hash kernels provide unbiased estimate of dot-products!

n  Variance decreases as O(1/m)

n  Choosing m? For ε>0, if

¨  Under certain conditions…
¨  Then, with probability at least 1-δ:

©Carlos Guestrin 2013 19

(1� ✏)||x� x

0||22  ||�(x)� �(x0)||22  (1 + ✏)||x� x

0||22

m = O

log

N
�

✏2

!

Learning With Hash Kernels
n  Given hash kernel of dimension m, specified by h and ξ

¨  Learn m dimensional weight vector
n  Observe data point x

¨  Dimension does not need to be specified a priori!
n  Compute ϕ(x):

¨  Initialize ϕ(x)
¨  For non-zero entries j of xj:

n  Use normal update as if observation were ϕ(x), e.g., for LR using SGD:

©Carlos Guestrin 2013 20

w(t+1)
i w(t)

i + ⌘t
n

��w(t)
i + �i(x

(t))[y(t) � P (Y = 1|�(x(t)),w(t))]
o

11

Interesting Application of Hash
Kernels: Multi-Task Learning

n  Personalized click estimation for many users:
¨  One global click prediction vector w:

n  But…
¨  A click prediction vector wu per user u:

n  But…

n  Multi-task learning: Simultaneously solve multiple learning related problems:
¨  Use information from one learning problem to inform the others

n  In our simple example, learn both a global w and one wu per user:
¨  Prediction for user u:

¨  If we know little about user u:

¨  After a lot of data from user u:

©Carlos Guestrin 2013 21

Problems with Simple Multi-Task Learning

n  Dealing with new user annoying, just like dealing with
new words in vocabulary

n  Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger
et al.:
¨  3.2M emails
¨  40M unique tokens in vocabulary
¨  430K users
¨  16T parameters needed for personalized classification!

©Carlos Guestrin 2013 22

12

Hash Kernels for Multi-Task Learning

n  Simple, pretty solution with hash kernels:
¨  Very multi-task learning as (sparse) learning problem with (huge) joint data point z for

point x and user u:

n  Estimating click probability as desired:

n  Address huge dimensionality, new words, and new users using hash kernels:

¨  Desired effect achieved if j includes both
n  just word (for global w)
n  word,user (for personalized wu)

©Carlos Guestrin 2013 23

Simple Trick for Forming Projection ϕ(x,u)

n  Observe data point x for user u
¨  Dimension does not need to be specified a priori and user can be unknown!

n  Compute ϕ(x,u):
¨  Initialize ϕ(x,u)
¨  For non-zero entries j of xj:

n  E.g., j=‘Obamacare’
n  Need two contributions to ϕ:

¨  Global contribution
¨  Personalized Contribution

n  Simply:

n  Learn as usual using ϕ(x,u) instead of ϕ(x) in update function

©Carlos Guestrin 2013 24

13

Results from Weinberger et al. on
Spam Classification: Effect of m

©Carlos Guestrin 2013 25

Results from Weinberger et al. on Spam
Classification: Illustrating Multi-Task Effect

©Carlos Guestrin 2013 26

14

What you need to know
n  Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
n  LSH use random projections

¨  Only O(log N/ε2) vectors needed
¨  But vectors and results are not sparse

n  Use LSH for nearest neighbors by mapping elements into bins
¨  Bin index is defined by bit vector from LSH
¨  Find nearest neighbors by going through bins

n  Hash kernels:
¨  Sparse representation for feature vectors
¨  Very simple, use two hash function

n  Can even use one hash function, and take least significant bit to define ξ

¨  Quickly generate projection ϕ(x)
¨  Learn in projected space

n  Multi-task learning:
¨  Solve many related learning problems simultaneously
¨  Very easy to implement with hash kernels
¨  Significantly improve accuracy in some problems

n  if there is enough data from individual users

©Carlos Guestrin 2013 27

28

Clustering Documents

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Emily Fox
January 24th, 2013

©Emily Fox 2013

Case Study 2: Document Retrieval

15

Document Retrieval

©Emily Fox 2013 29

n  Goal: Retrieve documents of interest
n  Challenges:

¨ Tons of articles out there
¨ How should we measure similarity?

Task 1: Find Similar Documents

©Emily Fox 2013 30

n  So far…
¨  Input: Query article
¨ Output: Set of k similar articles

16

Task 2: Cluster Documents

©Emily Fox 2013 31

n  Now:
¨ Cluster documents based on topic

Document Representation

©Emily Fox 2013 32

n  Bag of words model

document d

17

A Generative Model

©Emily Fox 2013 33

n  Documents:
n  Associated topics:
n  Parameters: ✓ = {⇡,�}

A Generative Model

©Emily Fox 2013 34

n  Documents:
n  Associated topics:
n  Parameters:
n  Generative model:

✓ = {⇡,�}

⇡

�k
zd

wd
i

K

Nd
D

x

1
, . . . , x

D

z1, . . . , zD

18

Form of Likelihood

©Emily Fox 2013 35

n  Conditioned on topic...

n  Marginalizing latent topic assignment:

p(xd | zd,�) =

p(xd | �,⇡) =

Gaussian Mixture Model

©Emily Fox 2013 36

n  Most commonly used mixture model
n  Observations:

n  Parameters:

n  Likelihood:

n  Ex. = country of origin, = height of ith person
¨  kth mixture component = distribution of heights in country k

x

izi

⇡

K

N

zi

x

i

✓k

19

Another Example

©Emily Fox 2013 37

(Taken from Kevin Murphy’s ML textbook)
n  Data: gene expression levels
n  Goal: cluster genes with similar expression trajectories

Mixture models are useful for…

©Emily Fox 2013 38

n  Density estimation
¨ Allows for multimodal density

n  Clustering
¨ Want membership information for each observation

n  e.g., topic of current document
¨ Soft clustering:

¨ Hard clustering:

p(zi = k | xi
, ✓) =

z

i⇤
= argmax

k
p(z

i
= k | xi

, ✓) =

20

Issues

©Emily Fox 2013 39

n  Label switching
¨ Color = label does not matter
¨ Can switch labels and likelihood

is unchanged

n  Log likelihood is not convex in the parameters
¨ No closed form gradient updates
¨ Problem is simpler for “complete data likelihood”

n  More on this next time…

What you need to know

n  Mixture model formulation
¨  Generative model
¨  Likelihood

©Emily Fox 2013 40

