Case Study 2: Document Retrieval

Finding Similar Documents
Using Nearest Neighbors

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Emily Fox
January 22n, 2013

©Emily Fox 2013 1

Nearest Neighbor with KD Trees
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m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor
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Complexity

m For (nearly) balanced, binary trees...
m Construction
O Size: LN -\ - 0(“)
1 Depth: (o
[ Median +c57end poinﬁ?eft right: 0(N> ot -Wh’y e lﬂlb{
-1 Construction time: () ( N{D,j N> CSMA-('U)
m 1-NN query
01 Traverse down tree to starting point: 0 C fog N)
= Maximum backtrack and traverse: ()( IU) worst case_

1 Complexity range: D((Dﬁ N) RN 0(N>

m Under some assumptions on distribution of points, we get

O(logN) but exeonential in d (see citations in reading)
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Inspections vs. N and d
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Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

Complexity is:
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Approximate K-NN with KD Trees
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Before: Prune when distance to bounding box >
Now: Prune when distance to bounding box >
m  Will prune more than allowed, but can guarantee that if we return a neighbor
at distance 77, then there is no neighbor closer than T/a.
In practice this bound is loose...Can be closer to optimal.
Saves lots of search time at little cost in quality of nearest neighbor.
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Wrapping Up — Important Points
" S

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

For both...

m High dimensional spaces are hard!
Number of kd-tree searches can be exponential in dimension
= Rule of thumb... N >>29... Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)
= Need technique to learn what features are important for your task

©Emily Fox 2013 8




What you need to know
* JEE

m Document retrieval task
Document representation (bag of words)
tf-idf
m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree
Complexity of construction and query
Challenges with large d
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Locality-Sensitive Hashing
Hash Kernels
Multi-task Learning
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Using Hashing to Find Neighbors

" JEE
m  KD-trees are cool, but...
Non-trivial to implement efficiently
Problems with high-dimensional data
m Approximate neighbor finding...
Don’t find exact neighbor, but that's OK for many apps, especially with Big Data
m  What if we could use hash functions:
Hash elements into buckets:

Look for neighbors that fall in same bucket as x:

m  But, by design...
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Locality Sensitive Hashing (LSH)
" JEE
m A LSH function h satisfies (for example), for
some some similarity function d, for r>0, a>1:
d(x,x’) <r, then P(h(x)=h(x’)) is high
d(x,x’) > a.r, then P(h(x)=h(x’)) is low
(in between, not sure about probability)
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Random Projection lllustration
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m Pick a random vector v:
Independent Gaussian coordinates

m Preserves separability for most vectors
Gets better with more random vectors
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Multiple Random Projections:
Approximating Dot Products

4

m  Pick m random vectors v(): + . -
Independent Gaussian coordinates + + - =

= Approximate dot products: s, * -
Cheaper, e.g., learn is smaller m dimensional space + - =

m  Only need logarithmic number of dimensions!
N data points, approximate dot-product within €>0:

— (logZN)
€

m But all sparsity is lost
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LSH Example: Sparser Random Projection
for Dot products

Pick random vectors v
Simple 0/1 projection: hy(x) =

Now, each vector is approximated by a bit-vector

Dot-product approximation:
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LSH for Approximate Neighbor Finding
" JEE—

m Very similar elements fall in exactly same bin:

m  And, nearby bins are also nearby:

m Simple neighbor finding with LSH:
For bins b of increasing hamming distance to h(x):
= Look for neighbors of x in bin b

Stop when run out of time

m Pick m such that N/2™ is “smallish”
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Hash Kernels: Even Sparser LSH for

Learninﬁ

Two big problems with random projections:
Data is sparse, but random projection can be a lot less sparse

You have to sample m huge random projection vectors
= And, we still have the problem with new dimensions, e.g., new words

Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections
Pick 2 hash functions:
h: Just like in Min-Count hashing

€ : Sign hash function

= Removes the bias found in Min-Count hashing (see homework)

Define a “kernel”, a projection ¢ for x:
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Hash Kernels, Random Projections and
Sparsity

o
6= > €0)x;
jih(j)=i

m  Hash Kernel as a random projection:

m  Random projection vector for coordinate i of ¢;:

m Implicitly define projection by h and €, so no need to compute a priory and
automatically deal with new dimensions

m  Sparsity of ¢, if x has s non-zero coordinates:
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Hash Kernels Preserve Dot Products
" S

m Hash kernels provide unbiased estimate of dot-products!

m Variance decreases as O(1/m)

m=0

€2

m Choosing m? For >0, if N

Under certain conditions...
Then, with probability at least 1-6:

(1= o)lx — x|z < [lo(x) — o(x)|I2 < (1 +€)|x —x|[3
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Learning With Hash Kernels
" JEE

m  Given hash kernel of dimension m, specified by h and ¢
Learn m dimensional weight vector
m Observe data point x
Dimension does not need to be specified a priori!
m  Compute ¢(x):
Initialize ¢(x)
For non-zero entries j of x;:

m Use normal update as if observation were ¢(x), e.g., for LR using SGD:
™ w4 { Aol + 6y — POV = 1o(x®), w )] |
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Interesting Application of Hash

Kernels: Multi-Task Learning
“
m  Personalized clifzk estir.na.tion for many users:

= But...
A click prediction vector w, per user u:

= But...

m  Multi-task learning: Simultaneously solve multiple learning related problems:
Use information from one learning problem to inform the others

= In our simple example, learn both a global w and one w,, per user:
Prediction for user u:

If we know little about user u:

After a lot of data from user u:
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new words in vocabulary

et al.:
3.2M emails
40M unique tokens in vocabulary
430K users
16T parameters needed for personalized classification!
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m Dealing with new user annoying, just like dealing with

m Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger

Problems with Simple Multi-Task Learning
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Hash Kernels for Multi-Task Learning
" SN

= Simple, pretty solution with hash kernels:

Very multi-task learning as (sparse) learning problem with (huge) joint data point z for
point x and user u:

m  Estimating click probability as desired:

m  Address huge dimensionality, new words, and new users using hash kernels:

Desired effect achieved if j includes both
= just word (for global w)
= word,user (for personalized w,)

©Carlos Guestrin 2013 23

Simple Trick for Forming Projection ¢(x,u)
* JEE—

m Observe data point x for user u
Dimension does not need to be specified a priori and user can be unknown!

m  Compute ¢(x,u):
Initialize ¢(x,u)
For non-zero entries j of x;:
= E.g., j='Obamacare’
= Need two contributions to ¢:
Global contribution
Personalized Contribution

= Simply:

m Learn as usual using ¢(x,u) instead of ¢(x) in update function
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Results from Weinberger et al. on

_ SEam Classification: Effect of m
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error ¢4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%. E
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Results from Weinberger et al. on Spam

Classification: lllustrating Multi-Task Effect
"
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Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
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What you need to know
* JEE

m  Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
LSH use random projections
Only O(log N/g2) vectors needed
But vectors and results are not sparse
m  Use LSH for nearest neighbors by mapping elements into bins
Bin index is defined by bit vector from LSH
Find nearest neighbors by going through bins
m  Hash kernels:
Sparse representation for feature vectors

Very simple, use two hash function
= Can even use one hash function, and take least significant bit to define §

Quickly generate projection ¢(x)
Learn in projected space
m  Multi-task learning:
Solve many related learning problems simultaneously
Very easy to implement with hash kernels

Significantly improve accuracy in some problems
= if there is enough data from individual users
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Document Retrieval
= JEE
m Goal: Retrieve documents of interest

m Challenges:
1 Tons of articles out there
1 How should we measure similarity?
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Task 1: Find Similar Documents
" J—
m So far...
O Input: Query article
"1 Output: Set of k similar articles =)
AL

FIFA WORLD CUP
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Task 2: Cluster Documents
" JEE—
m Now:
1 Cluster documents based on topic

Document Representation
" JEEE
m Bag of words model

E
ll

Irl

document d
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A Generative Model
" J

m Documents:

m Associated topics:

m Parameters: § = {7, 8}
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A Generative Model
" JEE

m Documents: xl,---aZUD

m Associated topics: z!,..., 2"

m Parameters: 0 = {7, 5}

m Generative model:
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Form of Likelihood
S

m Conditioned on topic...
p(xd ’ Zd75) -

m Marginalizing latent topic assignment:

p(z® | B,m) =
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Gaussian Mixture Model

* JEE—
m Most commonly used mixture model

m Observations: |

m Parameters:

9 \ ‘

<« 3

(2

m Likelihood: M

@.

m Ex. 2'= country of origin, " = height of it" person
Kk mixture component = distribution of heights in country k
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Another Example
" JEE
(Taken from Kevin Murphy’s ML textbook)
m Data: gene expression levels
m Goal: cluster genes with similar expression trajectories

yeast microarray data

N
VAN
PPN

o 95 115 135 155 185 205
time
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Mixture models are useful for...
" J—
m Density estimation
Allows for multimodal density

m Clustering

Want membership information for each observation
= e.g., topic of current document

Soft clustering:

p(z' =k|z'0)=

Hard clustering:

2 = arg mgxp(zi = k|2 0) =
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38

19



Issues
" JEE
m Label switching

Color = label does not matter '

Can switch labels and likelihood Y
is unchanged ,

m Log likelihood is not convex in the parameters
No closed form gradient updates
Problem is simpler for “complete data likelihood”

m More on this next time...
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What you need to know
" JEE

m Mixture model formulation

Generative model
Likelihood
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