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Case Study 2: Document Retrieval 

Nearest Neighbor with KD Trees 
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n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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Nearest Neighbor with KD Trees 
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n  Using the distance bound and bounding box of each node: 
¨  Prune parts of the tree that could NOT include the nearest neighbor 
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n  For (nearly) balanced, binary trees... 
n  Construction 

¨  Size: 
¨  Depth:  
¨  Median + send points left right: 
¨  Construction time:  

n  1-NN query 
¨  Traverse down tree to starting point: 
¨  Maximum backtrack and traverse: 
¨  Complexity range: 

n  Under some assumptions on distribution of points, we get 
O(logN) but exponential in d (see citations in reading) 
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Complexity 
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Inspections vs. N and d 

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 150

100

200

300

400

500

600

©Emily Fox 2013 

K-NN with KD Trees 
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n  Exactly the same algorithm, but maintain distance as 
distance to furthest of current k nearest neighbors 

n  Complexity is: 

©Emily Fox 2013 
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Approximate K-NN with KD Trees 

n  Before: Prune when distance to bounding box >  
n  Now: Prune when distance to bounding box >  
n  Will prune more than allowed, but can guarantee that if we return a neighbor 

at distance   , then there is no neighbor closer than         . 
n  In practice this bound is loose…Can be closer to optimal. 
n  Saves lots of search time at little cost in quality of nearest neighbor. 

r/↵r

Wrapping Up – Important Points 
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kd-trees 
n  Tons of variants 

¨  On construction of trees (heuristics for splitting, stopping, representing branches…) 
¨  Other representational data structures for fast NN search (e.g., ball trees,…) 

 
Nearest Neighbor Search 
n  Distance metric and data representation are crucial to answer returned 
 
For both… 
n  High dimensional spaces are hard! 

¨  Number of kd-tree searches can be exponential in dimension 
n  Rule of thumb…  N >> 2d… Typically useless. 

¨  Distances are sensitive to irrelevant features  
n  Most dimensions are just noise à Everything equidistant (i.e., everything is far away) 
n  Need technique to learn what features are important for your task 
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What you need to know 

n  Document retrieval task 
¨  Document representation (bag of words) 
¨  tf-idf 

n  Nearest neighbor search 
¨  Formulation 
¨  Different distance metrics and sensitivity to choice 
¨  Challenges with large N 

n  kd-trees for nearest neighbor search 

¨  Construction of tree 
¨  NN search algorithm using tree 
¨  Complexity of construction and query 
¨  Challenges with large d 

©Emily Fox 2013 9 

10 

Locality-Sensitive Hashing 
Hash Kernels  
Multi-task Learning 

Machine Learning/Statistics for Big Data  
CSE599C1/STAT592, University of Washington 

Carlos Guestrin 
January 24th, 2013 

©Carlos Guestrin 2013 



6 

Using Hashing to Find Neighbors 
n  KD-trees are cool, but… 

¨  Non-trivial to implement efficiently 
¨  Problems with high-dimensional data 

n  Approximate neighbor finding… 
¨  Don’t find exact neighbor, but that’s OK for many apps, especially with Big Data 

n  What if we could use hash functions: 
¨  Hash elements into buckets: 

¨  Look for neighbors that fall in same bucket as x: 

n  But, by design… 
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Locality Sensitive Hashing (LSH) 

n  A LSH function h satisfies (for example), for 
some some similarity function d, for r>0, α>1: 
¨ d(x,x’) ≤ r, then P(h(x)=h(x’)) is high 
¨ d(x,x’) > α.r, then P(h(x)=h(x’)) is low 
¨  (in between, not sure about probability) 

©Carlos Guestrin 2013 12 
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Random Projection Illustration 

n  Pick a random vector v: 
¨  Independent Gaussian coordinates 

n  Preserves separability for most vectors 
¨  Gets better with more random vectors 

©Carlos Guestrin 2013 13 

Multiple Random Projections: 
Approximating Dot Products 

n  Pick m random vectors v(i): 
¨  Independent Gaussian coordinates 

n  Approximate dot products: 
¨  Cheaper, e.g., learn is smaller m dimensional space 

n  Only need logarithmic number of dimensions! 
¨  N data points, approximate dot-product within ε>0: 

n  But all sparsity is lost 
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m = O
✓
logN
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LSH Example: Sparser Random Projection 
for Dot products 

n  Pick random vectors v(i) 

n  Simple 0/1 projection: hi(x) =  

n  Now, each vector is approximated by a bit-vector 

n  Dot-product approximation: 

©Carlos Guestrin 2013 15 

LSH for Approximate Neighbor Finding 

n  Very similar elements fall in exactly same bin: 

n  And, nearby bins are also nearby: 

n  Simple neighbor finding with LSH: 
¨  For bins b of increasing hamming distance to h(x): 

n  Look for neighbors of x in bin b 

¨  Stop when run out of time 

n  Pick m such that N/2m is “smallish” 

©Carlos Guestrin 2013 16 
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Hash Kernels: Even Sparser LSH for 
Learning 

n  Two big problems with random projections: 
¨  Data is sparse, but random projection can be a lot less sparse 
¨  You have to sample m huge random projection vectors 

n  And, we still have the problem with new dimensions, e.g., new words 

n  Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections 
n  Pick 2 hash functions: 

¨  h :  Just like in Min-Count hashing 

¨  ξ : Sign hash function 
n  Removes the bias found in Min-Count hashing (see homework) 

n  Define a “kernel”, a projection ϕ for x:  

©Carlos Guestrin 2013 17 

Hash Kernels, Random Projections and 
Sparsity 

n  Hash Kernel as a random projection: 

n  Random projection vector for coordinate i of ϕi: 

n  Implicitly define projection by h and ξ, so no need to compute a priory and 
automatically deal with new dimensions 

n  Sparsity of ϕ, if x has s non-zero coordinates: 

©Carlos Guestrin 2013 18 
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Hash Kernels Preserve Dot Products 

n  Hash kernels provide unbiased estimate of dot-products! 

n  Variance decreases as O(1/m) 

n  Choosing m?  For ε>0, if 

¨  Under certain conditions… 
¨  Then, with probability at least 1-δ: 
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Learning With Hash Kernels 
n  Given hash kernel of dimension m, specified by h and ξ 

¨  Learn m dimensional weight vector 
n  Observe data point x  

¨  Dimension does not need to be specified a priori! 
n  Compute ϕ(x): 

¨  Initialize ϕ(x) 
¨  For non-zero entries j of xj: 

n  Use normal update as if observation were ϕ(x), e.g., for LR using SGD:  

©Carlos Guestrin 2013 20 
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Interesting Application of Hash 
Kernels: Multi-Task Learning 

n  Personalized click estimation for many users: 
¨  One global click prediction vector w: 

n  But… 
¨  A click prediction vector wu per user u: 

n  But… 

n  Multi-task learning: Simultaneously solve multiple learning related problems: 
¨  Use information from one learning problem to inform the others 

n  In our simple example, learn both a global w and one wu per user: 
¨  Prediction for user u: 

¨  If we know little about user u: 

¨  After a lot of data from user u:  

©Carlos Guestrin 2013 21 

Problems with Simple Multi-Task Learning 

n  Dealing with new user annoying, just like dealing with 
new words in vocabulary 

n  Dimensionality of joint parameter space is HUGE, e.g. 
personalized email spam classification from Weinberger 
et al.: 
¨  3.2M emails 
¨  40M unique tokens in vocabulary 
¨  430K users 
¨  16T parameters needed for personalized classification! 

©Carlos Guestrin 2013 22 
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Hash Kernels for Multi-Task Learning 

n  Simple, pretty solution with hash kernels: 
¨  Very multi-task learning as (sparse) learning problem with (huge) joint data point z for 

point x and user u: 

n  Estimating click probability as desired: 

n  Address huge dimensionality, new words, and new users using hash kernels: 

¨  Desired effect achieved if j includes both  
n  just word (for global w)  
n  word,user (for personalized wu) 

©Carlos Guestrin 2013 23 

Simple Trick for Forming Projection ϕ(x,u) 

n  Observe data point x for user u 
¨  Dimension does not need to be specified a priori and user can be unknown! 

n  Compute ϕ(x,u): 
¨  Initialize ϕ(x,u) 
¨  For non-zero entries j of xj: 

n  E.g., j=‘Obamacare’ 
n  Need two contributions to ϕ: 

¨  Global contribution 
¨  Personalized Contribution 

n  Simply: 

 

n  Learn as usual using ϕ(x,u) instead of ϕ(x) in update function 

©Carlos Guestrin 2013 24 
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Results from Weinberger et al. on 
Spam Classification: Effect of m 

©Carlos Guestrin 2013 25 

Results from Weinberger et al. on Spam 
Classification: Illustrating Multi-Task Effect 

©Carlos Guestrin 2013 26 
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What you need to know 
n  Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins 
n  LSH use random projections 

¨  Only O(log N/ε2) vectors needed 
¨  But vectors and results are not sparse 

n  Use LSH for nearest neighbors by mapping elements into bins 
¨  Bin index is defined by bit vector from LSH 
¨  Find nearest neighbors by going through bins 

n  Hash kernels: 
¨  Sparse representation for feature vectors 
¨  Very simple, use two hash function 

n  Can even use one hash function, and take least significant bit to define ξ 

¨  Quickly generate projection ϕ(x) 
¨  Learn in projected space 

n  Multi-task learning: 
¨  Solve many related learning problems simultaneously 
¨  Very easy to implement with hash kernels 
¨  Significantly improve accuracy in some problems  

n  if there is enough data from individual users 
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Case Study 2: Document Retrieval 
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Document Retrieval 

©Emily Fox 2013 29 

n  Goal: Retrieve documents of interest  
n  Challenges:  

¨ Tons of articles out there 
¨ How should we measure similarity? 

Task 1: Find Similar Documents 

©Emily Fox 2013 30 

n  So far… 
¨  Input: Query article  
¨ Output: Set of k similar articles 
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Task 2: Cluster Documents 

©Emily Fox 2013 31 

n  Now: 
¨ Cluster documents based on topic 

Document Representation 

©Emily Fox 2013 32 

n  Bag of words model 

document d 



17 

A Generative Model 

©Emily Fox 2013 33 

n  Documents: 
n  Associated topics:  
n  Parameters: ✓ = {⇡,�}

A Generative Model 

©Emily Fox 2013 34 

n  Documents: 
n  Associated topics:   
n  Parameters: 
n  Generative model: 

✓ = {⇡,�}
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Form of Likelihood 
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n  Conditioned on topic... 

n  Marginalizing latent topic assignment: 

p(xd | zd,�) =

p(xd | �,⇡) =

Gaussian Mixture Model 
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n  Most commonly used mixture model 
n  Observations: 

n  Parameters: 

n  Likelihood: 

n  Ex.      = country of origin,      = height of ith person 
¨  kth mixture component = distribution of heights in country k 

x

izi

⇡

K

N

zi

x

i

✓k
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Another Example 
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(Taken from Kevin Murphy’s ML textbook) 
n  Data: gene expression levels 
n  Goal: cluster genes with similar expression trajectories 

 

Mixture models are useful for… 
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n  Density estimation 
¨ Allows for multimodal density 

n  Clustering 
¨ Want membership information for each observation 

n  e.g., topic of current document 
¨ Soft clustering: 

¨ Hard clustering: 

p(zi = k | xi
, ✓) =

z

i⇤
= argmax

k
p(z

i
= k | xi

, ✓) =
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Issues  

©Emily Fox 2013 39 

n  Label switching 
¨ Color = label does not matter 
¨ Can switch labels and likelihood 

is unchanged 
 

n  Log likelihood is not convex in the parameters 
¨ No closed form gradient updates 
¨ Problem is simpler for “complete data likelihood” 

 
n  More on this next time… 

What you need to know 

n  Mixture model formulation 
¨  Generative model 
¨  Likelihood 
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