Case Study 2: Document Retrieval

Finding Similar Documents
Using Nearest Neighbors
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Nearest Neighbor with KD Trees
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m Using the distance bound and bounding box of each node:
Prune parts of the tree that could NOT include the nearest neighbor
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Nearest Neighbor with KD Trees

m Using the distance bound and bounding box of each node:
1 Prune parts of the tree that could NOT include the nearest neighbor
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Complexity

m For (nearly) balanced, binary trees...
m Construction
O Size: LN -\ - 0(“)
1 Depth: (o
[ Median +c57end poinﬁ?eft right: 0(N> ot -Wh’y e lﬂlb{
-1 Construction time: () ( N{DJN> E CSMA-('U)
m 1-NN query
01 Traverse down tree to starting point: 0 C fog N)
= Maximum backtrack and traverse: ()( IU) worst case_

1 Complexity range: D((Dﬁ N) RN 0(N>

m Under some assumptions on distribution of points, we get

O(logN) but exeonential in d (see citations in reading)
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K-NN with KD Trees
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m Exactly the same algorithm, but maintain distance as
distance to furthest of current k nearest neighbors

= Complexity is: () k [0‘3 N)

©Emily Fox 2013




Approximate K-NN with KD Trees
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Before: Prune when distance to bounding box > o7/
Now: Prune when distance to bounding box > /

m  Will prune more than allowed, but can guarantee that if we return a neighbor
at distance 77, then there is no neighbor closer than T/a.

In practice this bound is loose...Can be closer to optimal.
Saves lots of search time at little cost in quality of nearest neighbor.
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Wrapping Up — Important Points
" S

kd-trees

m Tons of variants
On construction of trees (heuristics for splitting, stopping, representing branches...)
Other representational data structures for fast NN search (e.g., ball trees,...)

Nearest Neighbor Search
m Distance metric and data representation are crucial to answer returned

‘ﬁ( For both... (!
m High dimensional spaces are hard! ,M'qﬂ,

Number of kd-tree searches can be exponential in dimension
= Rule of thumb... N >>29... Typically useless.

Distances are sensitive to irrelevant features
= Most dimensions are just noise - Everything equidistant (i.e., everything is far away)

= Need technigue to learn what features are important for your task
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What you need to know
* JEE

m Document retrieval task
Document representation (bag of words)
tf-idf
m Nearest neighbor search
Formulation
Different distance metrics and sensitivity to choice
Challenges with large N

m kd-trees for nearest neighbor search
Construction of tree
NN search algorithm using tree
Complexity of construction and query
Challenges with large d
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Locality-Sensitive Hashing
Hash Kernels
Multi-task Learning

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
January 24, 2013

©Carlos Guestrin 2013 10




Using Hashing to Find Neighbors
" JEE
m  KD-trees are cool, but...
Non-trivial to implement efficiently
Problems with hjgh-dimensional data
m Approximate neighbor finding...

Don’t find exact neighbor, but that's OK for many apps, especially with Big Data
What if we could use hash functions: .’x —
. hash functions: 1 > {,, S

Hash elements into buckets; ,
WG b{‘l () hy)
T T 17

Look for neighbors that fall in same bucket as x:

IN'\PR o for Y e TEAKY=1] (ool fir Aiqhbors Hha
= But, bydgsign... l‘\(’)ﬂ): [\(7('):\/- -V-)('
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Locality Sensitive Hashing (LSH) ...,

d(x,x’) < r, then P(h(x)=h(x")) is high —_, -
d(x,x’) > a.r, then P(h(x)=h(x’)) is low /&)
(in between, not sure about probabilityﬁé@
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Random Projection lllustration
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m Pick a random vector v: L
0 Independent Gaussian coordinates + + 4+ -~
ik
Vv, A2 I\J(o,\) Ve o

m Preserves separability for most vectors
[ Gets better with more random vectors
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Multiple Random Projections:

Aﬁﬁroximatinﬁ Dot Products

viy
m  Pick m random vectors v(: (&)d : Vh) A +
m| Independent Gaussuan cwprdlnateso;

Prypcha vechag i (¥ N (o))
m  Approximate dot products: x| . B
1 Cheaper, e.g., Iearn is smaII?r m%mensno al spac =
y‘j o~ _L d&)- g (v %) (v 4]

OnIy need Iogarlthmlc number of dlmenS|ons'
1 N data points, approximate dot-product within £>0:
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m But all sparsity is lost
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LSH Example: Spa{ser Random Projection

wih  hih f"s
$ir (49) = Sign & V)

h (V ‘3)1" § ?,[Vx) (L“’/’

Pick rande vectrs_yﬁ)/\/ M"-“ {. Sif)” (\,r-).)() >/ 0
Simple 0/1 projection: hy(x) = { b

O ;4 s,'j.., (\J‘l\d <6

Now, each vector is approxmated by a bit-vector

6(4)= (0.0,1,0, 1,0 ,1,0)
m Dot-product approximatio_n:.
XY = (e Oy X HammingDistance(o(a), o(y) _ , _,lld(x) — o)}
i ) " "
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LSH for Approximate Neighbor Finding

JSmikh /(A finit)

L ave——————
)

m Very S|mc|bla\r]elements fall in exactly same bin: é‘)S alb
b % 1 b
T( fearn &.J\,("'V §~b int . JX l?‘)'\\'sg ) L’“ - ﬁ' (‘”
(1) cd -~ Z
T A TLe 27 5 177D el (é(x\ 09)
m  And, nearby bins are also nearby: ~
N erms of L‘"‘"“") offlbu- P) \l‘ Y Sonms Lin

= Simple neighbor finding with LSH: hed
01 For bins_b of increasing hamming distance to h (x):

= Look for neighbors of x in bin ¢ bys'i'
Wy inTTh) | compute M,j) k“P
[ Stop when run out of time
. . . ( -‘_\ rftn d)‘u.\
m Pick m such that N/2™ is “smallish”
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Hash Kernels: Even Sparser LSH for

Learninﬁ
yb)

= Two big problems with random projections: ‘/ T lhﬁjt vechns with {Oh
parse

1 Data is sparse, but random projection can be a lot less s i
o You have to sample m huge random projection vectors |
= And, we still have the problem with new dimensions, e.g., new words
m  Hash Kernels: Very simple, but powerful idea: combine sketchmg for learning with random projections
m  Pick 2 hash functions: L\ X -
1 h: Justlike in Min-Count hashing

l' 'm

[ & : Sign hash function i ' )( - {+‘: - ?

-
= Removes the bias found in Min-Count hashing (see homework) 4) 1\ -

m Define a “kernel”, aprolectl n ¢ for x:
fo tach non-2ow <L\F«+Jq»< hm—; Ji
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Hash Kernels, Random Projections and
Sparsity

_
pi(x) = > £()x

j:h(j)=1 1\(,“-) T I ICEY

u Hash Kernel as a random prolectlon . W ,
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= Random pro;ectlon vector foF coordinate i of o
V( ‘\ S‘lL) %lro no 2“’ k“'“ vf“ {.\l -|l
N ) ll()):‘
= Implicitly define projection by h and &, so no need to compute a priory and
automatically deal with new dimensions

m  Sparsity of ¢, if x has s non-zero coordm&gf. 7 o«u at “C\)
des wvany s s Y “fhew VP i
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-gly = Vet =279
Hash Kernels Preserve Dot Products
" S
m Hash kernels provide unbiased estimate of dot-products!
( -
G, (06019 . * k
]')roel : 7 Lo»\&mr

{4 Mace ding
m Variance decreases as O(1/m) £~ 7«4'5 L‘#" i

m Choosing m? For >0, if (1 NT %9 10 c\b\ 2
0g 5

m=0 5
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€

Under certain conditions...
Then, with probability at least 1-6:

(1= o)lx — x|z < [lo(x) — o(x)|I2 < (1 +€)|x —x|[3
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Learning With Hash Kernels
" JEE
m Given hash kernel of dimension m, specified by hand F, ¢&)
Learn m dimensional weight vector
m Observe data point x
Dimension does not need to be specified a priori!
m  Compute ¢(x):
Initialize ¢(x) = < 0 ) Z oW h('ow')7 . )=
For non-zero entries j of x;: Jr d) N X
q 42 {0 R
(PMQ + ( ) ’() 7
m Use normal update as if observation were ¢(x), e.g., for LR using SGD:
w™V e wf? n { w4 g (O - PV = 1), w)] |
\f\__\/ \*x\_’~—\)

vy exp(d(x®) - wh)
P(Y = 1Jo(x!"), w) = T (o) - W)
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Interesting Application of Hash
Kernels: Multi-Task Learning exp(x-w)

" JEE
oLt exp(x - w)
m  Personalized click estimation for many users: .
One global click prediction vector w: 'llv($l' C‘,' Wi '\") WX

o PUpl 7 wnige
A click prediction vector w,, per user u:
prdict it A

- But. ?(oph ave la

m  Multi-task learning: Simultaneously solve multiple learning related problems:
Use information from one learning problem to inform the others

= In our simple example, learn both a global w and one w,, per user:
e —

Prediction for user u: (\'\) "'W“)X - \'\/-X + W.,. 'X

If we know little about user u: y\s‘q‘[\‘] [V S
After a lot of data from user u: \5‘,7 Wi l.\/,,\ ay :Jm.. v!.c‘fo.
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Problems with Simple Multi-Task Learning
" JEE—

m Dealing with new user annoying, just like dealing with
new words in vocabulary

m Dimensionality of joint parameter space is HUGE, e.g.
personalized email spam classification from Weinberger
et al.:

3.2M emails

40M unique tokens in vocabulary

430K users

1 P‘_‘I’ parameters needed for personalized classification!
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Hash Kernels for Multi-Task Learning
" JEEE———

= Simple, pretty solution with hash kernels:
Very multi-task learning as (sparse) learning problem with (huge) joint data point z for

point x and user u: — x# wgees Am KT

m  Estimating click probability as desired- ( “) y
& o~ (Wit :
w:(w,w.,,‘.,w,,lm‘,,’w} . 'ZUM,L) - wX ¥ WaX =

m  Address huge dimensionality, new words, and new users using hash kernels:

O () ok e bt o
p=7 10%
Desired effect achieved if j includes both \\\Q\"

= just word (for global w)

= word,user (for personalized @.)
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Simple Trick for Forming Projection ¢(x,u)
" J

m Observe data point x for user u adv
Dimension does not need to be specified a priori and user can be ankmown!
m  Compute ¢(x,u):
Initialize ¢(x,u) = ©
For non-zero entries j of x;:
= E.g., j='Obamacare’ .
= Need two contributions to ¢: (pk('“’wu“) +Z { (le-qu’) )(\
Global contribution —
Personalized Contribution

= Simply: w213 o oy I?’) 7(
@k('()‘)wu,g\wl')r‘) +Z i(()‘)bnlu it )

m Learn as usual using ¢(x,u) instead of ¢(x) in update function
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Results from Weinberger et al. on

_ SEam Classification: Effect of m
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Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error ¢4 vanishes. The personal-
ized classifier results in an average improvement of up to 30%. E
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Results from Weinberger et al. on Spam

Classification: lllustrating Multi-Task Effect
"
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Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.
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What you need to know
o

Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
LSH use random projections
Only O(log N/g2) vectors needed
But vectors and results are not sparse
m  Use LSH for nearest neighbors by mapping elements into bins
Bin index is defined by bit vector from LSH
Find nearest neighbors by going through bins
m  Hash kernels:
Sparse representation for feature vectors
Very simple, use two hash function
= Can even use one hash function, and take least significant bit to define §
Quickly generate projection ¢(x)
Learn in projected space

m  Multi-task learning:
Solve many related learning problems simultaneously
Very easy to implement with hash kernels

Significantly improve accuracy in some problems
= if there is enough data from individual users
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