Case Study 2: Document Retrieval

Finding Similar Documents Using Nearest Neighbors

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington
Emily Fox
January 22nd, 2013

©Emily Fox 2013

Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

©Emily Fox 2013
Nearest Neighbor with KD Trees

- Using the distance bound and bounding box of each node:
 - Prune parts of the tree that could NOT include the nearest neighbor

Complexity

- For (nearly) balanced, binary trees...
 - Construction
 - Size: $2N - 1 \rightarrow O(N)$
 - Depth: $O(\log N)$
 - Median + send points left right: $O(N)$ at every tree level
 - Construction time: $O(N \log N) \leftarrow$ (smart)
 - 1-NN query
 - Traverse down tree to starting point: $O(\log N)$
 - Maximum backtrack and traverse: $O(N)$ worst case
 - Complexity range: $O(\log N) \rightarrow O(N)$

- Under some assumptions on distribution of points, we get $O(\log N)$ but exponential in d (see citations in reading)
Inspections vs. N and d

- \(\log N \)
- \(\text{Exponential} \)

\[(x^i \in \mathbb{R}^d) \]

K-NN with KD Trees

- Exactly the same algorithm, but maintain distance as distance to furthest of current k nearest neighbors
- Complexity is: \(\mathcal{O}(k \log N) \)
Approximate K-NN with KD Trees

- Before: Prune when distance to bounding box > \(r \)
- Now: Prune when distance to bounding box > \(\frac{r}{\alpha} \)
- Will prune more than allowed, but can guarantee that if we return a neighbor at distance \(r \), then there is no neighbor closer than \(\frac{r}{\alpha} \).
- In practice this bound is loose...Can be closer to optimal.
- Saves lots of search time at little cost in quality of nearest neighbor.

Wrapping Up – Important Points

- kd-trees
 - Tons of variants
 - On construction of trees (heuristics for splitting, stopping, representing branches...)
 - Other representational data structures for fast NN search (e.g., ball trees,...)

- Nearest Neighbor Search
 - Distance metric and data representation are crucial to answer returned

- For both...
 - High dimensional spaces are hard!
 - Large \(d \)
 - Number of kd-tree searches can be exponential in dimension
 - Rule of thumb... \(N \gg 2^d \)... Typically useless.
 - Distances are sensitive to irrelevant features
 - Most dimensions are just noise → Everything equidistant (i.e., everything is far away)
 - Need technique to learn what features are important for your task
What you need to know

- Document retrieval task
 - Document representation (bag of words)
 - tf-idf
- Nearest neighbor search
 - Formulation
 - Different distance metrics and sensitivity to choice
 - Challenges with large N
- kd-trees for nearest neighbor search
 - Construction of tree
 - NN search algorithm using tree
 - Complexity of construction and query
 - Challenges with large d
Using Hashing to Find Neighbors

- KD-trees are cool, but...
 - Non-trivial to implement efficiently
 - Problems with high-dimensional data
- Approximate neighbor finding...
 - Don't find exact neighbor, but that's OK for many apps, especially with Big Data
- What if we could use hash functions:
 - Hash elements into buckets:
 - Look for neighbors that fall in same bucket as \(x \):
 - But, by design...

Locality Sensitive Hashing (LSH)

- A LSH function \(h \) satisfies (for example), for some some similarity function \(d \), for \(r > 0 \), \(\alpha > 1 \):
 - \(d(x, x') \leq r \), then \(P(h(x) = h(x')) \) is high
 - \(d(x, x') > \alpha r \), then \(P(h(x) = h(x')) \) is low
 - (in between, not sure about probability)

©Carlos Guestrin 2013
Random Projection Illustration

- Pick a random vector \(v \):
 - Independent Gaussian coordinates
 - Preserves separability for most vectors
 - Gets better with more random vectors

Multiple Random Projections: Approximating Dot Products

- Pick \(m \) random vectors \(v^{(i)} \):
 - Independent Gaussian coordinates
 - Approximate dot products:
 - Cheaper, e.g., learn in smaller \(m \) dimensional space
 - Only need logarithmic number of dimensions!
 - \(N \) data points, approximate dot-product within \(\epsilon > 0 \):
 \[
 m = O\left(\frac{\log N}{\epsilon^2} \right)
 \]
 if \(N \) is big, \(m \) is small, but only need \(\log N \) random vectors

- But all sparsity is lost
LSH Example: Sparser Random Projection for Dot products

- Pick random vectors \mathbf{v}^i
- Simple 0/1 projection: $h_i(x) = \begin{cases} 1 & \text{if } \text{sign}(\mathbf{v}^i \cdot \mathbf{x}) \geq 0 \\ 0 & \text{if } \text{sign}(\mathbf{v}^i \cdot \mathbf{x}) < 0 \end{cases}$
- Now, each vector is approximated by a bit-vector $\phi(x) = (0, 0, 1, 0, 1, 1, 1, 0)$
- Dot-product approximation:

$$\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} \approx 1 - 2 \frac{\text{HammingDistance}(\phi(x), \phi(y))}{m} = 1 - 2 \frac{\|\phi(x) - \phi(y)\|_2^2}{m}$$

LSH for Approximate Neighbor Finding

- Very similar elements fall in exactly same bin:
- And, nearby bins are also nearby:
- Simple neighbor finding with LSH:
 - For bins b of increasing hamming distance to $h(x)$:
 - Look for neighbors of x in bin b
 - Stop when run out of time
- Pick m such that $N/2^m$ is “smallish”
Hash Kernels: Even Sparser LSH for Learning

- Two big problems with random projections:
 - Data is sparse, but random projection can be a lot less sparse
 - You have to sample many huge random projection vectors
 - And, we still have the problem with new dimensions, e.g., new words

- Hash Kernels: Very simple, but powerful idea: combine sketching for learning with random projections

- Pick 2 hash functions:
 - \(h \): Just like in Min-Count hashing
 - \(\xi \): Sign hash function
 - Removes the bias found in Min-Count hashing (see homework)

- Define a "kernel", a projection \(\phi \) for \(x \):
 - for each non-zero element \(x_j \)
 - add bin \(h(j) \)
 - \(x_j \) contributes \(h(j) \)

\[
\phi(x) = \sum_{j: h(j) = i} \xi(j) x_j
\]

Hash Kernels, Random Projections and Sparsity

- Hash Kernel as a random projection:
 - \(\psi = (0 0 0 1 0 0 0) \) has \(h(\cdot) = \) (1 0 0 0 1 0 0 1)
 - \(\phi(x) = \sum \xi(j) x_j \)

- Random projection vector for coordinate \(i \) of \(\psi \):
 - mostly zero
 - non-zero for \(j: h(j) = i \)

- Implicitly define projection by \(h \) and \(\xi \), so no need to compute a priori and automatically deal with new dimensions

- Sparsity of \(\psi \), if \(x \) has \(s \) non-zero coordinates:
 - how many times does \(y_j \) "show up" in \(\psi(x) \) one!
 - \(h(j) \)
 - thus if sparsity of \(x \leq s \), sparsity of \(\psi(x) \)
Hash Kernels Preserve Dot Products

- Hash kernels provide unbiased estimate of dot-products!
 \[E_{h,i} [\phi(x) \cdot \phi(y)] = x \cdot y \]
 proof: by homework
- Variance decreases as \(O(1/m)\) gets better with more dims
- Choosing \(m\)? For \(\epsilon > 0\), if
 \[m = O\left(\frac{\log N}{\epsilon^2}\right) \]

Under certain conditions...
Then, with probability at least 1-\(\delta\):
\[
(1 - \epsilon)||x - x'||_2^2 \leq ||\phi(x) - \phi(x')||_2^2 \leq (1 + \epsilon)||x - x'||_2^2
\]

Learning With Hash Kernels

- Given hash kernel of dimension \(m\), specified by \(h\) and \(\xi\)
 - Learn \(m\) dimensional weight vector
- Observe data point \(x\)
 - Dimension does not need to be specified a priori!
- Compute \(\phi(x)\):
 - Initialize \(\phi(x)\)
 - For non-zero entries \(j\) of \(x_j\):
 \[
 \phi_{h,j} = \{ (j) : x_j \}
 \]
 - E.g., \(j = h(u) \cdot \xi, \{ (u) = -1 \}
 \[\phi_x = x \cdot w \]
- Use normal update as if observation were \(\phi(x)\), e.g., for LR using SGD:
 \[
 w_i^{t+1} \leftarrow w_i^t + \eta_t \left\{ -\lambda w_i^t + \phi_i(x^{(t)})[y^{(t)} - P(Y = 1|\phi(x^{(t)}), w^{(t)})] \right\}
 \]
 \[
 P(Y = 1|\phi(x^{(t)}), w^{(t)}) = \frac{\exp(\phi(x^{(t)}) \cdot w^{(t)})}{1 + \exp(\phi(x^{(t)}) \cdot w^{(t)})}
 \]
Interesting Application of Hash Kernels: Multi-Task Learning

Personalized click estimation for many users:
- One global click prediction vector w: predict using $w \cdot x$
 - But... people are unique
- A click prediction vector w_u per user u: predict with $w_u \cdot x$
 - But... people are lazy

Multi-task learning: Simultaneously solve multiple learning related problems:
- Use information from one learning problem to inform the others

In our simple example, learn both a global w and one w_u per user:
- Prediction for user u: $(w + w_u) \cdot x = w \cdot x + w_u \cdot x$
 - If we know little about user u: usually $w \cdot x$
 - After a lot of data from user u: using $w + w_u$ as your vector

Problems with Simple Multi-Task Learning

- Dealing with new user annoying, just like dealing with new words in vocabulary

- Dimensionality of joint parameter space is HUGE, e.g. personalized email spam classification from Weinberger et al.:
 - 3.2M emails
 - 40M unique tokens in vocabulary
 - 430K users
 - 16T parameters needed for personalized classification!
Hash Kernels for Multi-Task Learning

- Simple, pretty solution with hash kernels:
 - Very multi-task learning as (sparse) learning problem with (huge) joint data point \(z \) for point \(x \) and user \(u \):
 \[
 z_{(x,u)} = (x_1, \ldots, x_k, u_1, \ldots, u_m)
 \]
 - Estimating click probability as desired:
 \[
 w = (w_1, w_2, \ldots, w_k, w_{k+1}, \ldots, w_{k+m})
 \]
 \[
 z_{(w)} = w \cdot x + w_{k+1} u
 \]
 - Address huge dimensionality, new words, and new users using hash kernels:
 \[
 \phi(x, u) \text{ just like with hash kernels}
 \]
 \[
 \phi = \sum_{i} \{ (i) x_j \}
 \]
 - Desired effect achieved if \(j \) includes both
 - just word (for global \(w \))
 - word, user (for personalized \(w_{k+1} \))

Simple Trick for Forming Projection \(\phi(x, u) \)

- Observe data point \(x \) for user \(u \)
 - Dimension does not need to be specified a priori and user can be unknown!
- Compute \(\phi(x, u) \):
 - Initialize \(\phi(x, u) = 0 \)
 - For non-zero entries \(j \) of \(x \):
 - E.g., \(j = \text{'Obamacare'} \)
 - Need two contributions to \(\phi \):
 - Global contribution
 - Personalized Contribution
 - Simply:
 \[
 \phi_h^{(x_{Obamacare})} \quad \phi_h^{(x_{Obamacare} - u_x B)}
 \]
 - Learn as usual using \(\phi(x, u) \) instead of \(\phi(x) \) in update function
Results from Weinberger et al. on Spam Classification: Effect of m

Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error ϵ_d vanishes. The personalized classifier results in an average improvement of up to 30%.

Results from Weinberger et al. on Spam Classification: Illustrating Multi-Task Effect

Figure 3. Results for users clustered by training emails. For example, the bucket $[8,15]$ consists of all users with eight to fifteen training emails. Although users in buckets with large amounts of training data do benefit more from the personalized classifier (up to 65% reduction in spam), even users that did not contribute to the training corpus at all obtain almost 20% spam-reduction.
What you need to know

- Locality-Sensitive Hashing (LSH): nearby points hash to the same or nearby bins
 - LSH use random projections
 - Only $O(\log N/\varepsilon^2)$ vectors needed
 - But vectors and results are not sparse
 - Use LSH for nearest neighbors by mapping elements into bins
 - Bin index is defined by bit vector from LSH
 - Find nearest neighbors by going through bins

- Hash kernels:
 - Sparse representation for feature vectors
 - Very simple, use two hash function
 - Can even use one hash function, and take least significant bit to define ξ
 - Quickly generate projection $\phi(x)$
 - Learn in projected space

- Multi-task learning:
 - Solve many related learning problems simultaneously
 - Very easy to implement with hash kernels
 - Significantly improve accuracy in some problems
 - If there is enough data from individual users