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Case Study 1: Estimating Click Probabilities 

Ad Placement Strategies 

n  Companies bid on ad prices 

n  Which ad wins? (many simplifications here) 
¨  Naively:  

¨  But: 

¨  Instead: 
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Key Task: Estimating Click Probabilities 

n  What is the probability that user i will click on ad j 

n  Not important just for ads: 
¨ Optimize search results 
¨ Suggest news articles 
¨ Recommend products 

n  Methods much more general, useful for: 
¨ Classification 
¨ Regression  
¨ Density estimation 
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Learning Problem for Click Prediction 

n  Prediction task: 
 
n  Features: 

 
 
 
n  Data: 

¨  Batch: 
 
 
¨  Online: 

 
n  Many approaches (e.g., logistic regression, SVMs, naïve Bayes, decision 

trees, boosting,…) 
¨  Focus on logistic regression; captures main concepts, ideas generalize to other approaches 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨ Assume a particular functional form 
¨ Sigmoid applied to a linear function 

of the data: 

Z 

Features can be discrete or continuous! 
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Understanding the sigmoid 
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Logistic Regression –  
a Linear classifier 
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Very convenient! 

implies 
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Digression: Logistic regression for 
more than 2 classes 

n  Logistic regression in more general case (k+1 classes), 
where Y in {y1,…,yR} 
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Digression: Logistic regression more 
generally 

n  Logistic regression in more general case, where  
Y in {y1,…,yR} 

 for k<R 
 
 
 

 for k=R (normalization, so no weights for this class) 
 
 
 

Features can be discrete or continuous! 
10 ©Carlos Guestrin 2013 



6 

Loss function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 

11 ©Carlos Guestrin 2013 

Expressing Conditional Log Likelihood 
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`(w) =
X

j

yj lnP (Y = 1|xj ,w) + (1� yj) lnP (Y = 0|xj ,w)
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Maximizing Conditional Log Likelihood 

Good news: l(w) is concave function of w, no local optima 
problems 

Bad news: no closed-form solution to maximize l(w) 

Good news: concave functions easy to optimize 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent much better (see reading) 

Gradient: 

Step size, η>0 

Update rule: 
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Maximize Conditional Log Likelihood: 
Gradient ascent 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,n,  

 

 

repeat    
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Test set error as a function of 
model complexity 
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Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 
n  Leads to overfitting: 

n  Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
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`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22



11 

21 

Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Stopping criterion 

n  Regularized logistic regression is strongly concave 
¨  Negative second derivative bounded away from zero: 

n  Strong concavity (convexity) is super helpful!! 

n  For example, for strongly concave l(w): 
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`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

`(w⇤)� `(w)  1
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||r`(w)||22



12 

Convergence rates for gradient 
descent/ascent 

n  Number of Iterations to get to accuracy 

n  If func Lipschitz: O(1/ϵ2) 

n  If gradient of func Lipschitz: O(1/ϵ) 

n  If func is strongly convex: O(ln(1/ϵ)) 
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`(w⇤)� `(w)  ✏

What you should know about Logistic 
Regression (LR) and Click Prediction 

n  Click prediction problem: 
¨  Estimate probability of clicking 
¨  Can be modeled as logistic regression 

n  Logistic regression model: Linear model 
n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Convergence rates and stopping criterion 
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