Case Study 1: Estimating Click Probabilities

Intro

Logistic Regression
Gradient Descent

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
January 8, 2013

©Carlos Guestrin 2013 1

Ad Placement Strategies

m Companies bid on ad prices

| WhICh ad WInS7 (many simplifications here)
Naively:

But:

Instead:
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Key Task: Estimating Click Probabilities
* JEEE
m \What is the probability that user i will click on ad j

m Not important just for ads:
Optimize search results
Suggest news articles
Recommend products

m Methods much more general, useful for:
Classification
Regression
Density estimation
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Learning Problem for Click Prediction
"

m  Prediction task:

m Features:

m Data:
Batch:

Online:

m  Many approaches (e.g., logistic regression, SVMs, naive Bayes, decision
trees, boosting,...)
Focus on logistic regression; captures main concepts, ideas generalize to other approaches
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Logistic 1

. . . function ———
Logistic Regression  (rsigmoia: 2=
" . -
m Learn P(Y|X) directly -

Assume a particular functional form ..

Sigmoid applied to a linear function .

of the data: o2

1 L
PO =0lx,w) = 1+ exp(wo + X5 wiX;) ‘

Features can be d@!s‘gr(e.gog or continuous!

Understanding the sigmoid
" JEE

1
1 4 ewot2; wiz;

g(wo + sz’xi) =

Wo=-2, W,=-1 w,=0, w,=-1 w,=0, w,=-0.5
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Logistic Regression—
a Linear classifier T+ eap(—2)
" :

.......

g(wo + Zwixz‘) =

Very convenient!

o 1
P(Y=0|X =< Xq,..Xn>) =
| " 1+ exp(wg + X; w; X;)

implies
exp(wgo + X; w; X;)

P(Y =1 | X =< X1,..Xpn>) =
( | 1 n>) 1+ exp(wg + > w; X;)

implies
P(Y =1|X)
o — oy = exp(wo + ) wiX;)
P =01X) z’: o linear
classification
implies 1 rule!
P(Y =1|X)
nN—————= = X -
Py =o|x) Mo 2w
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Digression: Logistic regression for
_ more than 2 classes
N

m Logistic regression in more general case (k+1 classes),
where Y in {y,,...,Yg}

Digression: Logistic regression more

generally
" JEE—

m Logistic regression in more general case, where

Yin{y,....yg}
for k<R . X

1+ 20 exp(wjo + X wjiXy)

for k=R (normalization, so no weights for this class)
1

P(Y = ygl|X) = —
1+ >0 exp(w)o + Xy wyiX;)

Features can be discrete or continuous!




Loss function: Conditional Likelihood
" S

m Have a bunch of iid data of the form:

m  Discriminative (logistic regression) loss function:
Conditional Data Likelihood

N
In P(Dy | Dx,w) = Y InP(y’ | x/,w)
i=1
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Expressing Conditional Log Likelihood
" S 0O e

I(w) =Y In P/ |x), w) PO = 1%, w) = P00+ T wi X))
j ’ 1+ exp(wo + X; w; X;)

lw) = Zyj ImP(Y =1]x/,w)+ (1 — /) In P(Y = 0|x’, w)
J
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Maximizing Conditional Log Likelihood
- 70 T

P(Y = X, W) = exp(wo + X; w; X;)

(w) = InJ]PH =7, w) 1+ eap(wo + £ wiX)
J
= > y/(wo+ > wizl) — In(1 + exp(wo + > _ w;z)))
J i i

Good news: I(w) is concave function of w, no local optima
problems

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize
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Optimizing concave function —

. (i‘rﬁgiﬁnt ascent

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol(w) ol(w)

*

Gradient: Vwl(w) = |

]/

8'11)0 ’ 8wn

Update rule: Aw — nvwl(W)
(t+1) ) , Ol(w)
) () n 8wi
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)
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Maximize Conditional Log Likelihood:
Gradient ascent

J

(w) = Yy (wo+ Y wia]) = In(L + eap(wo + Y wia)))

Gradient Ascent for LR
= JEEE

Gradient ascent algorithm: iterate until change < ¢
w(()t-l—l) . w(()t) +nY Y — P(YI =1 x7 W]
J

Fori=1,..., n,

WD D 4yl P = 10
J

repeat
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Test set error as a function of
m | complexit
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Regularization in linear regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg minz (t(xj) - Zwﬂz;(xﬂ) + A Zw,z
7 3 i=1
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Large parameters — Overfitting
- |

1 1 1

14e 7 14 e 22 1 4 ¢—100z

m If data is linearly separable, weights go to infinity
m Leads to overfitting:

m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" JEE—

= Add regularization penalty, e.g., L,:

lnHP %7, w)) — N |w||?

m Practical note about wy:

m Gradient of regularized likelihood:
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Standard v. Regularized Updates
" I

m Maximum conditional likelihood estimate

N
- J | xJ
w* = argmaxin |J1:[1P(y |x,w)]

wi(t—}-l) - wi(t) +0> 2y — Py =1 x/, w)]
J

m Regularized maximum conditional likelihood estimate

Hp<ijj,w>>] A w?

J >0

w* = argmaxIn
w

’wZ(H_l) — wi(t)+77 {_szgt) + ng [yj - p(yj =1 Xjﬂ%]}
J
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Stopping criterion
" JEE—
fw) =In ] [ PG/, w) = Allwli;

m Regularized logistic regression is strongly concave
Negative second derivative bounded away from zero:

m Strong concavity (convexity) is super helpfull!
m For example, for strongly concave /(w):
. 1
Uw™) = U(w) < o [[VEW)I2
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Convergence rates for gradient

__descent/ascent
I
m Number of Iterations to get to accuracy

l(w*) —l(w) <€

m If func Lipschitz: O(1/€?)
m [f gradient of func Lipschitz: O(1/e)

m [f func is strongly convex: O(In(1/€))

What you should know about Logistic

. Reﬁression ‘LR: and Click Prediction

m Click prediction problem:
Estimate probability of clicking
Can be modeled as logistic regression

m Logistic regression model: Linear model
m Optimize conditional likelihood

m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Convergence rates and stopping criterion
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