Case Study 1: Estimating Click Probabilities

L2 Regularization for
Logistic Regression

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
January 10t, 2013

Logistic 1
. . . function ——
Logistic Regression (ersigmoia: 1+ (')
"] S
m Learn P(Y|X) directly 10\

Assume a particular functional form |z..

Sigmoid applied to a linear function
of the data:

logit(x)

1 et 7577//// 0
1+ exp(wo + X wiXs) § - z @

I P(Y =0|X,W) =

/
liakay y(mh"fon of 7“"*[“}"‘(1

W, +?w;) .y
to-lA by Njﬂ-kw

Features can be dIS cre '50% or continuous!

Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

ol ol
Gradient: Vwl(w) = | (W), ey (w)
Oowg Own,

]/

T

S
s
N oo
N SO
N
N S ‘\ ““‘ “‘
SEass

N

Update rule: Aw — nvwl(W)

(t+1) @ , . OUw)
w; —w; "+ n—/—
7 2 awZ
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)

—

©Carlos Guestrin 2013 3

Gradient Ascent for LR
= JEE

Gradient ascent algorithm:,iterate until change < e |

bt ol
Fhit “\lev

w(()t—i—l) . w(()t) + "Z[yj —P(Y) =1 |xI,W)]
J

For i=1,...,[7k

WD D 4yl P = 10
J

repeat

©Carlos Guestrin 2013 4

Test set error as a function of
m | complexit

Wﬂﬂ I

»fAJ"' Lore

low W‘(A:u.‘ ‘ﬂ«:ﬂ’d‘f
e o
J M’(u«m. lvl,j\{'(

Regularization in linear regression
" JEE——

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

|

m Regularized least-squares (a.k.a. ridge regression), for A>0:

2 k
w* = arg Hi‘llnz (t(xj) - Z'lUj}"Li(x]‘)> +)\Zw?
j i i=1

©Carlos Guestrin 2013 6

Linear Separability

Iﬁj}l]
=k =
Iﬁ]}l =]
+ & ¥ _ -
+ 4L °F - _
lﬁj}l]]

©Carlos Guestrin 2013 7

Large parameters — Overfitting
] : .

1 1 1
14+e = 14 e 22 1 4 ¢—100z

m [f data is linearly separable, weights go to infinity
m Leads to overfitting:

m Penalizing high weights can prevent overfitting...

©Carlos Guestrin 2013 8

Regularized Conditional Log Likelihood

" JEE
= Add regularization penalty, e.g., L,:

IHHP 77, w)) = Allwl[3

m Practical note about wy:

m Gradient of regularized likelihood:

©Carlos Guestrin 2013 9

Standard v. Regularized Updates
" JEEE—

m Maximum conditional likelihood estimate

N
w* = argmaxIn |JH Py’ | x7, w)‘|

1

wi D O 4 Sy — Py =1 %, W]
J

m Regularized maximum conditional likelihood estimate

w”* = arg maxIn lH P(ijj,w))] -)\wa

J i>0

w§t+1) _ wi(t)‘i‘?? {_)‘wz(t) + sz[y] _ f)(Yj =1 ‘ xj,VSB]}
J

©Carlos Guestrin 2013 10

Stopping criterion
- _
mHP %7, w)) — N |w]|2
m Regularized logistic regression is strongly concave

Negative second derivative bounded away from zero:

m Strong concavity (convexity) is super helpful!!

m For example, for strongly concave /(w):

t(w?) = l(w)_2/\IIW(w3

©Carlos Guestrin 2013 1

Convergence rates for gradient

descent/ascent
" S

m Number of Iterations to get to accuracy
((w*) —Lb(w) < e

m If func Lipschitz: O(1/€2)
m If gradient of func Lipschitz: O(1/e)

m If func is strongly convex: O(In(1/g))

©Carlos Guestrin 2013 12

What you should know about Logistic

_ Reﬁression ‘LR: and Click Prediction

m Click prediction problem:
Estimate probability of clicking
Can be modeled as logistic regression

m Logistic regression model: Linear model
m Optimize conditional likelihood

m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Convergence rates and stopping criterion

Case Study 1: Estimating Click Probabilities

Online Learning

Perceptron Algorithm
Kernels

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
January 10t, 2013

©Carlos Guestrin 2013 14

Challenge 1: Complexity of Computing
Gradients

w4y {—Awi(t) +Y 2l - P(yI=1|x ,v%]}
J

©Carlos Guestrin 2013 15

Challenge 2: Data is streaming
“

m Assumption thus far: Batch data

m But, click prediction is a streaming data task:

User enters query, and ad must be selected:
= Observe xj, and must predict yi

User either clicks or doesn’t click on ad:
= Label yi is revealed afterwards
Google gets a reward if user clicks on ad

Weights must be updated for next time:

©Carlos Guestrin 2013 16

Online Learning Problem
* JEE
m At each time step t:
Observe features of data point:

= Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course

Make a prediction:

= Note: many models are possible, we focus on linear models
= For simplicity, use vector notation

Observe true label:

= Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details
beyond scope of course

Update model:

©Carlos Guestrin 2013 17

The Perceptron Algorithm s
" S
m Classification setting: y in {-1,+1}

m Linear model
Prediction:

m Training:
Initialize weight vector:
At each time step:
s Observe features:
= Make prediction:
= Observe true class:

= Update model:
If prediction is not equal to truth

©Carlos Guestrin 2013 18

Mistake Bounds
= JEE

m Algorithm “pays” every time it makes a mistake:

m How many mistakes is it going to make?

Linear Separability: More formally, Using Margin

“ J L
=k =
ds =
+4}.+ _-
=
+ . -
I =

m Data linearly separable, if there exists
a vector
a margin

m Such that

©Carlos Guestrin 2013

10

Perceptron Analysis: Linearly Separable Case
" JEE

m Theorem [Block, Novikoff]:
Given a sequence of labeled examples:

Each feature vector has bounded norm:

If dataset is linearly separable:

m Then the number of mistakes made by the online perceptron on this sequence is
bounded by

©Carlos Guestrin 2013 21

Perceptron Proof for Linearly Separable case
* JEE—
m Every time we make a mistake, we get gamma closer to w’:
Mistake at time t: wt*!) = w® + yO xO

Taking dot product with w':
Thus after k mistakes:

= Similarly, norm of w(t*") doesn’t grow too fast:
[lw DI = [[w]2 4 25O (w - xO) 4 [1x 02

Thus, after k mistakes:

m Putting all together:

©Carlos Guestrin 2013 22

11

Beyond Linearly Separable Case
* JEE

m Perceptron algorithm is super cool!
No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's

done for ever! + -
= Even if you see infinite data + + =
Constant cost per iteration + -
= Converges in O(1/e) + o+ -
. + + B
m However, real world not linearly separable 4 4 - -

Can’t expect never to make mistakes again
Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire
from Readings

Converges, but ultimately may not give good
accuracy (make many many many mistakes)

©Carlos Guestrin 2013 23

What if the data is not linearly separable?
= JEE
Use features of features

. _of features of features....
- o
P & ¢ - ¢(X) . R —> F
+ 4 . + _ - :

Feature space can get really large really quickly!,

12

Higher order polynomials
"

number of monomial terms

num. terms :(

d

| d=4
/
/]
/
/
/
/ 4
// 4 d=3
B /// . /’
] d=2

number of input dimensions

©Carlos Guestrin 2013

d+m—1) _ (d+m—1)!

d'(m—1)!

m — input features
d — degree of polynomial

grows fast!
d=6,m=100
about 1.6 billion terms

25

Perceptron Revisited

m Given weight vector wl, predict point x by:

Mistake at time t: wt*!) = w(t) + y(®) x(®)

Thus, write weight vector in terms of mistaken data points only:
Let M® be time steps up to t when mistakes were made:

Prediction rule now:

When using high dimensional features:

©Carlos Guestrin 2013

26

13

Dot-product of polynomials
* JEE
d(u) - ¢(v) = polynomials of degree exactly d

Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)

m Kernelized Perceptron prediction for x:

sign(w(t) co(x)) = Z QS(X(i)) - (%)

ieM ()

= Z k(x® x)

ieM ()

14

Polynomial kernels
* JEE—

m All monomials of degree d in O(d) operations:
P(u)d(v) = (u-v)d = polynomials of degree exactlyd

m How about all monomials of degree up to d?
Solution 0:

Better solution:

©Carlos Guestrin 2013 29

Common kernels
* JEE——
m Polynomials of degree exactly d
K(u,v) = (u-v)*
m Polynomials of degree up to d
K(u,v) = (u-v+ 1)4

m Gaussian (squared exponential) kernel
K(u,v) =exp (—HHQ;QVH)
m Sigmoid o

K(u,v) = tanh(qgu-v 4+ v)

©Carlos Guestrin 2013 30

Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?
* JEE
m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???

m Last one?

©Carlos Guestrin 2013 31

Choice can make a huge difference!!
" JEE—

10 -
random (unnorm) ——
s last (unnorm) -----
8 . avg (unnorm) - .
™ vote
6
4 e
...... ¥ o
2 et
0 1 L
0.1 1 10

Epoch

[Freund & Schapire '99]

©Carlos Guestrin 2013 32

16

What you need to know
* JEE
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels
m In online learning, report averaged weights at the end

17

