

Optimizing concave function – Gradient ascent

Conditional likelihood for Logistic Regression is concave. Find optimum with gradient ascent

Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = [\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}]'$$

Update rule: $\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} \overline{l(\mathbf{w})}$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i}$$

- Gradient ascent is simplest of optimization approaches
 - □ e.g., Conjugate gradient ascent much better (see reading)

©Carlos Guestrin 2013

Gradient Ascent for LR

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_{j} [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,
$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

©Carlos Guestrin 201

Regularization in linear regression

- Overfitting usually leads to very large parameter choices, e.g.:
 - -2.2 + 3.1 X 0.30 X²
- $-1.1 + 4,700,910.7 X 8,585,638.4 X^2 + ...$

■ Regularized least-squares (a.k.a. ridge regression), for λ >0:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{j} \left(t(\mathbf{x}_j) - \sum_{i} w_i h_i(\mathbf{x}_j) \right)^2 + \lambda \sum_{i=1}^{k} w_i^2$$

©Carlos Guestrin 2013

Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L₂:

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

- Practical note about w₀:
- Gradient of regularized likelihood:

©Carlos Guestrin 201

Standard v. Regularized Updates

Maximum conditional likelihood estimate

$$\begin{aligned} \mathbf{w}^* &= \arg\max_{\mathbf{w}} \ln \left[\prod_{j=1}^N P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right] \\ w_i^{(t+1)} &\leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \end{aligned}$$

Regularized maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j} P(y^j | \mathbf{x}^j, \mathbf{w})) \right] - \lambda \sum_{i>0} w_i^2$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\lambda w_i^{(t)} + \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

.

Stopping criterion

$$\ell(\mathbf{w}) = \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})) - \lambda ||\mathbf{w}||_{2}^{2}$$

- Regularized logistic regression is strongly concave
 - □ Negative second derivative bounded away from zero:
- Strong concavity (convexity) is super helpful!!
- For example, for strongly concave *l*(**w**):

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \frac{1}{2\lambda} ||\nabla \ell(\mathbf{w})||_2^2$$

©Carlos Guestrin 2013

11

Convergence rates for gradient descent/ascent

Number of Iterations to get to accuracy

$$\ell(\mathbf{w}^*) - \ell(\mathbf{w}) \le \epsilon$$

- If func Lipschitz: $O(1/\epsilon^2)$
- If gradient of func Lipschitz: O(1/ε)
- If func is strongly convex: O(ln(1/є))

©Carlos Guestrin 2013

What you should know about Logistic Regression (LR) and Click Prediction

- Click prediction problem:
 - □ Estimate probability of clicking
 - ☐ Can be modeled as logistic regression
- Logistic regression model: Linear model
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Convergence rates and stopping criterion

©Carlos Guestrin 2013

13

Case Study 1: Estimating Click Probabilities

Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin January 10th, 2013

©Carlos Guestrin 2013

Challenge 1: Complexity of Computing Gradients

©Carlos Guestrin 2013

15

Challenge 2: Data is streaming

- Assumption thus far: Batch data
- But, click prediction is a streaming data task:
 - ☐ User enters query, and ad must be selected:
 - Observe x^j, and must predict y^j
 - ☐ User either clicks or doesn't click on ad:
 - Label y^j is revealed afterwards
 - □ Google gets a reward if user clicks on ad
 - □ Weights must be updated for next time:

©Carlos Guestrin 2013

Online Learning Problem

- At each time step t:
 - □ Observe features of data point:
 - Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course

□ Make a prediction:

- Note: many models are possible, we focus on linear models
 For simplicity, use vector notation

□ Observe true label:

- Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version... Details beyond scope of course
- □ Update model:

©Carlos Guestrin 2013

The Perceptron Algorithm [Rosenblatt '58, '62]

- Classification setting: y in {-1,+1}
- Linear model
 - □ Prediction:
- Training:
 - Initialize weight vector:
 - At each time step:
 - Observe features:
 - Make prediction:
 - Observe true class:
 - Update model:
 - If prediction is not equal to truth

Mistake Bounds

Algorithm "pays" every time it makes a mistake:

How many mistakes is it going to make?

©Carlos Guestrin 2013

Perceptron Analysis: Linearly Separable Case

- Theorem [Block, Novikoff]:
 - ☐ Given a sequence of labeled examples:
 - □ Each feature vector has bounded norm:
 - □ If dataset is linearly separable:
- Then the number of mistakes made by the online perceptron on this sequence is bounded by

©Carlos Guestrin 2013

21

Perceptron Proof for Linearly Separable case

- Every time we make a mistake, we get gamma closer to w*:
 - □ Mistake at time t: $w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)}$
 - □ Taking dot product with w*:
 - □ Thus after k mistakes:
- Similarly, norm of w^(t+1) doesn't grow too fast:
 - $||\mathbf{w}^{(t+1)}||^2 = ||\mathbf{w}^{(t)}||^2 + 2y^{(t)}(\mathbf{w}^{(t)} \cdot \mathbf{x}^{(t)}) + ||\mathbf{x}^{(t)}||^2$
 - ☐ Thus, after k mistakes:
- Putting all together:

©Carlos Guestrin 2013

--

Beyond Linearly Separable Case

- Perceptron algorithm is super cool!
 - □ No assumption about data distribution!
 - Could be generated by an oblivious adversary, no need to be iid
 - Makes a fixed number of mistakes, and it's done for ever!
 - Even if you see infinite data
 - □ Constant cost per iteration
 - Converges in O(1/ε)

- □ Can't expect never to make mistakes again
- Analysis extends to non-linearly separable case
- □ Very similar bound, see Freund & Schapire from Readings
- Converges, but ultimately may not give good accuracy (make many many many mistakes)

©Carlos Guestrin 2013

23

What if the data is not linearly separable?

Use features of features of features of features....

$$\Phi(\mathbf{x}): R^m \mapsto F$$

Feature space can get really large really quickly!

Higher order polynomials

m - input features d - degree of polynomial

grows fast! d = 6, m = 100about 1.6 billion terms

©Carlos Guestrin 2013

Perceptron Revisited

- Given weight vector w^(t), predict point **x** by:
- Mistake at time *t*: $w^{(t+1)} = w^{(t)} + y^{(t)} x^{(t)}$
- Thus, write weight vector in terms of mistaken data points only:
 - \Box Let M^(t) be time steps up to *t* when mistakes were made:
- Prediction rule now:
- When using high dimensional features:

Dot-product of polynomials

 $\Phi(\mathrm{u})\cdot\Phi(\mathrm{v})=$ polynomials of degree exactly d

©Carlos Guestrin 2013

27

Finally the Kernel Trick!!! (Kernelized Perceptron

- Every time you make a mistake, remember (x^(t),y^(t))
- Kernelized Perceptron prediction for x:

$$\operatorname{sign}(\mathbf{w}^{(t)} \cdot \phi(\mathbf{x})) = \sum_{i \in M^{(t)}} \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x})$$
$$= \sum_{i \in M^{(t)}} k(\mathbf{x}^{(i)}, \mathbf{x})$$

©Carlos Guestrin 2013

Polynomial kernels

■ All monomials of degree d in O(d) operations:

 $\Phi(\mathbf{u})\cdot\Phi(\mathbf{v})=(\mathbf{u}\cdot\mathbf{v})^d=$ polynomials of degree exactly d

- How about all monomials of degree up to d?
 - □ Solution 0:
 - ☐ Better solution:

29

Common kernels

Polynomials of degree exactly d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian (squared exponential) kernel

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

©Carlos Guestrin 2013

Fundamental Practical Problem for All Online Learning Methods: Which weight vector to report?

- - Suppose you run online learning method and want to sell your learned weight vector... Which one do you sell???
 - Last one?

©Carlos Guestrin 2013

What you need to know

- 1
- Notion of online learning
- Perceptron algorithm
- Mistake bounds and proofs
- The kernel trick
- Kernelized Perceptron
- Derive polynomial kernel
- Common kernels
- In online learning, report averaged weights at the end

©Carlos Guestrin 201