
1

1

L2 Regularization for
Logistic Regression

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 10th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

Logistic Regression
Logistic
function
(or Sigmoid):

n  Learn P(Y|X) directly
¨ Assume a particular functional form
¨ Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
2 ©Carlos Guestrin 2013

2

Optimizing concave function –
Gradient ascent

n  Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent

n  Gradient ascent is simplest of optimization approaches
¨  e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Step size, η>0

Update rule:

3 ©Carlos Guestrin 2013

Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε	

 For i=1,…,n,

repeat

4 ©Carlos Guestrin 2013

(t)

(t)

3

Test set error as a function of
model complexity

5 ©Carlos Guestrin 2013

Regularization in linear regression

n  Overfitting usually leads to very large parameter choices, e.g.:

n  Regularized least-squares (a.k.a. ridge regression), for λ>0:

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + …

6 ©Carlos Guestrin 2013

4

©Carlos Guestrin 2013 7

Linear Separability

8

Large parameters → Overfitting

n  If data is linearly separable, weights go to infinity
n  Leads to overfitting:

n  Penalizing high weights can prevent overfitting…
©Carlos Guestrin 2013

5

Regularized Conditional Log Likelihood

n  Add regularization penalty, e.g., L2:

n  Practical note about w0:

n  Gradient of regularized likelihood:

©Carlos Guestrin 2013 9

`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

10

Standard v. Regularized Updates

n  Maximum conditional likelihood estimate

n  Regularized maximum conditional likelihood estimate

©Carlos Guestrin 2013

(t)

(t)

w

⇤
= argmax

w
ln

2

4
Y

j

P (yj |xj ,w))

3

5� �
X

i>0

w2
i

6

Stopping criterion

n  Regularized logistic regression is strongly concave
¨  Negative second derivative bounded away from zero:

n  Strong concavity (convexity) is super helpful!!

n  For example, for strongly concave l(w):

©Carlos Guestrin 2013 11

`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

`(w⇤)� `(w)  1

2�
||r`(w)||22

Convergence rates for gradient
descent/ascent

n  Number of Iterations to get to accuracy

n  If func Lipschitz: O(1/ϵ2)

n  If gradient of func Lipschitz: O(1/ϵ)

n  If func is strongly convex: O(ln(1/ϵ))

©Carlos Guestrin 2013 12

`(w⇤)� `(w)  ✏

7

What you should know about Logistic
Regression (LR) and Click Prediction

n  Click prediction problem:
¨  Estimate probability of clicking
¨  Can be modeled as logistic regression

n  Logistic regression model: Linear model
n  Optimize conditional likelihood
n  Gradient computation
n  Overfitting
n  Regularization
n  Regularized optimization
n  Convergence rates and stopping criterion

13 ©Carlos Guestrin 2013

14

Online Learning
Perceptron Algorithm
Kernels

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Carlos Guestrin
January 10th, 2013

©Carlos Guestrin 2013

Case Study 1: Estimating Click Probabilities

8

Challenge 1: Complexity of Computing
Gradients

©Carlos Guestrin 2013 15

(t)

Challenge 2: Data is streaming

n  Assumption thus far: Batch data

n  But, click prediction is a streaming data task:
¨  User enters query, and ad must be selected:

n  Observe xj, and must predict yj

¨  User either clicks or doesn’t click on ad:
n  Label yj is revealed afterwards

¨  Google gets a reward if user clicks on ad

¨  Weights must be updated for next time:

©Carlos Guestrin 2013 16

9

Online Learning Problem

n  At each time step t:
¨  Observe features of data point:

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course

¨  Make a prediction:
n  Note: many models are possible, we focus on linear models
n  For simplicity, use vector notation

¨  Observe true label:
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details

beyond scope of course

¨  Update model:

©Carlos Guestrin 2013 17

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]
n  Classification setting: y in {-1,+1}
n  Linear model

¨  Prediction:

n  Training:
¨  Initialize weight vector:
¨  At each time step:

n  Observe features:
n  Make prediction:
n  Observe true class:

n  Update model:
¨  If prediction is not equal to truth

©Carlos Guestrin 2013 18

10

Mistake Bounds

n  Algorithm “pays” every time it makes a mistake:

n  How many mistakes is it going to make?

©Carlos Guestrin 2013 19

©Carlos Guestrin 2013 20

Linear Separability: More formally, Using Margin

n  Data linearly separable, if there exists
¨ a vector
¨ a margin

n  Such that

11

Perceptron Analysis: Linearly Separable Case

n  Theorem [Block, Novikoff]:
¨  Given a sequence of labeled examples:

¨  Each feature vector has bounded norm:

¨  If dataset is linearly separable:

n  Then the number of mistakes made by the online perceptron on this sequence is
bounded by

©Carlos Guestrin 2013 21

Perceptron Proof for Linearly Separable case

n  Every time we make a mistake, we get gamma closer to w*:
¨  Mistake at time t: w(t+1) = w(t) + y(t) x(t)
¨  Taking dot product with w*:
¨  Thus after k mistakes:

n  Similarly, norm of w(t+1) doesn’t grow too fast:
¨ 

¨  Thus, after k mistakes:

n  Putting all together:

©Carlos Guestrin 2013 22

||w(t+1)||2 = ||w(t)||2 + 2y(t)(w(t) · x(t)) + ||x(t)||2

12

Beyond Linearly Separable Case
n  Perceptron algorithm is super cool!

¨  No assumption about data distribution!
n  Could be generated by an oblivious adversary,

no need to be iid
¨  Makes a fixed number of mistakes, and it’s

done for ever!
n  Even if you see infinite data

¨  Constant cost per iteration
n  Converges in O(1/ϵ)

n  However, real world not linearly separable
¨  Can’t expect never to make mistakes again
¨  Analysis extends to non-linearly separable

case
¨  Very similar bound, see Freund & Schapire

from Readings
¨  Converges, but ultimately may not give good

accuracy (make many many many mistakes)

©Carlos Guestrin 2013 23

©Carlos Guestrin 2013 24

What if the data is not linearly separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

13

©Carlos Guestrin 2013 25

Higher order polynomials

number of input dimensions

nu
m

be
r o

f m
on

om
ia

l t
er

m
s

d=2

d=4

d=3

m – input features
d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms

Perceptron Revisited
n  Given weight vector w(t), predict point x by:

n  Mistake at time t: w(t+1) = w(t) + y(t) x(t)

n  Thus, write weight vector in terms of mistaken data points only:
¨  Let M(t) be time steps up to t when mistakes were made:

n  Prediction rule now:

n  When using high dimensional features:

©Carlos Guestrin 2013 26

14

©Carlos Guestrin 2013 27

Dot-product of polynomials

exactly d

Finally the Kernel Trick!!!
(Kernelized Perceptron

n  Every time you make a mistake, remember (x(t),y(t))

n  Kernelized Perceptron prediction for x:

©Carlos Guestrin 2013 28

sign(w(t) · �(x)) =
X

i2M(t)

�(x(i)) · �(x)

=
X

i2M(t)

k(x(i),x)

15

©Carlos Guestrin 2013 29

Polynomial kernels

n  All monomials of degree d in O(d) operations:

n  How about all monomials of degree up to d?
¨ Solution 0:

¨ Better solution:

exactly d

©Carlos Guestrin 2013 30

Common kernels

n  Polynomials of degree exactly d

n  Polynomials of degree up to d

n  Gaussian (squared exponential) kernel

n  Sigmoid

16

Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?

n  Suppose you run online learning method and want to sell
your learned weight vector… Which one do you sell???

n  Last one?

n 

n 

n 

©Carlos Guestrin 2013 31

Choice can make a huge difference!!

©Carlos Guestrin 2013 32

[Freund & Schapire ’99]

17

©Carlos Guestrin 2013 33

What you need to know

n  Notion of online learning
n  Perceptron algorithm
n  Mistake bounds and proofs
n  The kernel trick
n  Kernelized Perceptron
n  Derive polynomial kernel
n  Common kernels
n  In online learning, report averaged weights at the end

