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Optimizing concave function —
radient nt

m Conditional likelihood for Logistic Regression is concave. Find
optimum with gradient ascent
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m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent much better (see reading)
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Gradient Ascent for LR
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Test set error as a function of
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Regularization in linear regression

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...
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m Regularized least-squares (a.k.a. ridge regression), for X>0:
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Linear Separability
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Large parameters — Overfitting
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m [f data is linearly separable, weights go to infinity
m Leads to overfitting: -
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m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood

" JEEE reqube i,
= Add regularization penalty, e.g., L,: S
e fw) = In [ PG/ w)i = Allwl3
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m Practical note about wy:
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m Gradient of regularized likelihood: )\
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Standard v. Regularized Updates
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m Maximum conditional likelihood estimate
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m Regularized maximum conditional likelihood estimate
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Stopping criterion o ¥ 5

"
t(w) = 1nHP(yj\Xj,W)) = Afwl[3

m Regularized logistic regression is strongly concave
Negative second derivative bounded away from zero:
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m Strong concavity (convexity) is super helpful!!
m For example, for strongly concave /(w): ot )\MO“Q"A
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Convergence rates for gradient

_ descent/ascent
o
m Number of Iterations to get to accuracy

(w*) —l(w) < e

m If func Lipschitz: O(1/e2)
) 2w -2yl s K -9

m If gradient of func Lipschitz: O(1/e) Cpstit
m If func is strongly convex: O(In(1/€))
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What you should know about Logistic

_ Reﬁression ‘LR: and Click Prediction

m Click prediction problem:
Estimate probability of clicking
Can be modeled as logistic regression

m Logistic regression model: Linear model
m Optimize conditional likelihood

m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Convergence rates and stopping criterion

Case Study 1: Estimating Click Probabilities

Online Learning

Perceptron Algorithm
Kernels

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington
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Challenge 1: Complexity of Computing
Gradients '™t
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Challenge 2: Data is streaming
" JEE

m Assumption thus far: Batch data

m But, click prediction is a streaming data task:
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. [ User enters query, and ad must be selected: .
| = Observe xJ and must predict yi rlAd )\Z
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\ 01 User either cli r doesn’t click on ad:
= Label yi is revealed afterwards
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o @y,qli_gits a reward if user clicks on ad
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Online Learning Problem
" JEE
m At each time step t:
1 Observe features of data point:

[ Note many assumptions are possible, e.g,, data is ||d data is adversarlally chosen . details beyond scope of course

1 Make a prediction ﬁ\ "’ ‘[0 < X )

= Note: many models are possible, we focus on linder models

= For simplicity, use vector notation “l a_) 1
) o )
Woxwixi Y01 2) Wy 7 ‘
' ’ *m -5 )((1 T
[ Observe true label: Z o -

= Note: other observatlon models are possible, e. g we don't observe the label directly, but only a noisy version... Details

beyond scope of c d 7
“ A ‘ whed 55
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[ Update modﬂ: @ Au)
tt
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The Perceptron Algorithm e «
" JE
m Classification setting: y in {-1,+1}
m Linear model
0 Prediction: ‘3 = Sio‘)r\ (W XY

m Training:

{e) —
0 Initialize weight vector: W ) =0
1 At each time step: o ) PR, ad ﬁh.‘lk.«.,
= Observe features: )( &

= Make prediction: ca 2 Sign (w‘*) (4\)

= Observe true class:

] & [vw. l&b’-'
= Update model: {, f'\&.kL km'}""‘k

o If prediction is Qo} egual to truth
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Mistake Bounds
" JEEE
m Algorithm _;E/:s_ every time it makes a mistake:

(055 Awrncion . Numher  of M]S‘kk(} me Ja.
=) QOO?IQ Fﬁjs For i+s m,,S‘)r\ktJ

m How many mistakes is it going to make?
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Linear Separability: More formally, Using Margin

m Data linearly separable, if there exists
Cavector : 3wt fwH=1
7amargin ) 70
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Perceptron Analysis: Linearly Separable Case
* JEE—

m  Theorem [Block, Novikoff]: N o (ﬂ)
1 Given a{?equence of labeled examples: X(" '-jm) L) (X , j
1 Each feature vector has bounded norm: Yt Il X(O)" < K

0 If dataset is linearly separable: ) “) 6
3""" "w’ll:)' ‘V‘f ‘ju (W’( )D/X / K7

m  Then the number of mistakes made by the online perceptron on this sequence is

bounded by (@/\)'L \w OW '| (
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Perceptron Proof for Linearly Separable case

" JEEE
m Every time we make a mistake, we get gamma close[tiw X
o Mistake at time t: wt*D) = w(h) + y® x® - ——
[ Taking dot product with w': w9 _ wid) = u? w t 'jM(
1 Thus after k mistakes: 7 W wl gy
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o Thus, after k mistakes:
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Beyond Linearly Separable Case
" JEE

m  Perceptron algorithm is super cool!

No assumption about data distribution! ‘

= Could be generated by an oblivious adversary| 'i ¥&
no need to be iid SJ

Makes a fixed number of mistakes, and it's
done for ever! +
= Evenifyo xe infinite data A
oS ofpw
@-eﬁsta-nt%%st per iteration + O(Nd)
; +
= Converges in O(1/e)
o for gy
However, real world not linearly separable +
Can’t expect never to make mistakes again
Analysis extends to non-linearly separable
case
Very similar bound, see Freund & Schapire
. —_—
fr
Converges, but ultimately may not give good

accuracy (make many many many mistakes)
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What if the data is not linearly separable?

. Use features of features
of features of features....
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Feature space can get really large really quickly!,
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Higher order polynomials

* JEEE

num. terms = ( d+7zz_ 1 )
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! - m — input featur .
g . d=a d — degree of polynomial
o
-(__“ 600
E 500
o)

8 400
€
“6 300 —
g 200 4 d=3
S
S 100 J
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o 2 3 4 5 6 7 8 3 0 grows fast!
number of input dimensions q,=/6, m = 100
—= about 1.6 billion terms

Perceptron Revisited
" JEE

= Given weight vector w®, predict point x by:
A

)
4 = Sin (w*x)
m  Mistake at time t: wit*D) = w(®) + y() x()

m  Thus, write weight vector in terms of mistaken data points only:
O Let M® be time steps up to t when mistakes were made:
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= Prediction rule now: Ay, ) - 6) )[“ X
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Dot-product of polynomials v-w, v
* JEE——
d(u) - d(v) = polynomials of degree exactly d
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Finally the Kernel Trick!!!
(Kernelized Perceptron

m Every time you make a mistake, remember (x®,y®)

m Kernelized Perceptron prediction for x:

Sign(w(t) cp(x)) = Z (b(X(i)) P(x)

ieM ()

Z k(x® x

ieM ()
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Polynomial kernels
* JEE—

m All monomials of degree d in O(d) operations:
P(u)d(v) = (u-v)d = polynomials of degree exactlyd

m How about all monomials of degree up to d?
Solution 0:

Better solution:
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Common kernels
* JEE——
m Polynomials of degree exactly d
K(u,v) = (u-v)*
m Polynomials of degree up to d
K(u,v) = (u-v+ 1)4

m Gaussian (squared exponential) kernel
K(u,v) =exp (—HHQ;QVH)
m Sigmoid o

K(u,v) = tanh(qgu-v 4+ v)
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Fundamental Practical Problem for All Online
Learning Methods: Which weight vector to report?
* JEE
m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???

m Last one?
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Choice can make a huge difference!!
" JEE—

10 -
random (unnorm) ——
s last (unnorm) -----
8 . avg (unnorm) - .
™ vote
6
4 e
...... ¥ o
2 et
0 1 L
0.1 1 10

Epoch

[Freund & Schapire '99]
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What you need to know
* JEE
m Notion of online learning
m Perceptron algorithm
m Mistake bounds and proofs
m The kernel trick
m Kernelized Perceptron
m Derive polynomial kernel
m Common kernels
m In online learning, report averaged weights at the end
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