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Case Study 1: Estimating Click Probabilities 

Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn P(Y|X) directly 
¨ Assume a particular functional form 
¨ Sigmoid applied to a linear function 

of the data: 

Z 

Features can be discrete or continuous! 
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Optimizing concave function – 
Gradient ascent  

n  Conditional likelihood for Logistic Regression is concave. Find 
optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent much better (see reading) 

Gradient: 

Step size, η>0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	



    

 

  

 For i=1,…,n,  

 

 

repeat    
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Test set error as a function of 
model complexity 
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Regularization in linear regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized least-squares (a.k.a. ridge regression), for λ>0: 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 
n  Leads to overfitting: 

n  Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about w0: 

n  Gradient of regularized likelihood: 
 

©Carlos Guestrin 2013 9 

`(w) = ln
Y

j

P (yj |xj ,w))� �||w||22

10 

Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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Stopping criterion 

n  Regularized logistic regression is strongly concave 
¨  Negative second derivative bounded away from zero: 

n  Strong concavity (convexity) is super helpful!! 

n  For example, for strongly concave l(w): 
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Convergence rates for gradient 
descent/ascent 

n  Number of Iterations to get to accuracy 

n  If func Lipschitz: O(1/ϵ2) 

n  If gradient of func Lipschitz: O(1/ϵ) 

n  If func is strongly convex: O(ln(1/ϵ)) 
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What you should know about Logistic 
Regression (LR) and Click Prediction 

n  Click prediction problem: 
¨  Estimate probability of clicking 
¨  Can be modeled as logistic regression 

n  Logistic regression model: Linear model 
n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Convergence rates and stopping criterion 

13 ©Carlos Guestrin 2013 

14 

Online Learning 
Perceptron Algorithm 
Kernels 

Machine Learning/Statistics for Big Data  
CSE599C1/STAT592, University of Washington 

Carlos Guestrin 
January 10th, 2013 

©Carlos Guestrin 2013 

Case Study 1: Estimating Click Probabilities 



8 

Challenge 1: Complexity of Computing 
Gradients 
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(t) 

Challenge 2: Data is streaming 

n  Assumption thus far: Batch data 

n  But, click prediction is a streaming data task: 
¨  User enters query, and ad must be selected: 

n  Observe xj, and must predict yj 

¨  User either clicks or doesn’t click on ad: 
n  Label yj is revealed afterwards 

¨  Google gets a reward if user clicks on ad 

 
¨  Weights must be updated for next time: 
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Online Learning Problem 

n  At each time step t: 
¨  Observe features of data point: 

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course   

¨  Make a prediction:  
n  Note: many models are possible, we focus on linear models 
n  For simplicity, use vector notation 

¨  Observe true label: 
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details 

beyond scope of course 

¨  Update model: 
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62] 
n  Classification setting: y in {-1,+1} 
n  Linear model 

¨  Prediction:  
 

n  Training:  
¨  Initialize weight vector:  
¨  At each time step: 

n  Observe features: 
n  Make prediction: 
n  Observe true class: 

n  Update model:   
¨  If prediction is not equal to truth 
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Mistake Bounds 

n  Algorithm “pays” every time it makes a mistake: 

n  How many mistakes is it going to make? 
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Linear Separability: More formally, Using Margin  

n  Data linearly separable, if there exists 
¨ a vector 
¨ a margin  

n  Such that 
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Perceptron Analysis: Linearly Separable Case 

n  Theorem [Block, Novikoff]:  
¨  Given a sequence of labeled examples: 

¨  Each feature vector has bounded norm: 

¨  If dataset is linearly separable: 

n  Then the number of mistakes made by the online perceptron on this sequence is 
bounded by 
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Perceptron Proof for Linearly Separable case 

n  Every time we make a mistake, we get gamma closer to w*: 
¨  Mistake at time t: w(t+1) = w(t) + y(t) x(t) 
¨  Taking dot product with w*: 
¨  Thus after k mistakes:  

n  Similarly, norm of w(t+1) doesn’t grow too fast: 
¨    

¨  Thus, after k mistakes: 

n  Putting all together: 
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||w(t+1)||2 = ||w(t)||2 + 2y(t)(w(t) · x(t)) + ||x(t)||2
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Beyond Linearly Separable Case 
n  Perceptron algorithm is super cool! 

¨  No assumption about data distribution!  
n  Could be generated by an oblivious adversary, 

no need to be iid 
¨  Makes a fixed number of mistakes, and it’s 

done for ever! 
n  Even if you see infinite data 

¨  Constant cost per iteration 
n  Converges in O(1/ϵ) 

n  However, real world not linearly separable 
¨  Can’t expect never to make mistakes again 
¨  Analysis extends to non-linearly separable 

case 
¨  Very similar bound, see Freund & Schapire 

from Readings 
¨  Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What if the data is not linearly separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Higher order polynomials 

number of input dimensions 
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d=2 

d=4 

d=3 

m – input features 
d – degree of polynomial 

grows fast! 
d = 6, m = 100 
about 1.6 billion terms 

Perceptron Revisited 
n  Given weight vector w(t), predict point x by: 

n  Mistake at time t: w(t+1) = w(t) + y(t) x(t) 

n   Thus, write weight vector in terms of mistaken data points only: 
¨  Let M(t) be time steps up to t when mistakes were made: 

n  Prediction rule now: 

n  When using high dimensional features: 
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Dot-product of polynomials 

exactly d 

Finally the Kernel Trick!!! 
(Kernelized Perceptron  

n  Every time you make a mistake, remember (x(t),y(t)) 

n  Kernelized Perceptron prediction for x: 
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Polynomial kernels 

n  All monomials of degree d in O(d) operations: 

n  How about all monomials of degree up to d? 
¨ Solution 0:  

¨ Better solution: 

exactly d 
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Common kernels 

n  Polynomials of degree exactly d 

n  Polynomials of degree up to d 

n  Gaussian (squared exponential) kernel 

n  Sigmoid 
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Fundamental Practical Problem for All Online 
Learning Methods: Which weight vector to report? 

n  Suppose you run online learning method and want to sell 
your learned weight vector… Which one do you sell??? 

n  Last one? 

n    

n    

n    
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Choice can make a huge difference!! 
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[Freund & Schapire ’99] 
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What you need to know 

n  Notion of online learning 
n  Perceptron algorithm 
n  Mistake bounds and proofs 
n  The kernel trick 
n  Kernelized Perceptron 
n  Derive polynomial kernel 
n  Common kernels 
n  In online learning, report averaged weights at the end 


