

Overview

- Part 1: Theory
 - Graphical Models
 - Inference in Factor Graphs
 - Approximate Message Passing
 - Distributed Message Passing
- Part 2: Applications
 - TrueSkill: Gamer Rating and Matchmaking
 - TrueSkill Through Time: History of Chess
 - Click-Through Rate Prediction in Online Advertising
 - Matchbox: Recommendation Systems

Probabilities and Beliefs

- Design: System must assign degree of plausability
 P(A) to each logical statement A.
- Axiom:

P must be a probability measure!

3. P(A|C')>P(A|C) and P(B|AC')=P(B|AC) then P(AB|C')>=P(AB|C)

Graphical Models

Definition: Graphical representation of joint probability distribution

– Nodes: = Variables

- Edges: Relationship between variables

• Variables:

- Observed Variables: Data

- Unobserved Variables: 'Causes' + Temporary/Latent

• Key Questions:

- (Conditional) Dependency: $p(a,b|c) \stackrel{?}{=} p(a|c) \cdot p(b|c)$

- Inference/Marginalisation: $p(a,b) = \sum_{c} p(a,b,c)$

Directed Models: Bayesian Networks

 Definition: Graphical representation of joint probability distribution (Pearl, 1988)

– Nodes: = Variables

Directed Edges: Conditional probability distribution

• Semantic:

$$p(\mathbf{x}) = \prod_{i} p\left(x_i | \mathbf{x}_{\mathsf{parents}(i)}\right)$$

- Ancestral relationship of dependency

$$p(a,b,c) = p(a) \cdot p(b) \cdot p(c|a,b)$$

Undirected Models: Markov Networks

- Definition: Graphical representation of joint probability distribution (Pearl, 1988)
 - Nodes: = Variables
 - Edges: Dependency between variables
- Semantic:

$$p(\mathbf{x}) = \frac{1}{Z} \cdot \prod_{\mathcal{C}} \phi(x_{\mathcal{C}}) \quad \phi \ge 0$$

- Local potentials over cliques

$$p(a,b,c) = \frac{1}{Z} \cdot \phi_{ac}(a,c) \cdot \phi_{bc}(b,c)$$

$$Z = \sum_{a} \sum_{b} \sum_{c} \phi_{ac}(a,c) \cdot \phi_{bc}(b,c)$$

Factor Graphs

- Definition: Graphical representation of product structure of a function (Wiberg, 1996)
 - Nodes: = Factors = Variables
 - Edges: Dependencies of factors on variables.
- Semantic:

$$p(\mathbf{x}) = \prod_{f} f\left(\mathbf{x}_{V(f)}\right)$$

- Local variable dependency of factors

$$p(a, b, c) = f_1(a) \cdot f_2(b) \cdot f_3(a, b, c)$$

Undirected graphical models can hide the factorisation within a clique!

Factor Graphs and Bayes' Law

• Bayes' law

$$p(\mathbf{s}|y) \propto p(y|\mathbf{s}) \cdot p(\mathbf{s})$$

Factorising prior

$$p(\mathbf{s}) = p(s_1) \cdot p(s_2)$$

Factorising likelihood

$$p(y, \mathbf{t}, d|\mathbf{s}) = \prod p(t_i|s_i) \cdot p(d|t_1, t_2) \cdot p(y|d)$$

• Inference: Sum out latent variables

$$p(y|\mathbf{s}) = \sum_{\mathbf{t}} \sum_{\mathbf{d}} p(y, \mathbf{t}, \mathbf{d}|\mathbf{s})$$

Summary

	Dependency	Efficient Inference	Usage
Bayesian Networks	Yes	Somewhat	Ancestral Generative Process
Markov Networks	Yes	No	Local Couplings and Potentials
Factor Graphs	No	Yes	Efficient, distributed inference

Overview

- Graphical Models
- Inference in Factor Graphs
- Approximate Message Passing
- Distributed Message Passing

Factor Graphs and Factor Trees

- Factor Graphs: Arbitrary functions
 - Bayesian Networks
 - Markov Networks
- Factor Trees: Functions where the variable indices never decrease from left to right
- Factor Graph → Factor Tree:
 - 1. Pick an arbitrary node
 - 2. Build the spanning tree

The Sum-Product Algorithm

Three update equations (Aji & McEliece, 1997)

$$p(t) = \prod_{f \in F_t} m_{f \to t}(t)$$

$$m_{f \to t_1}(t_1) = \sum_{t_2} \sum_{t_3} \cdots \sum_{t_n} f(t_1, t_2, t_3, \dots) \prod_{i > 1} m_{t_i \to f}(t_i)$$

$$m_{t \to f}(t) = \prod_{f_j \in F_t \setminus \{f\}} m_{f_j \to t}(t)$$

- Update equations can be directly derived from the distributive law.
- · Calculate all marginals at the same time!
- Only need to pass messages twice along each edge!

Practical Considerations I

• Log-Transform: $\lambda_{f \to t}(t) := \log \left[m_{f \to t}(t) \right]$

$$\begin{split} \log\left[p(t)\right] &= \sum_{f \in F_t} \lambda_{f \to t}(t) \\ \lambda_{f \to t_1}(t_1) &= \sum_{t_2} \sum_{t_3} \cdots \sum_{t_n} f(t_1, t_2, t_3, \ldots) \exp\left[\sum_{i > 1} \lambda_{t_i \to f}(t_i)\right] \\ \lambda_{t \to f}(t) &= \sum_{f_j \in F_t \setminus \{f\}} \lambda_{f_j \to t}(t) \end{split}$$

• Exponential Family Messages:

$$m(t) \propto \exp(\psi(t) \cdot \boldsymbol{\theta})$$

 Message updates are just additions of the parameters e !

Exponential Families

• (Univariate) Gaussian: $\theta := \left(\frac{\mu}{\sigma^2}, \frac{1}{\sigma^2}\right)$

• Bernoulli: $\theta := \log \left(\frac{p}{1-p} \right)$

• Binomial: $\theta := \log \left(\frac{p}{1-p} \right)$

• Beta: $\theta := (\alpha, \beta)$

• Gamma: $\theta := \left(\alpha, \frac{1}{\beta}\right)$

Practical Considerations II

• Redundant computations:

$$p(t) = \prod_{f \in F_t} m_{f \to t}(t)$$

$$m_{t \to f}(t) = \prod_{f_j \in F_t \setminus \{f\}} m_{f_j \to t}(t)$$

$$p(t) = m_{t \to f}(t) \cdot m_{f \to t}(t)$$

• Caching: Only store p(t) and $m_{f o t}(t)$, then

$$m_{t \to f}(t) = \frac{p(t)}{m_{f \to t}(t)}$$

Overview

- Graphical Models
- Inference in Factor Graphs
- Approximate Message Passing
- Distributed Message Passing

Approximate Message Passing

- Problem: The exact messages from factors to variables may not be closed under products.
- **Solution:** Approximate *each* marginal as well as possible in using a divergence measure on beliefs.
- General Idea: Leave-one out approximation

$$\begin{split} \hat{p}(t) &= \operatorname{argmin}_{\hat{p}}, D\left[\underbrace{m_{f \to t} \cdot \hat{m}_{t \to f}}, \hat{p} \right] \\ \hat{m}_{f \to t}(t) &= \frac{\hat{p}(t)}{\hat{m}_{t \to f}(t)} \end{split}$$

Approximate Message Passing

$$\hat{m}_{t o f}(t)$$

Divergence Measures

• Kullback-Leibler Divergence: Expected log-odd ratio between two distributions:

$$\mathrm{KL}(p,q) := \sum_t p(t) \log \left(\frac{p(t)}{q(t)} \right)$$

- Minimizer for Exponential Families: Matching the moments of the distribution p(t)!
- General α-Divergence:

$$D_{\alpha}(p,q) := \frac{1 - \sum_{t} \frac{p^{\alpha-1}(t)}{q^{\alpha-1}(t)}}{\alpha(1-\alpha)}$$

• Special Cases:

$$D_0(p,q) = \mathsf{KL}(q,p)$$

$$D_1(p,q) = \mathsf{KL}(p,q)$$

Overview

- Graphical Models
- Inference in Factor Graphs
- Approximate Message Passing
- Distributed Message Passing

Large-Data Challenge

- Large Data (e.g. Facebook user actions)
 - 500m daily users
 - 3 bln daily likes & comments
- Two types of variables
 - Observed → Data Factors
 - Latent → Model parameters
- Discriminative Models
 - Given the model parameters, data variables are independent

$$p(\boldsymbol{\theta}|\mathbf{X}, \mathbf{Y}) \propto \prod_{i} p(y_i|\boldsymbol{\theta}, \mathbf{x}_i) \cdot \prod_{j} p(\theta_j)$$

Distributed Message Passing

 Idea: Group variables and send messages across system boundaries

$$\prod_{i} p(y_{i}|\boldsymbol{\theta}, \mathbf{x}_{i}) \cdot p(\boldsymbol{\theta}) = \prod_{k} \prod_{j=1}^{n_{k}} p(y_{k,j}|\boldsymbol{\theta}, \mathbf{x}_{k,j}) \cdot \prod_{l} \prod_{r=1}^{m_{l}} p(\theta_{l,r})$$
$$f_{k}(\mathbf{X}_{k}, \mathbf{Y}_{k}, \boldsymbol{\theta}) \qquad g_{l}(\boldsymbol{\theta}_{l})$$

- Data factors: $f_k(\mathbf{X}_k, \mathbf{Y}_k, \theta)$
 - Know exactly which model parameter messages get updated
- Parameter factors: $g_l(\theta_l)$
 - Need to keep track of which data factors need message update

Relation to Map-Reduce

• Map-Reduce

- Map: Data nodes compute messages $m_{F_k \to \mu}$ from data y_i and $m_{\mu \to F_k}$
- Reduce: Combine messages $m_{F_k \to \mu}$ into p_{μ} by multiplication
- Vanilla MR is a single pass only!

Caveats:

- Approximate data factors need all incoming message $m_{F_k \to \mu}!$
- Each machine needs to be able to store the belief over µ

Overview

- TrueSkill: Gamer Rating and Matchmaking
- Click-Through Rate Prediction in Online Advertising
- Matchbox: Recommendation Systems

Motivation

- · Competition is central to our lives
 - Innate biological trait
 - Driving principle of many sports
- Chess Rating for fair competition
 - ELO: Developed in 1960 by Árpád Imre Élő
 - Matchmaking system for tournaments
- · Challenges of online gaming
 - Learn from few match outcomes efficiently
 - Support multiple teams and multiple players per team

Two Player Match Outcome Model

- Latent Gaussian performance model for fixed skills
- Possible outcomes: Player 1 wins over 2 (and vice versa)

 $\mathbf{P}(y_{12}=(1,2)|p_1,p_2)=\mathbb{I}(p_1>p_2)$

Two Team Match Outcome Model

• Skill of a team is the sum of the skills of its members

$$\mathbf{P}(t_1|s_1, s_2) = \mathcal{N}(t_1; s_1 + s_2, 2 \cdot \beta^2)$$

Multiple Team Match Outcome Model

• Possible outcomes: Permutations of the teams

 $\mathbf{P}(\boldsymbol{y}|t_1,t_2,t_3) = \mathbb{I}(\boldsymbol{y}=(i,j,k)) \text{ where } t_i > t_j > t_k$

Multiple Team Match Outcome Model

• But we are interested in the (Gaussian) posterior!

$$\mathbf{P}(s_i|\boldsymbol{y}=(1,2,3)) = \mathcal{N}(s_i; \mu_i, \sigma_i^2)$$

Data Set: Halo 2 Beta - 3 game modes • Free-for-All • Two Teams • 1 vs. 1 - > 60,000 match outcomes - ≈ 6,000 players - 6 weeks of game play - Publically available

Xbox 360 & Halo 3

Xbox 360 Live

- Launched in September 2005
- Every game uses TrueSkill™ to match players
- > 10 million players
- > 2 million matches per day
- > 2 billion hours of gameplay

• Halo 3

- Launched on 25th September 2007
- Largest entertainment launch in history
- > 200,000 player concurrently (peak: 1,000,000)

TrueSkill™ Through Time: Chess

- Model time-series of skills by smoothing across time
- History of Chess
 - 3.5M game outcomes (ChessBase)
 - 20 million variables (each of 200,000 players in each year of lifetime + latent variables)
 - 40 million factors

The Scale of Things

- Several weeks of data in training:
 - 7,000,000,000 impressions
- 2 weeks of CPU time during training:
 - 2 wks \times 7 days \times 86,400 sec/day =
 - 1,209,600 seconds
- Learning algorithm speed requirement:
 - 5,787 impression updates / sec
 - 172.8 µs per impression update

Inference: An Optimization View
$$\mu_{i} \leftarrow \mu_{i} + \frac{\sigma_{i}^{2}}{s} \cdot h \begin{bmatrix} \sum_{j=1}^{d} \mu_{j} \\ s \end{bmatrix} \sigma_{i}^{2} \leftarrow \sigma_{i}^{2} \left(1 - \frac{\sigma_{i}^{2}}{s^{2}} \cdot g \begin{bmatrix} \sum_{j=1}^{d} \mu_{j} \\ s \end{bmatrix} \right)$$

$$s^{2} = \beta^{2} + \sum_{j=1}^{d} \sigma_{j}^{2}$$

$$h(t) = \frac{\mathcal{N}(t; 0, 1)}{\Phi(t)}$$

$$g(t) = h(t) \cdot [h(t) + t]$$

$$g(t) = h(t) \cdot [h(t) + t]$$

MovieLens Data • 1 million ratings • 3,900 movies / 6,040 users • User / movie metadata

3,900 movies Movie ID Movie Genre Action Horror Adventure Musical Animation Mystery Children's Romance
Movie Genre Action Horror Adventure Musical Animation Mystery
Action Horror Adventure Musical Animation Mystery
Adventure Musical Animation Mystery
Animation Mystery
,,
Children's Pomanco
Ciliuren 3 Romance
Comedy Thriller
Crime Sci-Fi
Documentary War
Drama Western
Comedy Thri Crime Sci-

Recommendation Speed

- Goal: find N items with highest predicted rating.
- Challenge: potentially have to consider all items.
- Two approaches to make this faster:
 - Locality Sensitive Hashing
 - KD Trees
- Locality Sensitive Hash:

$$P(h(x) = h(y)) = sim(x, y)$$

Random Projection Hashing

- Random Projections:
 - Generate random hyper planes (m random vectors, a_i).
 - Gives m bit hash, $\{x_0, x_1, \cdots, x_m\}$, by:

$$x_i = \mathbf{1}[\mathbf{a}_i \cdot \mathbf{t} > 0]$$

- p(all bits match) ∝ cosine similarity.
- Store items in buckets indexed by keys.
- Given a user trait vector:
 - 1. Generate key, q.
 - 2. Search buckets by hamming distance from q until find N items.

