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Social Media Science Advertising
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¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests

o Big: 100 billions of vertices and edges and rich metadata
o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges
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Addressing Gra

ph-Parallel ML

Data-Parallel

Graph-Parallel

Map Reduce

Cross
Validation

Feature
Extraction

Computing Sufficient
Statistics

Graph-Parallel Abstraction

Graphical Models Semi-Supervised

Gibbs Sampling Learning
Belief Propagation  |abel Propagation
Variational Opt. CoEM
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting
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Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model
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Synchronous v. Asynchronous
=
" S
m  Bulk synchronous processing: m  Asynchronous processing:

Computation in phases Vertices see latest information from

= All vertices participate in a phase neighbors

Though OK to say no-op = Most closely related to sequential

= All messages are sent execution
Simpler to build, like Map-Reduce Harder to build:

= No worries about race conditions, = Race conditions can happen all the time

barrier guarantees data consistency Must protect against this issue
= Simpler to make fault-tolerant, save = More complex fault tolerance
data on barrier = When are you done?
Slower convergence for many ML = Must implement scheduler over vertices
problems Faster convergence for many ML
In matrix-land, called Jacobi Iteration problems
Implemented by Google Pregel 2010 In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012
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The GraphLab Goals

Know how to

solve ML problem
on 1 machine

Graph LaB’ff}

Carnegie Mellon

Efficient

l - parallel
¢ \(\’ 4 — predictions
g
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Data Graph

Data associated with vertices and edges

Graph: O_O

* Social Network

Vertex Data: '
* User profile text
* Current interests estimates

Edge Data: i
* Similarity weights
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How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to
vertex transforms data in of vertex

pagerank(i, scope){

}
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Connected Components
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Update Function Example:
Connected Components
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The Scheduler

The scheduler determines order vertices are updated
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Example Schedulers

¢ Round-robin
¢ Selective scheduling (skipping):
e round robin but jump over un-scheduled vertice
¢ FIFO
o Prioritize scheduling

e Hard to implement in a distributed fashion
o Approximations used (each machine has its own priority queue)
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Ensuring Race-Free Code

How much can computation overlap?

‘/\
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Need for Consistency?

~ Higher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML
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GraphlLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential
execution of update functions which produces the same result

o—@ @

CPU 1
Parallel
CPU 2
Sequential Single
CPU
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Consistency in Collaborative Filtering
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Updates Millions
Netflix data, 8 cores ©Carlos Guestrin 2013 18




The GraphLab Framework

Graph Based Update Functions
User Computation

Data Representation

Scheduler
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Triangle Counting in Twitter Graph

V Total:

40M Users 34.8 Billion Triangles
1.2B Edges

Hadoop

GraphlLab

64 Machines, 1024 Cores
1.5 Minutes
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©
Hadoop results from [Suri & Vassilvitskii '11]

10



CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal?
Is “Catalina” a place?

dog( i ) < i ><X> ran quickly

Australia [~ O travelled to <X>
Catalina <X> is pleasant
Island
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Never Ending Learner Project (CoEM)

Vertices: 2 Million
Edges: 200 Million

Hadoop 95 Cores 7.5 hrs
Distributed 32 EC2 80 secs
GraphlLab machines
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What do |
recommend???
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Nemer,
Jor . Women on the Verge of a
g Nervous Breakdown

The Celebration

City of God

' Wild Strawberries

La Dolce Vita
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Interpreting Low-Rank Matrix Completion

(aka Matrix Factorization)
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Matrix Completion as a Graph
* JEE—

X;; known for black cells
X;; unknown for white cells

Rows index users
Columns index movies

X =
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Coordinate Descent for Matrix
Factorization: Alternating Least-Squares

wp S mon £ UL+ MR

’ (U, 0,70 ) EX 1Ty £7

m Fix movie factors, optimize for user factors
i (Lu - Ry = 1up)?
Independent least-squares over users min U v — Tuw

tueVe o ha (Ll

m Fix user factors, optimize for movie factors
Independent least-squares over movies min (Lu . RU — Tuv)Q

e, 3078

m System may be underdetermined:u\x y‘(j,\ "-':Zq‘lih\

= Converges to loca | OV',?’V\C\
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Alternating Least Squares Update Function
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GraphChi: Going small with GraphLab

(\\ ‘i\
Graphn Lab' i\

Solve huge problems on i P
small or embedded g i A
devices? .

Key: Exploit non-volatile memory

(starting with SSDs and HDs)
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GraphChi — disk-based GraphlLab

/r‘

Challenge:

2.,
(
Random Accesses \ / / /

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses
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Naive Graph Disk Layouts

» Symmetrized adjacency file with values,

vertex _|in-neighbors | out-neighbors |
5 3:2.3,19: 1.3, 49: 0.65,... 781:2.3,881:4.2..
Random
write
19 3:1.4,9:12.1, ... 5:1.3,28:2.2, ...

e ... or with file index pointers

| vertex | in-neighbor-ptr
5 3:881, 19: 10092, 49: 20763,... 781:2.3,881:4.2..

Random
read/write

19 3:882,9: 2872, ... 5:1.3,28:2.2, ...
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Parallel Sliding Windows Layout
Shard: in-edges for subset of vertices; sorted by source_id

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 3 Shard 4

Shards small enough tg fitin memgry; balance size of shards

in-edges for vertices 1..100
sorted by source_id
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Parallel Sliding Windows Execution
Load subgraph for vertices 1..100

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 2 Shard 3

in-edges for vertices 1..100
sorted by source_id

RECEIRE L What about out-edges?
in memory Arranged in sequence in other shards!

And sequential writes!

Parallel Sliding Windows Execution
Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000
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Load all in-edges Only O(P?) random reads
In memory

per pass on entire graph
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Triangle Counting on Twitter Graph

40MUsers  Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!

GraphChi
64 Machines, 1024 Cores
1.5 Minutes
GraphlLab2 ’
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AN
Graph Lab'
Release 2.1 available now
http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http://graphchi.org
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What you need to know...
" JE
m Data-parallel versus graph-parallel computation

m Bulk synchronous processing versus
asynchronous processing

m GraphlLab system for graph-parallel computation
Data representation
Update functions
Scheduling
Consistency model
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