

Synchronous v. Asynchronous

- Bulk synchronous processing:
 - Computation in phases
 - All vertices participate in a phase
 Though OK to say no-op
 - All messages are sent
 - □ Simpler to build, like Map-Reduce
 - No worries about race conditions, barrier guarantees data consistency
 - Simpler to make fault-tolerant, save data on barrier
 - Slower convergence for many ML problems
 - ☐ In matrix-land, called Jacobi Iteration
 - □ Implemented by Google Pregel 2010

- Asynchronous processing:
 - □ Vertices see latest information from neighbors
 - Most closely related to sequential execution
 - □ Harder to build:
 - Race conditions can happen all the time
 Must protect against this issue
 - More complex fault tolerance
 - When are you done?
 - Must implement scheduler over vertices
 - Faster convergence for many ML problems
 - ☐ In matrix-land, called Gauss-Seidel Iteration
 - □ Implemented by GraphLab 2010, 2012

©Carlos Guestrin 2013

How do we *program* graph computation?

"Think like a Vertex."

-Malewicz et al. [SIGMOD'10]

Example Schedulers

- Round-robin
- Selective scheduling (skipping):
 - round robin but jump over un-scheduled vertice
- FIFO
- Prioritize scheduling
 - Hard to implement in a distributed fashion
 - Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013

CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is "Dog" an animal?
Is "Catalina" a place?

©Carlos Guestrin 2013

21

Never Ending Learner Project (CoEM)

Vertices: 2 Million Edges: 200 Million

Hadoop	95 Cores	7.5 hrs
Distributed GraphLab	32 EC2 machines	80 secs

©Carlos Guestrin 2013

Matrix Completion as a Graph

X_{ij} known for black cells X_{ii} unknown for white cells Rows index users Columns index movies

Coordinate Descent for Matrix Factorization: Alternating Least-Squares

$$\min_{L,R} \sum_{(u,v,r_{uv}) \in X: r_{uv} \neq ?} (L_u \cdot R_v - r_{uv})^2 + \lambda_{u} \|L\| + \lambda_{v} \|R\|$$

Fix movie factors, optimize for user factors
$$\min_{L_u} \sum_{v \in V_u} (L_u \cdot R_v - r_{uv})^2$$

Fix user factors, optimize for movie factors
$$\lim_{R_v} \sum_{u \in U_v} (L_u \cdot R_v - r_{uv})^2 + \lambda v || \mathbb{R}^v ||$$

- System may be underdetermined: Wy Myhlarizating
- Converges to

GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

Key: Exploit non-volatile memory (starting with SSDs and HDs)

©Carlos Guestrin 2013

a

GraphChi – disk-based GraphLab

Challenge:

Random Accesses

Novel GraphChi solution:

Parallel sliding windows method → minimizes number of random accesses

©Carlos Guestrin 2013

http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now http://graphchi.org

What you need to know...

- М
- Data-parallel versus graph-parallel computation
- Bulk synchronous processing versus asynchronous processing
- GraphLab system for graph-parallel computation
 - □ Data representation
 - □ Update functions
 - □ Scheduling
 - □ Consistency model

©Carlos Guestrin 2013