Case Study 4: Collaborative Filtering

GraphlLab

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
March 14th 2013

©Carlos Guestrin 2013 1

Social Media Science Advertising

H £ a
v ¢ W

¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests

o Big: 100 billions of vertices and edges and rich metadata
o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Carlos Guestrin 2013

Facebook Graph

Data model
Objects & Associations

8636146
&) L

liked by

fan

likes

%

6205972929
(story)

18429207554
(page)
-

v—':;;f

blrth&ay: 08/04/1961

website: http://...
verified: 1

04191769
(use

friend

\

—_—

friend

Slide from Facebook Engineering presentation 3
©Carlos Guestrin 2013

Addressing Gra

ph-Parallel ML

Data-Parallel

Graph-Parallel

Map Reduce

Cross
Validation

Feature
Extraction

Computing Sufficient
Statistics

Graph-Parallel Abstraction

Graphical Models Semi-Supervised

Gibbs Sampling Learning
Belief Propagation |abel Propagation
Variational Opt. CoEM
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

©Carlos Guestrin 2013

Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

5
©Carlos Guestrin 2013
Synchronous v. Asynchronous
=
" S
m Bulk synchronous processing: m Asynchronous processing:

Computation in phases Vertices see latest information from

= All vertices participate in a phase neighbors

Though OK to say no-op = Most closely related to sequential

= All messages are sent execution
Simpler to build, like Map-Reduce Harder to build:

= No worries about race conditions, = Race conditions can happen all the time

barrier guarantees data consistency Must protect against this issue
= Simpler to make fault-tolerant, save = More complex fault tolerance
data on barrier = When are you done?
Slower convergence for many ML = Must implement scheduler over vertices
problems Faster convergence for many ML
In matrix-land, called Jacobi Iteration problems
Implemented by Google Pregel 2010 In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012

©Carlos Guestrin 2013 6

The GraphLab Goals

Know how to

solve ML problem
on 1 machine

Graph LaB’ff}

Carnegie Mellon

Efficient

l - parallel
¢ \(\’ 4 — predictions
g

©Carlos Guestrin 2013 7

Data Graph

Data associated with vertices and edges

Graph: O_O

* Social Network

Vertex Data: '
* User profile text
* Current interests estimates

Edge Data: i
* Similarity weights

©Carlos Guestrin 2013 8

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to
vertex transforms data in of vertex

pagerank(i, scope){

}

©Carlos Guestrin 2013 10

Connected Components

©Carlos Guestrin 2013 11

Update Function Example:
Connected Components

©Carlos Guestrin 2013 12

The Scheduler

The scheduler determines order vertices are updated

CPUT
—
Q
-
©
)
e
O =
CP7Z :
©Carlos Guestrin 2013 13

Example Schedulers

¢ Round-robin
¢ Selective scheduling (skipping):
e round robin but jump over un-scheduled vertice
¢ FIFO
o Prioritize scheduling

e Hard to implement in a distributed fashion
o Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013 14

Ensuring Race-Free Code

How much can computation overlap?

‘/\

A

©Carlos Guestrin 2013

15

Need for Consistency?

~ Higher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

©Carlos Guestrin 2013

16

GraphlLab Ensures Sequential Consistency

For each parallel execution, there exists a sequential
execution of update functions which produces the same result

o—@ @

CPU 1
Parallel
CPU 2
Sequential Single
CPU

©Carlos Guestrin 2013 17

Consistency in Collaborative Filtering

128

64 -
== Inconsistent updates
32 -

-#- Consistent updates
16 -

Train RMSE
(o]

05 T T T 1
0 2 4 6 8

Updates Millions
Netflix data, 8 cores ©Carlos Guestrin 2013 18

The GraphLab Framework

Graph Based Update Functions
User Computation

Data Representation

Scheduler

©Carlos Guestrin 2013 19

Triangle Counting in Twitter Graph

V Total:

40M Users 34.8 Billion Triangles
1.2B Edges

Hadoop

GraphlLab

64 Machines, 1024 Cores
1.5 Minutes

Carlos Guestrin 2013 20

©
Hadoop results from [Suri & Vassilvitskii '11]

10

CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal?
Is “Catalina” a place?

dog(i) < i ><X> ran quickly

Australia [~ O travelled to <X>
Catalina <X> is pleasant
Island
©Carlos Guestrin 2013 21

Never Ending Learner Project (CoEM)

Vertices: 2 Million
Edges: 200 Million

Hadoop 95 Cores 7.5 hrs
Distributed 32 EC2 80 secs
GraphlLab machines
©Carlos Guestrin 2013 22

11

What do |
recommend???

©Carlos Guestrin 2013

Nemer,
Jor . Women on the Verge of a
g Nervous Breakdown

The Celebration

City of God

' Wild Strawberries

La Dolce Vita

23

Interpreting Low-Rank Matrix Completion

(aka Matrix Factorization)
" N A4

Il R

s

v mevtdd 2 5
Iy P
. ———
W
iers o] (W] X — L
—
n

Yar X Lk‘ f“' Lu \’IIJII__T
1

. ¢
ML how amath
'h‘m“ R

“oche" RS S

©Carlos Guestrin 2013

[3

fo [T
1
how andh
movit v
1§ about
Jx

24

12

Matrix Completion as a Graph
* JEE—

X;; known for black cells
X;; unknown for white cells

Rows index users
Columns index movies

X =

©Carlos Guestrin 2013 25

Coordinate Descent for Matrix
Factorization: Alternating Least-Squares

wp S mon £ UL+ MR

’ (U, 0,70) EX 1Ty £7

m Fix movie factors, optimize for user factors
i (Lu - Ry = 1up)?
Independent least-squares over users min U v — Tuw

tueVe o ha (Ll

m Fix user factors, optimize for movie factors
Independent least-squares over movies min (Lu . RU — Tuv)Q

e, 3078

m System may be underdetermined:u\x y‘(j,\ "-':Zq‘lih\

= Converges to loca | OV',?’V\C\

©Carlos Guestrin 2013 26

13

Alternating Least Squares Update Function

B I P et

:&gf‘ uelU,
« 3
=

SGD for Matrix Factorization in

_ Maﬁ-Reduce?

L1(,Lt+1)] [(1 - ﬁt)\u)Lq(f) - ntEth(;t)

&=L R —ru t+1 t t
R) (1- m)\v)Ra(J) — ntEtLQ(I,)

©Carlos Guestrin 2013 28

14

GraphChi: Going small with GraphLab

(\\ ‘i\
Graphn Lab' i\

Solve huge problems on i P
small or embedded g i A
devices? .

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

©Carlos Guestrin 2013 29

GraphChi — disk-based GraphlLab

/r‘

Challenge:

2.,
(
Random Accesses \ / / /

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses

©Carlos Guestrin 2013 30

15

Naive Graph Disk Layouts

» Symmetrized adjacency file with values,

vertex _|in-neighbors | out-neighbors |
5 3:2.3,19: 1.3, 49: 0.65,... 781:2.3,881:4.2..
Random
write
19 3:1.4,9:12.1, ... 5:1.3,28:2.2, ...

e ... or with file index pointers

| vertex | in-neighbor-ptr
5 3:881, 19: 10092, 49: 20763,... 781:2.3,881:4.2..

Random
read/write

19 3:882,9: 2872, ... 5:1.3,28:2.2, ...
©Carlos Guestrin 2013 31

Parallel Sliding Windows Layout
Shard: in-edges for subset of vertices; sorted by source_id

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 3 Shard 4

Shards small enough tg fitin memgry; balance size of shards

in-edges for vertices 1..100
sorted by source_id

16

Parallel Sliding Windows Execution
Load subgraph for vertices 1..100

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

Shard 2 Shard 3

in-edges for vertices 1..100
sorted by source_id

RECEIRE L What about out-edges?
in memory Arranged in sequence in other shards!

And sequential writes!

Parallel Sliding Windows Execution
Load subgraph for vertices 101..700

Vertices Vertices Vertices Vertices
1..100 101..700 701..1000 1001..10000

o R S —

S Shard 3 Shard 4

T o

— '_l

1]

S 5

s 3

> >

“ O

L5

wn O

v

= 3

¢

£

Load all in-edges Only O(P?) random reads
In memory

per pass on entire graph

17

Triangle Counting on Twitter Graph

40MUsers Total: 34.8 Billion Triangles
1.2B Edges

Hadoop

59 Minutes, 1 Mac Mini!

GraphChi
64 Machines, 1024 Cores
1.5 Minutes
GraphlLab2 ’
©Carlos Guestrin 2013
Hadoop results from [Suri & Vassilvitskii '11] 35

AN
Graph Lab'
Release 2.1 available now
http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http://graphchi.org

18

What you need to know...
" JE
m Data-parallel versus graph-parallel computation

m Bulk synchronous processing versus
asynchronous processing

m GraphlLab system for graph-parallel computation
Data representation
Update functions
Scheduling
Consistency model

©Carlos Guestrin 2013 37

19

