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Multivariate Normal Models
= JEE

m So far, we looked at the univariate multiple regression

= If one has a multivariate response y* € R?
Assuming independence between dimensions

ooooooooooooo




Multivariate Normal Models
= JEE

m If one has a multivariate response y' € R?
Assuming correlation between the output dimensions

m Assume linear (or other mean regression) is removed and
focus on the correlation structure

m Matrix valued parameter!
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High-Dimensional Covariance
" JEE—
m What if d is large?

m Afew common approaches:
Low-rank approximations
Sparsity assumptions
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Low-Rank Approximations
" S

m In general, assume some matrix parameter

m Here, > must be a symmetric, positive definite matrix
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Low-Rank Approximations
" S

= In pictures... Yo = diag(o?,...,03)
/
> = AN + >
_ \'\
— + \\
\|

m Number of parameters:




Latent Factor Models
= JEE

m Low-rank approximation arises from a latent factor model

m Proof:

Lower-dim Embeddings
" JEEE
Sharing information in
low-dim subspace




Sparsity Assumptions
* JEE

m What if we assume X is sparse?

m More often, we can reasonably make statements about
conditional independence
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Information Form
" JEE
m Motivations for considering “information form” of multivariate
normal

Easier to read off conditional densities
Has log-linear form in terms of “information parameters”
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Conditional Densities
= JEE

m Assume a model with

and divide the dimensions into two sets

m Then,
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Conditional Densities
" JEEE
m Let A= {s,t}

p(ya | ya) =N"'(na— Qaaya, Qaa)

m Therefore,

ooooooooooooo




Connection with Graphical Models

m Undirected graphical model or Markov random field (MRF)
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Sparse Precision vs. Covariance
" S

m For a sparse precision matrix, the covariance need not be

MATLAB R2012a

b o 2] @ CurrentFolder: /U h _toolboxes/HIW )

w

kspace x 2 -0 Command Window x awno_Con

toplot @ New to MATLAB? Watch this Video, see Demos, or read Getting Started. x ong - mean
Min M >> Omega sifull = D)

- -16.. 6.

imagesc (O

6.
> -07.. 1,  Omega = figure; im

5.0000 0 -1.3731 0 0.7988  0.9681 0 -0.8558 0 0 fiqure; i
0 3.3483 1.5783  -1.6742 0 -0.5654 0 -1.1826 0 0 imagesc(mej
-1.3731 1.5783 2.9305 0.9951 0 0  -0.6900 -1.2806 0.7026 0 figure; inm|
0 -1.6742  0.9951  6.0197 0 0 0 0 -0.5798 figure; im
0.7988 [ 0 0 4.0541 0 0 0.8074 o 0 figure; im
0.9681  -0.5654 0 0 0 5.0000 0 0 -1.1253 0 clear
-0.6900 0 o 0 5.6526  0.8674 0 0 Joad HIHG
-0.8558  -1.1826  -1.2806 o 0.8074 0 0.8674  5.0000 -1.5453 0
[ o 0.7026 0 0 -1.1253 0 -1.5453  5.8288 -1.1129
o 0 0 -0.5798 0 0 0 0 -1.1129  5.0000

>> Sigma = inv(Omega)
Sigma =

0.3730  -0.2560  0.4290  -0.1448  -0.0947 -0.1125  0.0360  0.1066 -0.0505  -0.0280
-0.2560  0.9071 -0.7903  0.3906  0.0453  0.1866 -0.1004  0.0258  0.1533  0.0794
0.4290  -0.7903  1.2528 -0.4354 -0.1147 -0.2103  0.1297  0.1514 -0.1682 -0.0879
-0.1448  0.3906 -0.4354  0.3523  0.0319  0.0894 -0.0506 -0.0167  0.0764  0.0578
-0.0947  0.0453 -0.1147  0.0319  0.2814  0.0229 -0.0016 -0.0808  -0.0026  0.0031
-0.1125  0.1866 =-0.2103  0.0894  0.0229  0.2609 -0.0251 -0.0035  0.0802  0.0282
0.0360  -0.1004  0.1297 -0.0506 -0.0016 -0.0251  0.1970 -0.0276 -0.0302 -0.0126

0.1066  0.0258  0.1514 -0.0167 -0.0808 -0.0035 -0.0276  0.3005  0.0630  0.0121

L -0.0505  0.1533 -0.1682  0.0764 -0.0026  0.0802 -0.0302  0.0630  0.2357  0.0613 - figure; im
-0.0280  0.0794 -0.0879  0.0578  0.0031  0.0282 -0.0126  0.0121  0.0613  0.2204 P
figure; im

fo>> A = kron(r]
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ML Estimation for Given Graph

" JE
m Assume a known graph G = {V,E}

= Rewrite log likelihood: . X\

N \@

N

ML Estimation for Given Graph
"

L(Q) = log || — tr(SQ) ,,\"w\ |

/

m Take gradient:

-

\ [

m Many approaches to solving:

Barrier method — add penalty if () leaves the positive definite cone
(Dahl et al. 2008)

Coordinate descent method (cf., Hastie et al. 2009)




ML Estimation for Given Graph
" S

m Can show that the optimal solution satisfies

m Example:

01 0 1 10 1 5 4
1 01 0 1 10 2 6
G = 0 1 0 1 5= 5 2 10 3
1 010 4 6 3 10
0 10 1 4

0 1 10 2
2= 0 X = 2 10 3
0 4 3 10
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Estimating Graph Structure
" JEE—
m To learn the structure of the Gaussian graphical

model, we want to trade off fit and sparsity L _{
Measure of fit: L\

Encouraging sparsity:

m Overall objective = “graphical LASSO” or “Glasso”
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Solving the Graphical LASSO
" JE
Objective is convex, but non-smooth as in LASSO
Also, positive definite constraint!

There are many approaches to optimizing the objective

Most common = coordinate descent akin to shooting algorithm
(Friedman et al. 2008)

Some issues...

Ballpark: several minutes for a 1000-variable problem
Algorithms scale as O(d"3)
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Faster Computations
* JEE—
From Daniela Witten’s talk at JSM 2012:

1. The jth variable is unconnected from all others in the
graphical lasso solution if and only if |Sj| < A for all
i=1,....—1j4+1,...,p.

2. Let A denote the p x p matrix whose elements take the form
Aii =1, Ajj = 15;/>x. Then the connected components of A

are the same as the connected components of the graphical
lasso solution.

We can obtain the exact right answer by solving the graphical lasso
on each connected component separately!

Citations: Witten et al. JCGS 2011, Mazumder and Hastie JMLR 2012
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Covariance Screening for Glasso

From Daniela Witten’s talk at JSSM 2012:

» The solution to the graphical lasso problem with A = 0.7 has
five connected components (why 57!)

» Perform graphical lasso on each component separately!

» Reduction in computational time: From O(50%) to O(24%).
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