Case Study 3: fMRI Prediction

Graphical LASSO

Multivariate Normal Models

- So far, we looked at the univariate multiple regression
 \[y^i = \beta_0 + \beta_1 x_1^i + \ldots + \beta_p x_p^i + \epsilon^i \quad \epsilon^i \sim N(0, \sigma^2) \]
 \[\Rightarrow y^i \sim N(\beta^T x^i, \sigma^2) \]

- If one has a multivariate response \(y^j \in \mathbb{R}^d \)
 \[y^j \sim N \left(\begin{bmatrix} \beta_0^T \\ \beta_1^T \\ \vdots \\ \beta_p^T \\ \beta_1^T \end{bmatrix} x^j , \begin{bmatrix} \sigma^2 \\ \sigma^2 & 0 \\ \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 \end{bmatrix} \right) \]

\(a^{(l)} \) are reg. coeff. for the \(l^{th} \) dim
Multivariate Normal Models

- If one has a multivariate response $y^i \in \mathbb{R}^d$
 - Assuming correlation between the output dimensions
 $$y^i \sim N(B^i x^i, \Sigma)$$
 recall: $\text{cov}(y_5, y_7) = \Sigma_{57}$
- Assume linear (or other mean regression) is removed and focus on the correlation structure
 $$y^i \sim N(0, \Sigma)$$ sym., pos. def.

- Matrix valued parameter!
 See more of this in Case Study 4

High-Dimensional Covariance

- What if d is large?
 - many semantic features
 $$\# \text{ params } (\Sigma) = \frac{d(d+1)}{2}$$ sym.
 Again, consider $d \gg N$ but $O(d^2)$ params to est.

- A few common approaches:
 - Low-rank approximations
 - Sparsity assumptions
Low-Rank Approximations

- In general, assume some matrix parameter
 \[\Theta = AB, \quad k \ll d, m \]
 will see this in case Study 4
- Here, \(\Sigma \) must be a symmetric, positive definite matrix
 \[\Sigma = \sum_{i=1}^{d} \sigma_i^2 + \sum_0 \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_d^2 \end{bmatrix} \]

\[\sum = \Lambda \Lambda' + \Sigma_0 \]

\[d < k \ll d \]

Number of parameters:
\[d \cdot k \cdot d = d(k+1) \]

sig. reduction in param. for \(k \ll d \)
Latent Factor Models

- Low-rank approximation arises from a latent factor model
 \[y = \Lambda \eta + \varepsilon \]
 \[\eta \sim N_{k}(0, I) \]
 \[\varepsilon \sim N_{d}(0, \Sigma_\varepsilon) \]

- Proof:
 \[\text{Cov}(y^T, \Lambda, \Sigma_\varepsilon) = E((y^T - E[y^T])(y^T - E[y^T])^T) = E[yy^T] - \Lambda E[\eta^T\eta] \Lambda^T + 2E[\eta^T\varepsilon\varepsilon^T] + E[\varepsilon\varepsilon^T] \]
 \[= \Lambda \Sigma_\varepsilon \Lambda^T + \Sigma_\varepsilon \]

Lower-dim Embeddings

Sharing information in low-dim subspace
Sparsity Assumptions

- What if we assume Σ is sparse?

 $\forall i \neq j \quad \Sigma_{ij} = 0 \quad \Rightarrow \quad y_i \perp \!\!\!\!\perp y_j$

 $\text{cor}(y_i, y_j) = 0$

 Could assume Σ sparse to reduce params, but each 0 encodes an indep. assumption ... often too strong

- More often, we can reasonably make statements about conditional independence

 "cat" $\perp \!\!\!\!\perp$ "dog" $\perp \!\!\!\!\perp$ "animal", "furry", "pet" ...

Information Form

- Motivations for considering "information form" of multivariate normal
 - Easier to read off conditional densities
 - Has log-linear form in terms of "information parameters"
Conditional Densities

- Assume a model with
 \[y \sim N^{-1}(\eta, \Sigma) \]
 and divide the dimensions into two sets

- Then,
 \[
 \begin{bmatrix}
 y_A \\
 y_{\bar{A}}
 \end{bmatrix}
 \sim N^{-1}
 \left(
 \begin{bmatrix}
 \eta_A \\
 \eta_{\bar{A}}
 \end{bmatrix},
 \begin{bmatrix}
 \Sigma_{AA} & \Sigma_{A\bar{A}} \\
 \Sigma_{\bar{A}A} & \Sigma_{\bar{A}\bar{A}}
 \end{bmatrix}
 \right)
 \]

 \[
 p(y_A | y_{\bar{A}}) = N^{-1}(\eta_A - \Sigma_{A\bar{A}}y_{\bar{A}}, \Sigma_{A\bar{A}})
 \]

- Let \(A = \{s, t\} \)

- Therefore,

Conditional Densities

- Let \(A = \{s, t\} \)

- \(\bar{A} \) = everything \(\notin \{s, t\} \)

- \[
 p(y_A | y_{\bar{A}}) = N^{-1}(\eta_A - \Sigma_{A\bar{A}}y_{\bar{A}}, \Sigma_{A\bar{A}})
 \]

- what if \(\Sigma_{st} = 0 \) ?

- \[
 \text{cov}(y_s, y_t | y_{\bar{A}}) = \Sigma_{AA}^{-1} = \begin{bmatrix}
 \Sigma_{ss} & 0 \\
 0 & \Sigma_{tt}
 \end{bmatrix}
 \]

- \(y_s \perp y_t | y_{\bar{A}} \iff \Sigma_{st} = 0 \)

- Therefore,
Connection with Graphical Models

- Undirected graphical model or Markov random field (MRF)

In Gaussian graphical model case, $\mathcal{N}(0,\Sigma)$ defines the edge set

In particular

$E = \{ (s,t) : \mathcal{N}(s,t) \neq 0 \}$

$p(y \mid \eta, \Omega) \propto \prod_t \psi_t(y_t) \prod_{(s,t) \in E} \psi_{st}(y_s, y_t)$

$\psi_t(y_t) \propto e^{\eta^t y_t}$

$\psi_{st}(y_s, y_t) \propto e^{-\frac{1}{2} y_s \Omega_{st} y_t}$

Sparse Precision vs. Covariance

- For a sparse precision matrix, the covariance need not be

$Z = \Sigma^{-1}$

Y is still fully correlated!
ML Estimation for Given Graph

- Assume a known graph $G = (V,E)$

Rewrite log likelihood:

$$
\log p(y | \theta) = \frac{N}{2} \log |\Sigma| - \frac{1}{2} \sum \left(y_{i} - m_{i} \right)^{T} \Sigma^{-1} \left(y_{i} - m_{i} \right) \\
= \frac{N}{2} \log |\Sigma| - \frac{1}{2} \text{tr} \left[\left(y_{i} - m_{i} \right) \left(y_{i} - m_{i} \right)^{T} \Sigma^{-1} \right] \\
= \frac{N}{2} \log |\Sigma| - \frac{1}{2} \text{tr} \left(S \Omega \right) \\
L(\Omega) = \log |\Sigma| - \text{tr} \left(S \Omega \right) \\
\text{In our case, } M = 0
$$

Trace trick:

$\text{Trace trick:} \quad x^{T} A x = \text{tr} \left(x^{T} A x \right) = \text{tr} \left(A x x^{T} \right)$

Matrix reference manual

Many approaches to solving:

- Barrier method – add penalty if Ω leaves the positive definite cone (Dahl et al. 2008)
- Coordinate descent method (cf., Hastie et al. 2009)
- ...
ML Estimation for Given Graph

- Can show that the optimal solution satisfies
 \[\sum_{s,t} G_{st} = S_{st} \quad \text{if } (s,t) \in E \]
 \[\Omega_{st} = 0 \quad \text{if } (s,t) \notin E \]

Example:

\[G = \begin{pmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0
\end{pmatrix} \quad S = \begin{pmatrix}
 10 & 1 & 5 & 4 \\
 1 & 10 & 2 & 6 \\
 5 & 2 & 10 & 3 \\
 4 & 6 & 3 & 10
\end{pmatrix} \]

\[\Omega = \begin{pmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix} \quad \Sigma = \begin{pmatrix}
 10 & 1 & 5 & 4 \\
 1 & 10 & 2 & 6 \\
 5 & 2 & 10 & 3 \\
 4 & 6 & 3 & 10
\end{pmatrix} \]

Estimating Graph Structure

- To learn the structure of the Gaussian graphical model, we want to trade off fit and sparsity
 - Measure of fit: \[\log \text{likelihood} = \log |\Sigma| - \text{tr}(SS') + \text{const.} \]
 - Encouraging sparsity: \[\lVert S \rVert_1 = \sum_{s,t} \Omega_{st} \]
 - Overall objective = “graphical LASSO” or “Glasso”
 \[F(S) = -\log |\Sigma| + \text{tr}(SS') + \lambda \lVert S \rVert_1 \]
 \[\text{Just as in LASSO, but w/ a matrix parameter and s.t. } S \succeq 0 \]
Solving the Graphical LASSO

- Objective is convex, but non-smooth as in LASSO ... subgrad.
- Also, positive definite constraint!

- There are many approaches to optimizing the objective
 - Most common = coordinate descent akin to shooting algorithm (Friedman et al. 2008)

- Some issues...
 - Ballpark: several minutes for a 1000-variable problem
 - Algorithms scale as $O(d^3)$

Faster Computations

From Daniela Witten’s talk at JSM 2012:

1. The jth variable is unconnected from all others in the graphical lasso solution if and only if $|S_{ij}| \leq \lambda$ for all $i = 1, \ldots, j - 1, j + 1, \ldots, p$.
2. Let A denote the $p \times p$ matrix whose elements take the form $A_{ii} = 1$, $A_{ij} = 1_{|S_{ij}| > \lambda}$. Then the connected components of A are the same as the connected components of the graphical lasso solution.

We can obtain the exact right answer by solving the graphical lasso on each connected component separately!

Citations: Witten et al. JCGS 2011, Mazumder and Hastie JMLR 2012
Covariance Screening for Glasso

From Daniela Witten’s talk at JSM 2012:

- The solution to the graphical lasso problem with $\lambda = 0.7$ has five connected components (why 5?!)
- Perform graphical lasso on each component separately!
- **Reduction in computational time:** From $O(50^3)$ to $O(24^3)$.

©Emily Fox 2013