Case Study 4: Collaborative Filtering

Graph-Parallel Problems

Synchronous v.
Asynchronous Computation

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
March 12th 2013

©Carlos Guestrin 2013 1

Needless to Say, We Need
Machine Learning for Big Data

flickr V([Tube

6 Billion . 1 Billion 72 Hours a Minute
Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages

Ehe New Jork Times
SundayReview
WORLD US. NY./

REGION BUSINESS TEC

“... data a new class of economic
asset, like currency or gold.”

The Age of Big Data

EEEEEEEEE

CPUs Stopped Getting Faster...

10 £ O

N [|

I

o 1 u \

b5 B constant

a8 B

7))

5 0.1 @FQ O

2 0

Q

: .

D'0.01 1 i i | i | e 1
© o o <) © o o <) © o
159) o) o) Lo o) o) S o o o S —
1)) o)) o)) o)) Is)) o)) S S =) S S o
— — — — — ~— N N o o o o

release date

©Carlos Guestrin 2013

ML in the Context of Parallel
Architectures

sy [
ST amazon
: EME webservices™] L
GPUs Multicore Clusters Clouds Supercomputers

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability
2. Data distribution
3. Failures

©Carlos Guestrin 2013 4

Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:
Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...
Generally, you are still on your own WRT designing parallel algorithms

m Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers
Higher-level:
= Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
= GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013

Simplest Type of Parallelism:

. Data Parallel Problems

e WA
m You have already learned a classifier () . T
\ ~ AWy b

What's the test error? 4w = - E-"z_ ‘ 3 S'ﬂ (X M
m You have 10B labeled documents and 1000 machines

— .

'ng |a ’<
lcor~— r.]l' [§ ' T 7 logo
(yvor 0

faSyet of

Jortn Quirp

L"ﬂ;l’
m Problems that can be broken into independent subproblems are

called data-parallel (or embarrassingly parallel)

m Map-Reduce is a great tool for this...
Focus of today’s lecture
but first a simple example

©Carlos Guestrin 2013’

Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction

~ Qo
= Map:Tn-—\{.,,,.\‘ hplu)'u Lpant wor
1 Data-parallel over elements, e.g., documents fVﬁP (A(:M«J’)
1 Generate (key,value) pairs . p(
= ‘“value” can be any data type 'ﬁy wgrd j’\ oc
VW' .
(ow13) (Mey's1) i (e 1)
ia thi) -t;om’h P ew)
- l"."j’ln
m Reduce: Takg ¢ (I v Assogid Luidh o by MH fas e (i
[Aggregate values for each key &nA ,dl w (bﬂ(l Comnt: {'S“(N'))
) Must be commutative-associate operation (=o
1 Data-parallel over keys {b PN &) ~J’
[l Generate (key,value) pairs “ 4 .s
) - L= ConT L)
ey, I (ﬂu{,L',W, ":”:‘Zj) ‘
et (Lw, 30) et load,)

m Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013 8

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

/\ (ky,v4) (kq,v4)

/ M1 T2 (k,,v,) ‘ 7 (kov)

U (kyvy) oL (K3,v3)

M2 _’(k Vo) € "~ —>

3 20V2 >3 (Kq,V4)
£ < 3¢ 2
& 8 El-
Q128 <8
L2 B E

m <
(KqmyVq) (Ks,V5)
U 0 [(v, (ko)

©Carlos Guestrin 2013 9

Issues with Map-Reduce Abstraction
* JEE
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging

m Computation is synchronous

©Carlos Guestrin 2013 10

SGD for Matrix Factorization in

MaE-Reduce?

€ = Lgf) 'Rgt) — Twy Lg‘ﬁl)] [(1 B nt)\u)Lgf) - nthRE;t)

1()t+1) (1 - ﬁt)\v) z(;t) - nthL&t)

m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key

m Here, one update at a time!

©Carlos Guestrin 2013 1

Matrix Factorization as a Graph

The Celebration

S City of God

(% Wild Strawberries

La Dolce Vita

©Carlos Guestrin 2013 12

Flashback to 1998

iy 2 !
altavista. Go\’g T

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!

Social Media Science Advertising Web

H £ a
v ¢ W

¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Carlos Guestrin 2013

14

Facebook Graph

Data model
Objects & Associations

18429207554
(page)
fan
8636146 : b d 08/0 06
admin ay: 1961
(user) website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering presentation] 5
©Carlos Guestrin 2013

Label a Face and Propagate

16

©Carlos Guestrin 2013

Pairwise similarity not enough...

. Not similar enough
grandma to be sure

17

©Carlos Guestrin 2013

Propagate Similarities & Co-occurrences
for Accurate Predictions

co-occurring
faces
M further evidence

18

Example: Estimate Political Bias

Latent Topic Modeling (LDA)
ooy

10

ML Tasks Beyond Data-Parallelism

< Data-Parallel Graph-Parallel

Map Reduce
Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
Belief Propagation | abel Propagation
Computing Sufficient Variational Opt. CoEM
Statistics

Collaborative = Graph Analysis
Filtering ~ PageRank
Tensor Factorization Triangle Counting

21
©Carlos Guestrin 2013

Example of a
Graph-Parallel
Algorithm

11

Depends on rank
PageRank of who follows them...
Depends on rank J
of who follows her

b

What's the rank
of this user?

Loops in graph =» Must iterate! ”

PageRank Iteration

ﬁ /ﬁ Rlil|=a+ (1 —«a) Z wij; R[j]
(Ji)EE

e « isthe random reset probability
o w;is the prob. transitioning (similarity) from j to i 24
©Carlos Guestrin 2013

12

Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

/ l\(ﬁ\’lx\& / i

=N

A

Friends Rank

25

©Carlos Guestrin 2013

Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\YET N[V« I Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
) . Belief Propagation Label Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

26
©Carlos Guestrin 2013

13

Graph Computation:

Synchronous
V.
Asynchronous

Bulk Synchronous Parallel Model:
Pregel (Giraph) [Valiant 90]

Compute Communicate

14

Map-Reduce — Execution Overview

Big Data < >

-

Map Phase Shuffle Phase
(k1,v4)
/ M k) ‘
_)(k1’vV1’) ., R
g/’ M2 (kz,v2) S ;?:g_/
£ SRS
: 2.
2%
S el S ®
© A % I
(2]
<
(V)
M1000 > (K., V.

©Carlos Guestrin 2013

(kpovy)
— (ky.v)

(K3,v3)

> (KyoVa)

(Ks,Vs)

[(Ke,Vs)

Reduce Phase

29

BSP — Execution Overview

P\
Split graph

C ogomm C O

Compute Phase

N

across machines

M1

(vidy)

Communicate Phase

(vidy) <

\

M2

(vidy)

(vidy)

v

M1000

(vid;)

] Message machine
-, for every edge (vid,vid’)

(vid,)

©Carlos Guestrin 2013

30

15

Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

focus here

- ©06000

[2)
30

important
influence

©Carlos Guestrin 2013

32

16

Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

33

©Carlos Guestrin 2013

Runtime in Seconds

BSP ML Problem:
Synchronous Algorithms can be Inefficient

10000
Bulk Synchronous (e.g., Pregel)
8000 /
6000 Theorem:
Asynchronous Splash BP Bulk Synchronous BP
4000 O(#tvertices) slower
2000 than Asynchronous BP

1 2 3 4 5 6 7 8
Number of CPUs

34

©Carlos Guestrin 2013

17

Synchronous v. Asynchronous
" S

m Bulk synchronous processing: m Asynchronous processing:
Computation in phases Vertices see latest information from
= All vertices participate in a phase neighbors
Though OK to say no-op = Most closely related to sequential
= All messages are sent execution

Simpler to build, like Map-Reduce
= No worries about race conditions,
barrier guarantees data consistency

= Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

Harder to build:

= Race conditions can happen all the time

Must protect against this issue

= More complex fault tolerance

= When are you done?

= Must implement scheduler over vertices
Faster convergence for many ML
problems

In matrix-land, called Gauss-Seidel

Iteration
Implemented by GraphLab 2010, 2012

©Carlos Guestrin 2013 35

Case Study 4: Collaborative Filtering

GraphLab

Machine Learning/Statistics for Big Data
CSES599C1/STAT592, University of Washington

Carlos Guestrin
March 12th, 2013

©Carlos Guestrin 2013 36

18

The GraphLab Goals

Know how to

solve ML problem
on 1 machine

Graph| a0\

Efficient
- parallel

predictions

3 \}\)t\ﬂ “amazon

¥ amazon
v N (5

©Carlos Guestrin 2013 37

Data Graph

Data associated with vertices and edges

Graph: O_O

* Social Network

Vertex Data: '
* User profile text
* Current interests estimates

Edge Data: i
* Similarity weights

©Carlos Guestrin 2013 38

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to
vertex transforms data in of vertex

pagerank(i, scope){

}

©Carlos Guestrin 2013 40

20

Update Function Example:
Connected Components

©Carlos Guestrin 2013 41

The Scheduler

The scheduler determines order vertices are updated

| -
Q
>
S
@
<
Q
n

©Carlos Guestrin 2013 42

21

Example Schedulers

¢ Round-robin
¢ Selective scheduling (skipping):
e round robin but jump over un-scheduled vertice
¢ FIFO
o Prioritize scheduling

¢ Hard to implement in a distributed fashion
» Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013 43

Ensuring Race-Free Code

How much can computation overlap?

‘/\

A

©Carlos Guestrin 2013 44

22

Need for Consistency?

~ Higher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

©Carlos Guestrin 2013

45

Graphlab Ensures Sequential Consistency

For each parallel execution, there exists a sequential

execution of update functions which produces the same result

o0—@ @

CPU 1
Parallel
CPU 2
Sequential Single
CPU

©Carlos Guestrin 2013

46

23

Train RMSE

Consistency in Collaborative Filtering

128

64 -
== |nconsistent updates
32

- Consistent updates
16

0 2 4 6 8
Updates Millions

Netflix data, 8 cores ©Carlos Guestrin 2013 47

The GraphlLab Framework

Graph Based Update Functions
Data Representation User Computation

Scheduler

©Carlos Guestrin 2013 48

24

Triangle Counting in Twitter Graph

V Total:

40M Users 34.8 Billion Triangles
1.2B Edges

Hadoop

1 64 Machines, 1024 Cores

GraphLab ~1.5 Minutes

©Carlos Guestrin 2013

Hadoop results from [Suri & Vassilvitskii '11] 49

CoEM (Jones et al., 2005)

Named Entity Recognition Task

Is “Dog” an animal? dog Q—Q<X> ran quickly

Is “Catalina” a place?

Australia travelled to <X>
Vertices: 2 Million
Edges: 200 Million cataiina island <X> is pleasant
©Carlos Guestrin 2013 50

25

Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs
Distributed 32 EC2 80 secs
GraphlLab machines

©Carlos Guestrin 2013 51

What you need to know...
" JEE
m Data-parallel versus graph-parallel computation

m Bulk synchronous processing versus
asynchronous processing

m GraphLab system for graph-parallel computation
Data representation
Update functions
Scheduling
Consistency model

©Carlos Guestrin 2013 52

26

