

Move Towards Higher-Level **Abstraction**

- Programmability
- Data distribution
- High-level abstractions try to simplify distributed programming by hiding challenges:
 - ☐ Provide different levels of robustness to failures, optimizing data movement and communication, protect against race conditions...
 - ☐ Generally, you are still on your own WRT designing parallel algorithms
- Some common parallel abstractions:
 - □ Lower-level:
 - Pthreads: abstraction for distributed threads on single machine
 - MPI: abstraction for distributed communication in a cluster of computers
 - □ Higher-level:
 - Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
 - GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013

Simplest Type of Parallelism: **Data Parallel Problems**

- You have already learned a classifier with the test error? $\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2$
- You have 10B labeled documents and 1000 machines

- Problems that can be broken into independent subproblems are called data-parallel (or embarrassingly parallel)
- Map-Reduce is a great tool for this...
 - □ Focus of today's lecture
 - □ but first a simple example

Data Parallelism (MapReduce) Compared to the second of th

Issues with Map-Reduce Abstraction

- - Often all data gets moved around cluster
 - $\hfill\Box$ Very bad for iterative settings
 - Definition of Map & Reduce functions can be unintuitive in many apps
 - ☐ Graphs are challenging
 - Computation is synchronous

©Carlos Guestrin 2013

_

SGD for Matrix Factorization in Map-Reduce?

$$\epsilon_{t} = L_{u}^{(t)} \cdot R_{v}^{(t)} - r_{uv} \qquad \left[\begin{array}{c} L_{u}^{(t+1)} \\ R_{v}^{(t+1)} \end{array} \right] \leftarrow \left[\begin{array}{c} (1 - \eta_{t} \lambda_{u}) L_{u}^{(t)} - \eta_{t} \epsilon_{t} R_{v}^{(t)} \\ (1 - \eta_{t} \lambda_{v}) R_{v}^{(t)} - \eta_{t} \epsilon_{t} L_{u}^{(t)} \end{array} \right]$$

- Map and Reduce functions???
- Map-Reduce:
 - □ Data-parallel over all mappers
 - □ Data-parallel over reducers with same key
- Here, one update at a time!

©Carlos Guestrin 2013

Flashback to 1998

First Google advantage: a **Graph Algorithm** & a **System to Support** it!

Social Media

Science

Advertising

Web

• Graphs encode the relationships between:

People Products Ideas Facts Interests

- Big: 100 billions of vertices and edges and rich metadata
 - Facebook (10/2012): 1B users, 144B friendships
 - Twitter (2011): 15B follower edges

©Carlos Guestrin 2013

1/1

ML Tasks Beyond Data-Parallelism

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction Cross Validation

Computing Sufficient Statistics

Graphical Models Semi-Supervised
Gibbs Sampling Learning

Gibbs Sampling
Belief Propagation
Variational Opt.

Learning
Label Propagation
CoEM

Collaborative
Filtering
Tensor Factorization

Graph Analysis
PageRank
Triangle Counting

©Carlos Guestrin 2013

21

Example of a Graph-Parallel Algorithm

Graph Computation:

Synchronous v. Asynchronous

Bulk synchronous parallel model provably inefficient for some ML tasks

Synchronous v. Asynchronous

- Bulk synchronous processing:
 - Computation in phases
 - All vertices participate in a phaseThough OK to say no-op
 - All messages are sent
 - □ Simpler to build, like Map-Reduce
 - No worries about race conditions, barrier guarantees data consistency
 - Simpler to make fault-tolerant, save data on barrier
 - □ Slower convergence for many ML problems
 - □ In matrix-land, called Jacobi Iteration
 - □ Implemented by Google Pregel 2010

- Asynchronous processing:
 - □ Vertices see latest information from neighbors
 - Most closely related to sequential execution
 - □ Harder to build:
 - Race conditions can happen all the time
 Must protect against this issue
 - More complex fault tolerance
 - When are you done?
 - Must implement scheduler over vertices
 - □ Faster convergence for many ML problems
 - In matrix-land, called Gauss-Seidel Iteration
 - □ Implemented by GraphLab 2010, 2012

©Carlos Guestrin 2013

35

Case Study 4: Collaborative Filtering

Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin March 12th, 2013

©Carlos Guestrin 2013

How do we *program* graph computation?

"Think like a Vertex."

-Malewicz et al. [SIGMOD'10]

Example Schedulers

- Round-robin
- Selective scheduling (skipping):
 - round robin but jump over un-scheduled vertice
- FIFO
- Prioritize scheduling
 - Hard to implement in a distributed fashion
 - Approximations used (each machine has its own priority queue)

©Carlos Guestrin 2013

43

Ensuring Race-Free Code

How much can computation overlap?

©Carlos Guestrin 2013

Never Ending Learner Project (CoEM)

Hadoop	95 Cores	7.5 hrs
Distributed GraphLab	32 EC2 machines	80 secs

©Carlos Guestrin 2013

51

What you need to know...

- Data-parallel versus graph-parallel computation
- Bulk synchronous processing versus asynchronous processing
- GraphLab system for graph-parallel computation
 - □ Data representation
 - □ Update functions
 - □ Scheduling
 - □ Consistency model

©Carlos Guestrin 2013