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Needless to Say, We Need
Machine Learning for Big Data
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“... data a new class of economic
asset, like currency or gold.”

The Age of Big Data
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CPUs Stopped Getting Faster...
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ML in the Context of Parallel
Architectures
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m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability-;
2. Data distribution
3. Failures —
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Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:
Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...
Generally, you are still on your own WRT designing parallel algorithms

m  Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers
Higher-level:
= Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
= GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013

Simplest Type of Parallelism:

. Data Parallel Problems

m You have already learned a classifier (i)
h (W YU

What's the test error? 4w = ‘ '3 Slj ( X M
= You haye 10B labeled documents and 1000 machlnes
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m Problems that can be broken into independent subproblems are

called data-parallel (or embarrassingly parallel)

n Nwe is a great tool for this...
ocus of today’s lecture

but first a simple example
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Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction
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m  Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase
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Issues with Map-Reduce Abstraction
" JEE
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging
\—.

m Computation is synchronous
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SGD for Matrix Factorization in

MaE-Reduce?
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m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key
m\

m Here, one update at a time!
R —
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Matrix Factorization as a Graph
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Flashback to 1998
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altavista. Go\’g T

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!

Social Media Science Advertising Web
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¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges
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Facebook Graph

Data model
Objects & Associations
fan

8636146 / admin birthday: 08/04/1961
(user) website: http://...
- verified: 1
/ friend
likes
liked by friend \

—_— 04191769
/ (use!

6205972929
(story)

18429207554
(page)
Pag

Slide from Facebook Engineering presentation] 5
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Label a Face and Propagate
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Pairwise similarity not enough...

. Not similar enough
grandma to be sure

17
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Propagate Similarities & Co-occurrences
for Accurate Predictions

co-occurring
faces
M further evidence
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Example: Estimate Political Bias
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Latent Topic Modeling (LDA) Y
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ML Tasks Beyond Data-Parallelism

N
Graph-Parallel

Graphical Models Semi-Supervised

Feature

Extraction  Validagion Gibbs Sampling Learning
Belief Propagation | abel Propagation
Variational Opt. CoEM

Statistics Collaborative  Graph Analysis

Filtering ~ PageRank
Tensor Factorization Triangle Counting

21
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Example of a
Graph-Parallel
Algorithm
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Depends on rank
PageRank of who follows them...
Depends on rank .
of who follows her

b

What's the rank
of this user?

23

PageRank Iteration
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e « isthe random reset probability

o w;is the prob. transitioning (similarity) from j to i 24
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Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation
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Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\YET N[V« I Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
) . Belief Propagation  Label Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

26
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Graph Computation:

/f Synchronous

V.
\ Asynchronous
Bulk Synchronous Parallel Model:
Pregel (Giraph) [Valiant ‘90]

fjhe
Compute/ﬁ‘{ Communicate
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Map-Reduce — Execution Overview

Big Data < >
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BSP — Execution Overview
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Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]
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important
influence

32
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Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

33
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Runtime in Seconds

BSP ML Problem: 8P o &l dwa
Synchronous Algorithms can be Inefficient

10000
Bulk Synchronous (e.g., Pregel)
8000 /
6000 Theorem:
Asynchronous Splash BP Bulk Synchronous BP
4000 O(#tvertices) slower
2000 than Asynchronous BP
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Synchronous v. Asynchronous
—_—

m  Bulk synchronous processing: m  Asynchronous processing:

Computation in phases
= All vertices participate in a phase
Though OK to say no-op
= All messages are sent
Simpler to build, like Map-Reduce

= No worries about race conditions,
barrier guarantees data consistency

= Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010
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Vertices see latest information from
neighbors

= Most closely related to sequential
execution

Harder to build:

= Race conditions can happen all the time

Must protect against this issue

= More complex fault tolerance

= When are you done?

= Must implement scheduler over vertices
Faster convergence for many ML
problems
In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012
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