Case Study 4: Collaborative Filtering

Graph-Parallel Problems

Synchronous v.
Asynchronous Computation

Machine Learning/Statistics for Big Data
CSES99C1/STATS92, University of Washington

Carlos Guestrin
March 12th 2013

©Carlos Guestrin 2013 1

Needless to Say, We Need
Machine Learning for Big Data

flickr V([Tube

6 Billion . 1 Billion 72 Hours a Minute
Flickr Photos 28 Million Facebook Users YouTube
Wikipedia Pages

Ehe New Jork Times
SundayReview
WORLD US. NY./

REGION BUSINESS TEC

“... data a new class of economic
asset, like currency or gold.”

The Age of Big Data

EEEEEEEEE

CPUs Stopped Getting Faster...

10 £ O

N [|

I

o 1 u \

b5 B constant

a8 B

7))

5 0.1 @FQ O

2 0

Q

: .

D'0.01 1 i i | i | e 1
© o o <) © o o <) © o
159) o) o) Lo o) o) S o o o S —
1)) o)) o)) o)) Is)) o)) S S =) S S o
— — — — — ~— N N o o o o

release date

©Carlos Guestrin 2013

ML in the Context of Parallel
Architectures

sy | [
q.é" 21 z
< (SRR amazon,
GPUs Multicore Clusters Clouds Supercomputers

/

m But scalable ML in these systems is hard,
especially in terms of:
1. Programmability-;
2. Data distribution
3. Failures —

©Carlos Guestrin 2013 4

Move Towards Higher-Level
Abstraction

m Distributed computing challenges are hard and annoying!
Programmability
Data distribution
Failures
m High-level abstractions try to simplify distributed programming by
hiding challenges:
Provide different levels of robustness to failures, optimizing data
movement and communication, protect against race conditions...
Generally, you are still on your own WRT designing parallel algorithms

m Some common parallel abstractions:

Lower-level:
= Pthreads: abstraction for distributed threads on single machine
= MPI: abstraction for distributed communication in a cluster of computers
Higher-level:
= Map-Reduce (Hadoop: open-source version): mostly data-parallel problems
= GraphLab: for graph-structured distributed problems

©Carlos Guestrin 2013

Simplest Type of Parallelism:

. Data Parallel Problems

m You have already learned a classifier (i)
h (W YU

What's the test error? 4w = ‘ '3 Slj (X M
= You haye 10B labeled documents and 1000 machlnes

jon
loce |a O O @
(’ﬁ’r‘p Jooo

(yvor 0
faSaet of
dotn

m Problems that can be broken into independent subproblems are

called data-parallel (or embarrassingly parallel)

n Nwe is a great tool for this...
ocus of today’s lecture

but first a simple example

©Carlos Guestrin 2013’

Data Parallelism (MapReduce)

Solve a huge number of independent subproblems,
e.qg., extract features in images

Map-Reduce Abstraction

N~ ot
= Map: Tﬂ-—\{wh‘ P ¥] e wov
1 Data-parallel over elements, e.g., documents fVﬁP (A(, M.\J’)
1 Generate (key,value) pairs . p(
= ‘“value” can be any data type PV 'ﬁy W m'A j’\ oc
’ .
Vw — .
(' ‘?) (”'\“'7II ') Lt ('vo'l' |)
1A +"\,) lfhm,(l ; ltuu.‘l') —
- l "“’j’l n —
m Reduce: Takg ¢ (I v Assogid Luidh o by MH a6 ot
[Aggregate values for each key &nA ,dl w (”(l Comnt: {.S‘f (N'))
) Must be commutative-associate operation (=o
E Data-parallel over keys {or : ‘A G ~J’

Generate (key,value) pairs
2$

"‘YL rduma ({M‘{,Ell [F, 90,5 Crz o~)

trit (‘0w 30) et liowd, (’) |{

m Map-Reduce has long history in functional programming
1 But popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

©Carlos Guestrin 2013 8

Map-Reduce — Execution Overview

Map Phase Shuffle Phase Reduce Phase

lwl '?
(@) (k1,v4)
/ M1 _>(k2,V2) ‘ _>(k2,V2)
(kysvy) .8 (ks,Va)
—> ey —
§ / M2 (ky,Vyp) ;;g_/ _>(k41V4)
SE - =< ou [-
il 35/ w0 ()
¥ 2 250
g. - © el
g ey T o8 3
. [} ¥
— <
i
(Ky», V) (ks,Vs)
M1000 [~ (k.. v, > (Ke,Ve)

©Carlos Guestrin 2013 9

Issues with Map-Reduce Abstraction
" JEE
m Often all data gets moved around cluster
Very bad for iterative settings

m Definition of Map & Reduce functions can be
unintuitive in many apps
Graphs are challenging
\—.

m Computation is synchronous

©Carlos Guestrin 2013 10

SGD for Matrix Factorization in

MaE-Reduce?

Lgfﬂ)] [(1- ntAu)Lﬁf) — UthRE;t)

e =LY - RY —r,,)
Rq(;t+) (1 - ﬁt)\v) z(;t) - UthLgbt)

m Map and Reduce functions???

m Map-Reduce:
Data-parallel over all mappers
Data-parallel over reducers with same key
m\

m Here, one update at a time!
R —

©Carlos Guestrin 2013 1

Matrix Factorization as a Graph

'*
afy meNT O =

‘. Women on the Verge of a
\ Nervous Breakdown

The Celebration

@& City of God

> Wild Strawberries

La Dolce Vita

©Carlos Guestrin 2013 12

Flashback to 1998

iy 2 !
altavista. Go\’g T

SEARCH SOFTWARE

First Google advantage:
a Graph Algorithm & a System to Support it!

Social Media Science Advertising Web

H £ a
v ¢ W

¢ Graphs encode the relationships between:

People Products Ideas
Facts Interests
o Big: 100 billions of vertices and edges and rich metadata

o Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

©Carlos Guestrin 2013

14

Facebook Graph

Data model
Objects & Associations
fan

8636146 / admin birthday: 08/04/1961
(user) website: http://...
- verified: 1
/ friend
likes
liked by friend \

—_— 04191769
/ (use!

6205972929
(story)

18429207554
(page)
Pag

Slide from Facebook Engineering presentation] 5
©Carlos Guestrin 2013

Label a Face and Propagate

16

©Carlos Guestrin 2013

Pairwise similarity not enough...

. Not similar enough
grandma to be sure

17

©Carlos Guestrin 2013

Propagate Similarities & Co-occurrences
for Accurate Predictions

co-occurring
faces
M further evidence

18

Example: Estimate Political Bias

©Carlos Guestrin 2013

Latent Topic Modeling (LDA) Y

W'I}S :nJot) ==

10

ML Tasks Beyond Data-Parallelism

N
Graph-Parallel

Graphical Models Semi-Supervised

Feature

Extraction Validagion Gibbs Sampling Learning
Belief Propagation | abel Propagation
Variational Opt. CoEM

Statistics Collaborative Graph Analysis

Filtering ~ PageRank
Tensor Factorization Triangle Counting

21
©Carlos Guestrin 2013

Example of a
Graph-Parallel
Algorithm

11

Depends on rank
PageRank of who follows them...
Depends on rank .
of who follows her

b

What's the rank
of this user?

23

PageRank Iteration

2/775?’)

RijZa+(1-a) Y wyRlj)

(J))eE

YIO] z Off ¢t O-XSZO-Zsz]{.o-CRCz)
4 O-SZC?,J}

e « isthe random reset probability

o w;is the prob. transitioning (similarity) from j to i 24
©Carlos Guestrin 2013

12

Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

/‘}(‘\“{‘\a A

NN

f
A

Friends Rank

Ce—

25

©Carlos Guestrin 2013

Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel

\YET N[V« I Graph-Parallel Abstraction

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
) . Belief Propagation Label Propagation
Computing Sufficient Variational Opt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization ~ Triangle Counting

26
©Carlos Guestrin 2013

13

Graph Computation:

/f Synchronous

V.
\ Asynchronous
Bulk Synchronous Parallel Model:
Pregel (Giraph) [Valiant ‘90]

fjhe
Compute/ﬁ‘{ Communicate

14

Map-Reduce — Execution Overview

Big Data < >

-

Map Phase Shuffle Phase Reduce Phase
(Kq,V4) (k1,v4)
/ M1 T2 (k,,v,) ‘ [(kav2)
(kyVy)) (ks,V3)
g A M2 [lkvy) < sz/ [(kv
: 22
2. 28
5 el 58
© AN % 1S
)]
<
(Kqmy V) (ks,Vs)
M1000 [~ (k.. v, > (Ke,Ve)

©Carlos Guestrin 2013

29

BSP — Execution Overview

/\ Co‘_r:rllgfl)ue Phase Communicate Phase o s
froun
) lnid musels b iy .
/ w1 (o < Cadlidia e
U (vid,.))
g A M2 |id,) 23
g c =
£ |, &5 v g
o < 58 €5
®© N=as D
(’5 &8, g >
3 s g2
D =3
o o
(vidy) /
4M1000 (V|d2)
\ ___——"CCarlos Guestrin 2013 30

15

Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

©Carlos Guestrin 2013

important
influence

32

16

Asynchronous Belief Propagation
Challenge/= Boundaries

Many
Updates

Few
Updates

Cumulative Vertex Updates

T T Algorithm identifies and focuses

on hidden sequential structure
Graphical Model

33

©Carlos Guestrin 2013

Runtime in Seconds

BSP ML Problem: 8P o &l dwa
Synchronous Algorithms can be Inefficient

10000
Bulk Synchronous (e.g., Pregel)
8000 /
6000 Theorem:
Asynchronous Splash BP Bulk Synchronous BP
4000 O(#tvertices) slower
2000 than Asynchronous BP

~ — —

0 -
1 2 3 4 5 6 7 8
Number of CPUs

[proc w5 et e ¢gync

34
©Carlos Guestrin 2013

17

Synchronous v. Asynchronous
—_—

m Bulk synchronous processing: m Asynchronous processing:

Computation in phases
= All vertices participate in a phase
Though OK to say no-op
= All messages are sent
Simpler to build, like Map-Reduce

= No worries about race conditions,
barrier guarantees data consistency

= Simpler to make fault-tolerant, save
data on barrier

Slower convergence for many ML
problems

In matrix-land, called Jacobi Iteration
Implemented by Google Pregel 2010

©Carlos Guestrin 2013

Vertices see latest information from
neighbors

= Most closely related to sequential
execution

Harder to build:

= Race conditions can happen all the time

Must protect against this issue

= More complex fault tolerance

= When are you done?

= Must implement scheduler over vertices
Faster convergence for many ML
problems
In matrix-land, called Gauss-Seidel
Iteration

Implemented by GraphLab 2010, 2012

35

18

