Case Study 2: Document Retrieval

Spectral Clustering

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington
Emily Fox
February 14th, 2013

©Emily Fox 2013

New Approach: Spectral Clustering

- **Goal:** Cluster observations
- **Method:**
 - Use similarity metric between observations
 - Form a similarity graph
 - Use standard linear algebra and optimization techniques to cut graph into connected components (clusters)
Setup

- Data: x^1, \ldots, x^N
- Similarity metric: s_{ij}

- Similarity graph
 - Nodes v^i
 - Edge weights $w_{ij} = f(s_{ij})$

- Problem: Want to partition graph such that edges between groups have low weights

Graph Terminology I

- Weighted adjacency matrix
 $$W = \{w_{ij}\} : i,j=1,\ldots,N$$
Issues with MinCut

- MinCut favors isolated clusters

Cuts Accounting for Size

- Ratio cuts (RatioCut)
- Normalized cuts (Ncut)
- Lead to “balanced” clusters
Restating Cut Metric

\[x^T D x \]
\[x^T W x \]
\[x^T (D - W) x \]

Ratio Cuts for General k

- Define cluster indicator variables:
\[
F_{ij} = \begin{cases}
\frac{1}{\sqrt{|A_j|}} & v^i \in A_j \\
0 & \text{otherwise}
\end{cases}
\]

RatioCut
\[
\text{RatioCut}(A_1, \ldots, A_k) = \sum_{i=1}^{k} f'_{Ai} L f_{Ai} = \text{Tr}(F'_A L F_A)
\]

Reformulating RatioCut problem
\[
\min_{A_1, \ldots, A_k} \text{Tr}(F'_A L F_A) \quad \text{s.t.} \quad F'_A F_A = I
\]

Relaxation
\[
\min_{F \in \mathbb{R}^{N \times k}} \text{Tr}(F' L F) \quad \text{s.t.} \quad F' F = I
\]

Solution: \(F = 1^{st} k \) eigenvectors of \(L \)
Normalized Cuts for General k

- Define cluster indicator variables:
 \[F_{ij} = \begin{cases} 1/\sqrt{\text{vol}(A_j)} & \text{if } v_i \in A_j \\ 0 & \text{otherwise} \end{cases} \]
 \[F_A F_A' = I \]
 \[F_A' D F_A = I \]

- Reformulating RatioCut problem
 \[\min_{A_1, \ldots, A_k} \text{Tr}(F_A' L F_A) \quad \text{s.t.} \quad F_A' D F_A = I \]

- Relaxation
 \[\min_{H \in \mathbb{R}^N \times k} \text{Tr}(H' D^{-1/2} L D^{-1/2} H) \quad \text{s.t.} \quad H' H = I \]

- Solution:
 - \(H \) is matrix of first \(k \) eigenvectors of \(L_{sym} \), which is equivalent to the approximate \(F \) being the first \(k \) eigenvectors of \(L_{rw} = I - D^{-1} W \)

Random Walks on Graphs

- Stochastic process with random jumps from \(v_i \) to \(v_j \) with:
 \[p_{ij} = \frac{w_{ij}}{d_i} \]

- Transition matrix:
 \[P = D^{-1} W \]

- Connection to graph Laplacian:
 \[L_{rw} = I - D^{-1} W = I - P \]

- Intuitively, want to partition graph s.t. random walk stays in cluster for a while and rarely jumps between clusters
Random Walks on Graphs

- Assume that stationary distribution exists and is unique. Then,
 \[\pi = (\pi_1, \ldots, \pi_n) \quad \pi_i = \frac{d_i}{\text{vol}(V)} \]

- Proposition: \(\text{Ncut}(A, \bar{A}) = P(A \mid A) + P(A \mid \bar{A}) \)

- Proof:
 \[\text{Ncut}(A, \bar{A}) = \frac{P(X_0 \in A, X_1 \in \bar{A})}{P(X_0 \in A)} = \frac{\sum_{i \in \bar{A}, j \in B} \pi_i \pi_j}{\text{vol}(A)} \]

- Minimizing normalized cuts is equivalent to minimizing the probability of transitioning between clusters

Case Study 3: fMRI Prediction

fMRI Prediction Task, LASSO Regression

Machine Learning/Statistics for Big Data
CSE599C1/STAT592, University of Washington

Emily Fox
February 14th, 2013
fMRI Prediction Task

- **Goal:** Predict word stimulus from fMRI image

 \[\text{Can we read your brain?} \]

 ![fMRI Image]

 Classifier (logistic regression, kNN, ...)

 ![Hammer Image]

 ![House Image]

fMRI
fMRI

- High res.
 - ~1 mm resolution
 - Pretty slow
- 1 image per sec.
- Safe, non-invasive
- Measures Blood Oxygen Level Dependent (BOLD) response

Typical fMRI response to impulse of neural activity

Typical Stimuli

- Each stimulus repeated several times
 - Shown multiple times

- A
 - X
 - X
 - X
 - X
- B
 - hammer
 - X
 - X
 - X
 - X
- Dog
 - X
 - X
 - X
 - X
- Airplane
 - X
 - X
 - X
 - X
- Eye
 - X
 - X
 - X
 - X
- Hammer
 - X
 - X
 - X
 - X
fMRI Activation

fMRI activation for "bottle":

Mean activation averaged over 60 different stimuli:

"bottle" minus mean activation:

is this enough?

fMRI Prediction Task

- **Goal**: Predict word stimulus from fMRI image
- **Challenges**:
 - \(p \gg N \) (feature dimension >> sample size)
 - Cost of fMRI recordings is high
 - Only have a few training examples for each word

Classifier (logistic regression, kNN, …)

HAMMER
or
HOUSE
Zero-Shot Classification

- **Goal**: Classify words not in the training set
- **Challenges**:
 - Cost of fMRI recordings is high
 - Can’t get recordings for every word in the vocabulary

Never showed “giraffe” in scanner

- **Classifier** (logistic regression, kNN, …)

HAMMER or HOUSE

Zero-Shot Classification

- **Goal**: Classify words not in the training set
- **Challenges**:
 - Cost of fMRI recordings is high
 - Can’t get recordings for every word in the vocabulary
 - We don’t have many brain images, but we have a lot of info about the words and how they relate (co-occurrence, etc.)
 - How do we utilize this “cheap” information?

Never showed “giraffe” in scanner

- **Classifier** (logistic regression, kNN, …)

HAMMER or HOUSE
Semantic Features

Google Trillion word corpus

Semantic feature values: “celery”
- 0.8368, eat
- 0.3461, taste
- 0.3153, fill
- 0.2430, see
- 0.1145, clean
- 0.0600, open
- 0.0586, smell
- 0.0286, touch
- ...
- 0.0000, drive
- 0.0000, wear
- 0.0000, lift
- 0.0000, break
- 0.0000, ride

Semantic feature values: “airplane”
- 0.8673, ride
- 0.2891, see
- 0.2851, say
- 0.1689, near
- 0.1228, open
- 0.0883, hear
- 0.0771, run
- 0.0749, lift
- ...
- 0.0049, smell
- 0.0010, wear
- 0.0000, taste
- 0.0000, rub
- 0.0000, manipulate

Zero-Shot Classification

- From training data, learn two mappings:
 - S: input image \rightarrow semantic features
 - L: semantic features \rightarrow word

- Can use “cheap” co-occurrence data to help learn L

Classifier (logistic regression, kNN, …)

Features of word

Predict

HAMMER or HOUSE

Training: $\text{saw} [\ldots] \rightarrow \text{dog}, \text{many}$

Use both $A + B$

Predict: $\text{saw} [\ldots] \rightarrow \text{dog}$

$A = \{ \ldots \}$

$B = \{ \ldots \}$

N examples $\ldots N$ small
fMRI Prediction Subtask

- **Goal:** Predict semantic features from fMRI image

\[\text{Learning } S: \text{ images } \rightarrow \text{ semantic features} \]

Features of word

\[y^i \]

\[x^i \]

\[X^{20,000} \]

\[y^{\text{d}} \]

\[y^{\text{d}} \]

\[d = \# \text{ of semantic features} \in \mathbb{R}^d \]

\[\hat{\beta} = \arg \min_{\beta} \text{RSS}(\beta) = \arg \min_{\beta} \sum_{i=1}^{N} (y^i - \beta^T x^i)^2 \]

\[\hat{\theta} = \arg \max_{\theta} \log p(D \mid \theta) \]

Linear Regression – *review*

- **Model:**
 \[y^i = \beta_0 + \beta_1 x_1^i + \cdots + \beta_p x_p^i + \epsilon^i \]
 \[= \beta^T x^i + \epsilon^i \]
 \[\epsilon^i \sim N(0, \sigma^2) \Rightarrow y^i \sim N(\beta^T x^i, \sigma^2) \]

- **MLE:**
 \[\hat{\beta} = \arg \min_{\beta} \text{NLL}(\beta) = \arg \min_{\beta} \frac{1}{2} \text{RSS}(\beta) = \frac{1}{2} \sum_{i=1}^{N} (y^i - \beta^T x^i)^2 \]

- Minimizing RSS = least squares regression
Linear Regression – review

- Taking the gradient
 - Reformulate objective
 \[
 \begin{bmatrix}
 e_1^t \\
 \vdots \\
 e_n^t
 \end{bmatrix} = \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
 \end{bmatrix} - \begin{bmatrix}
 x_1^t \\
 \vdots \\
 x_n^t
 \end{bmatrix} \begin{bmatrix}
 \beta_0 \\
 \vdots \\
 \beta_p
 \end{bmatrix}
 \]
 \[
 \frac{1}{2} \text{RSS}(\beta) = \frac{1}{2} (y - XB)^T (y - XB) = \frac{1}{2} \beta^T (X^T X) \beta - \beta^T (X^T y)
 \]
 - Set gradient = 0
 \[
 \frac{\partial}{\partial \beta} \text{RSS}(\beta) = \frac{1}{\partial \beta} (X^T X \beta - X^T y) = 0 + \text{const.}
 \]
 \[
 \Rightarrow \hat{\beta}_{\text{ML}} = (X^T X)^{-1} X^T y \text{ low rank prep matrix. !!!}
 \]

Ridge Regression

- Ameliorating issues with overfitting:
 - New objective:
 \[
 \min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda \| \beta \|_2^2
 \]
 \[
 \min_{\beta} \text{RSS}(\beta) \text{ s.t. } \| \beta \|_2 \leq S
 \]
 - Reformulate:
 \[
 F(\beta) = \frac{1}{2} \beta^T (X^T X) \beta - \beta^T (X^T y) + \text{const.} + \frac{1}{2} \lambda \beta^T \beta
 \]
 \[
 = \frac{1}{2} \beta^T (X^T X + \lambda I) \beta - \beta^T (X^T y) + \text{const.}
 \]
 - Set gradient = 0
 \[
 \hat{\beta}_{\text{ridge}} = (X^T X + \lambda I)^{-1} (X^T y)
 \]
Ridge Regression

- Solution is indexed by the regularization parameter λ
- Larger λ: high reg.
- Smaller λ: low reg.
- As $\lambda \to 0$ \(\hat{\beta}_{\text{ridge}} \to \hat{\beta}_{\text{ML}} \)
- As $\lambda \to \infty$ \(\hat{\beta}_{\text{ridge}} \to 0 \)

Ridge Coefficient Path

- Typical approach: select λ using cross validation (CV)

From Kevin Murphy textbook
Variable Selection

- Ridge regression: Penalizes large weights

- What if we want to perform “feature selection”?
 - E.g., Which regions of the brain are important for word prediction?
 - Can’t simply choose predictors with largest coefficients in ridge solution
 - Computationally impossible to perform “all subsets” regression

- Try new penalty: Penalize non-zero weights
 - Penalty:
 \[||\beta||_1 = \sum |\beta_j| \]
 - Leads to sparse solutions
 - Just like ridge regression, solution is indexed by a continuous param \(\lambda \)

Acknowledgements

- Some material in this lecture was based on slides provided by:
 - Jianbo Shi – spectral clustering
 - Tom Mitchell – fMRI
 - Rob Tibshirani – LASSO