Case Study 2: Document Retrieval

MAP EM, Latent Dirichlet Allocation, Gibbs Sampling

Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington

Emily Fox

February 5th, 2013

©Emily Fox 2013

1

Gaussian Mixture Model

- Most commonly used mixture model
- Observations: x^1, \dots, x^N

$$\pi = [\pi_1, \dots, \pi_K]$$

$$\phi = {\phi_k} = {\mu_k, \Sigma_k}$$

$$p(x^i \mid \theta) = \sum_k \pi_k p(x^i \mid \phi_k)$$

- Ex. z^i = country of origin, x^i = height of ith person
 - \Box k^{th} mixture component = distribution of heights in country k

©Emily Fox 2013

Motivates EM Algorithm

• Initial guess: $\hat{ heta}^{(0)}$

Estimate at iteration t: $\hat{\theta}^{(t)}$

■ E-Step

Compute
$$U(\theta, \hat{\theta}^{(t)}) = E[\log p(y \mid \theta) \mid x, \hat{\theta}^{(t)}]$$

■ M-Step

$$\label{eq:compute} \mathsf{Compute} \quad \hat{\theta}^{(t+1)} = \arg\max_{\theta} U(\theta, \hat{\theta}^{(t)})$$

©Emily Fox 2013

MAP Estimation

Bayesian approach:

- $\hfill\Box$ Place $\operatorname{prior}\,p(\theta)$ on parameters
- \Box Infer posterior $p(\theta \mid x)$

Many, many, many motivations and implications

 $\hfill\Box$ For the sake of this class, simplest motivation is to think of this as akin to regularization

$$\hat{\theta}^{MAP} = \arg\max_{\theta} \log p(\theta \mid x)$$

□ Saw importance of regularization in logistic regression (ML estimate can overfit data and lead to poor generalization)

©Emily Fox 201

EM Algorithm - MAP Case

- \blacksquare Re-derive EM algorithm for $\ p(\theta \mid x)$
- Add $\log p(\theta)$ to $U(\theta, \hat{\theta}^{(t)})$
 - □ What must be computed in E-Step remains unchanged because this term does not depend on *y*.
 - □ M-Step becomes:

$$\hat{\theta}^{(t+1)} = \arg\max_{\theta} U(\theta, \hat{\theta}^{(t)})$$

©Emily Fox 2013

MAP EM Example – MoG

• For mixture of Gaussians, conjugate priors are:

$$\pi \sim \mathrm{Dir}(\alpha_1, \ldots, \alpha_K)$$

©Emily Fox 2013

MAP EM Example - MoG

• For mixture of Gaussians, conjugate priors are:

$$\pi \sim \operatorname{Dir}(\alpha_1, \dots, \alpha_K)$$
 $p(\pi \mid \alpha) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k \pi_k^{\alpha_k - 1}$

- Dirichlet posterior
 - $_{\square}$ Assume we condition on observations $\,z^{i} \sim \pi\,$
 - $\ \square$ Count occurrences of $z^i=k$
 - □ Then

$$p(\pi \mid \alpha, z^1, \dots, z^N) \propto$$

☐ Conjugacy: This **posterior** has same form as **prior**

©Emily Fox 2013

MAP EM Example - MoG

• For mixture of Gaussians, conjugate priors are:

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \quad \{\mu_k, \Sigma_k\} \sim \text{NIW}(m_0, \kappa_0, \nu_0, S_0)$$

Results in following M-Step:

$$\hat{\mu}_k = \frac{r_k \bar{x}_k + \kappa_0 m_0}{r_k + \kappa_0} \qquad \hat{\pi}_k = \frac{r_k + \alpha_k - 1}{N + \sum_k \alpha_k - K}$$

$$\hat{\Sigma}_k = \frac{S_0 + r_k S_k + \frac{\kappa_0 r_k}{\kappa_0 + r_k} (\bar{x}_k - m_0) (\bar{x}_k - m_0)'}{\nu_0 + r_k + d + 2}$$

©Emily Fox 2013

Posterior Computations

MAP EM focuses on point estimation:

$$\hat{\theta}^{MAP} = \arg\max_{\theta} p(\theta \mid x)$$

- What if we want a full characterization of the posterior?
 - □ Maintain a measure of uncertainty
 - □ Estimators other than posterior mode (different loss functions)
 - □ Predictive distributions for future observations
- Often no closed-form characterization (e.g., mixture models)
- Alternatives:
 - ☐ Monte Carlo based estimates using samples from posterior
 - □ Variational approximations to posterior (more next time)

©Emily Fox 2013

Gibb Sampling

- Want draws:
- Construct Markov chain whose steady state distribution is
- Simplest case:

©Emily Fox 2013

Example – Mixture of Gaussians

Recall model

- □ Generative model:

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \qquad z^i \sim \pi$$

$$\{\mu_k, \Sigma_k\} \sim F(\phi) \qquad x^i \mid z^i \sim N(x^i; \mu_{z^i}, \Sigma_{z^i})$$

Want to draw posterior samples of model parameters

$$\pi \sim p(\pi \mid \phi, x^1, \dots, x^N)$$

$$\phi \sim p(\phi \mid \pi, x^1, \dots, x^N)$$

Auxiliary Variable Samplers

lacksquare Augment variables of interest heta with variables z to allow closed-form for sampling, just like in EM

 \blacksquare In both cases, simply looking at subchain $\{\theta^{(t)}\}$ converges to draws from marginal distribution $\pi(\theta)$

Example – Mixture of Gaussians

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \quad z^i \sim \pi \{\mu_k, \Sigma_k\} \sim F(\phi) \quad x^i \mid z^i \sim N(x^i; \mu_{z^i}, \Sigma_{z^i})$$

 z^i ϕ_k x^i

- Try auxiliary variable sampler
 - □ Introduce cluster indicators into sampler

©Emily Fox 2013

Collapsed Gibbs Samplers

- Marginalize a set of latent variables or parameters
 - □ Sometimes marginalized variables are nuisance parameters
 - □ Other times what gets marginalized are the variables
 - Make post-facto inferences on variables of interest based on sampled variables

- Can improve efficiency if marginalized variables are high-dim
 - □ Reduced dimension of search space
 - □ But, often introduces dependences!

©Emily Fox 2013

15

Example - Collapsed MoG Sampling

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \quad z^i \sim \pi \{\mu_k, \Sigma_k\} \sim F(\phi) \quad x^i \mid z^i \sim N(x^i; \mu_{z^i}, \Sigma_{z^i})$$

Collapsed sampler

©Emily Fox 201

Example - Collapsed MoG Sampling

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \quad z^i \sim \pi \{\mu_k, \Sigma_k\} \sim F(\phi) \quad x^i \mid z^i \sim N(x^i; \mu_{z^i}, \Sigma_{z^i})$$

Derivation

Important facts:

$$p(z_{1:N} \mid \alpha) = \frac{\Gamma(\sum_{k} \alpha_{k})}{\prod_{k} \Gamma(\alpha_{k})} \frac{\prod_{k} \Gamma(n_{k} + \alpha_{k})}{\Gamma(\sum_{k} n_{k} + \alpha_{k})} \qquad \frac{\Gamma(m+1)}{\Gamma(m)} = m$$

©Emily Fox 2013

Example Inference – Topic Words

human	evolution	disease	computer
genome	evolutionary	host	models
$_{ m dna}$	species	bacteria	information
genetic	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

LDA Generative Model

- Observations: $w_1^d, \dots, w_{N_d}^d$ Associated topics: $z_1^d, \dots, z_{N_d}^d$
- Parameters: $\theta = \{\{\pi^d\}, \{\beta_k\}\}$
- Generative model:

LDA Generative Model

$$p(\cdot) = \prod_{k=1}^{K} p(\beta_k \mid \lambda) \prod_{d=1}^{D} p(\pi^d \mid \alpha) \left(\prod_{i=1}^{N_d} p(z_i^d \mid \pi^d) p(w_i^d \mid z_i^d, \beta) \right)$$

©Emily Fox 2013

29

Collapsed LDA Sampling

- Marginalize parameters
 - □ Document-specific topic weights
 - □ Corpus-wide topic-specific word distributions
- Sample topic indicators for each word
 - □ Derivation:

$$\begin{split} p(z_{1:N_d}^d \mid \alpha) &= \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \frac{\prod_k \Gamma(n_k^d + \alpha_k)}{\Gamma(\sum_k n_k^d + \alpha_k)} \\ &\qquad \qquad p(\{w_i^d \mid z_i^d = k\}, \lambda) = \frac{\Gamma(\sum_\nu \lambda_\nu)}{\prod_\nu \Gamma(\lambda_\nu)} \frac{\prod_\nu \Gamma(v_\nu^k + \lambda_\nu)}{\Gamma(\sum_\nu v_\nu^k + \lambda_\nu)} \\ p(z \mid \alpha) &= \prod_{d=1}^D p(z_{1:N_d}^d \mid \alpha) \qquad p(w \mid z, \lambda) = \prod_{k=1}^K p(\{w_i^d \mid z_i^d = k\}, \lambda) \end{split}$$

©Emily Fox 2013

Issues with Generic LDA Sampling

- Slow mixing rates → Need many iterations
- Each iteration cycles through sampling topic assignments for all words in all documents
- Modern approaches:
 - □ Large-scale LDA. For example,

 Mimno, David, Matthew D. Hoffman and David M. Blei. "Sparse stochastic inference for latent Dirichlet allocation." International Conference on Machine Learning, 2012.
 - □ Distributed LDA. For example,

 Ahmed, Amr. et al. "Scalable inference in latent variable models." Proceedings of the fifth ACM international conference on Web search and data mining (2012): 123-132
- Next time: Variational methods instead of sampling

©Emily Fox 2013

45

Acknowledgements

 Thanks to Dave Blei, David Mimno, and Jordan Boyd-Graber for some material in this lecture relating to LDA

Emily Fox 2013