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LASSO Regression
* JEE

m LASSO: least absolute shrinkage and selection operator
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Geometric Intuition for Sparsity
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Now: LASSO Coefficient Path
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LASSO Algorithms
" JEE
m Standard convex optimizer

m Least angle regression (LAR)
Efron et al. 2004
Computes entire path of solutions
State-of-the-art until 2008

m Pathwise coordinate descent — new
m More on these “shooting” algorithms next time...
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LARS — Efron et al. 2004
= JEE

m LAR is an efficient stepwise variable selection algorithm
“useful and less greedy version of traditional forward selection methods”

Efn
= Can be modified to compute regularization path of LASSO
- LARS (Least angle regression and shrinkage)

m Increasing upper bound B, coefficients gradually “turn on”

Few critical values of B where support changes

Non-zero coefficients increase or decrease I|gegE¥ between critical pomts

i Car|1 solve for critical values analytically '\/‘I \AAU/\S ‘FM”
m Complexity: afd/\
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LASSO Coefficient Path
= JEEE
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LARS — Algorithm
" JEE—
m Assumptions: ‘Star‘Ja/AfE&

1 Response has 0 mean
PATRENV,
A

1 Covariates are normalized
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LARS — Algorithm Overview
® JE

A , A
m Start with all coefficient estimates 4, - ﬁz s ...z lgP =0

m Let .A_be the “active set” of covariates most correlated wit:jﬂe
currént’ residual  ¢— | se b on covrriakes alre Y n model

= Initially, A = {:Ejl} for some covariate & ;;

m Take the largest possible step in the direction of X j; until another
covariate X j, enters 4

= Continue in the direction equiangular between X ;, and Z, until a third
covariate I j, enters 4

= Continue in the direction equiangular between  ;,, X ;,, Z;, until a
fourth covariate x ;, enters A4

m This procedure continues until all covariates are added at which point
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LARS — lllustration for p=2 covariates
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LARS - lllustration for p=2 covariates
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LARS — Illustration for p=2 covariates
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LARS - lllustration for p=2 covariates
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LARS-LASSO Relationship
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LARS-LASSO Relationship
" JEEE
m Let pu(y) = XB(7) with 5,(7) = Bj + ’ycij

m We showed that for active covariate j: sign(Bj) = sign(x; (y— )

k
J\
= (3;(7) changes sign at /3;(8)=0 = Y= —BJ Violakg
7
d; .

= 1%tsign change occurs at Y = min{~;} for covariate |
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LARS-LASSO Relationship
" S

m If Y occurs before 7, then next LARS step is not a LASSO solution

= LASSO modification: ¥ sof here N
€ F <Y, then skop LARS at ¥=¥ and vEmov
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LASSO Coefficient Path
= JEEE
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Comments

" JEE
m LARS increases A, but LASSO allows it to decrease
m Only involves a single index at a time

m If p > N, LASSO returns at most N variables
%

m If group of variables are highly correlated, LASSO tends to
choose one to include rather arbitrarily
Straightforward to observe from LARS algorithm....Sensitive to noise.
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Comments

" JEE
= |n general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B()\k) from B(Ak,l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If N> p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO
(Zou & Hastie 2005)
Elastic net is hybrid between LASSO and ridge regression

- X6l + 2, 218) 3, 161

(eere SEOME S3ULS -+ details [4?4 Lao‘c>
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Fused LASSO
= JEEE

m  Might want coefficients of neighboring
voxels to be similar .
discover ,,,%=1°n5 of importance.

m How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO

Assume a Z’d,_lt__lg/inr;al:anh.connecting neighboring pixels in the fMRI image
Penalty:
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Generalized LASSO

m Assume a structured linear regression model:

ly-x8l« xlDBN,
7\
peR™T

m If Dis invertible, then get a new LASSO problem if we substitute
od =08

m Otherwise, not equivalent

m For solution path, see
Ryan Tibshirani and Jonathan Taylor, “The Solution Path of the
Generalized Lasso.” Annals of Statistics, 2011.
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1
B = argmin S|y — B3 + AIDBI
BeRn

Let D = . This is the 1d fused lasso.
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Generalized LASSO
= JEE

. 1
By = argmin 5”1/ - 5”% + MDA
BeR™

Suppose D gives “adjacent” differences in 3:

)Z l 6&’&6\

D; =(0,0,...—1,...,1,...0), e

where adjacency is defined according to a graph G. For a 2d grid,
this is the 2d fused lasso.
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Generalized LASSO
" JEE—
A 1
B\ = argmin 5”1/ — Bli3 + AllIDBI
BER™
—1 2 -1 0 ...
0 -1 2 -1 ...
Let D = 0 0 —1 2 ... |- Thisis linear trend filtering.
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Generalized LASSO
= JEEE

. 1
By = argmin  ly — B + MDAl
BeER™

-1 3 =3 1 ...
0 -1 3 -3 ... _ o
Let D = 0 0 —1 3 ... |- Getquadratic trend filtering.
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Generalized LASSO
" D

m Tracing out the fits as a function of the regularization parameter

ﬁ)\ for A =25 B)\ for A € [0, 00]
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fMRI Prediction Task
= JEEE

m Goal: Predict word stimulus from fMRI image \J
-7
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Classifier = HAMWER

(logistic regression, or
kNN, ..) HOUSE
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Zero-Shot Classification
" JEE
. . Y ucl b
m From training data, learn two mappings: , 09)
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. G e Talkon w (J'
Semantic Features ™ i

Semantic feature values: “’c_e_l_e_r_v_” Semantic feature values: “airplane”
0.8368, eat - 0.8673, ride -
0.3461, taste 0.2891, see

03153, 6l ppelt® "] 02851, say

0.2430, see 0.1689, near

0.1145, clean 0.1228, open

0.0600, open 0.0883, hear

0.0586, smell 0.0771, run

0.0286, touch 0.0749, lift

0.0000, drive 0.0049, smell

0.0000, wear 0.0010, wear

0.0000, lift 0.0000, taste

0.0000, break 0.0000, rub

0.0000, ride 0.0000, manipulate
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fMRI Prediction Results
= JEEE

m Palatucci et al., “Zero-Shot Learning with Semantic Output Codes”,
NIPS 2009

m fMRI dataset:
9 participants
60 words (e.g., bear, dog, cat, truck, car, train, ...)
6 scans per word
Preprocess by creating 1 “time-average” image per word

m Knowledge bases
Corpus5000 — semantic co-occurrence features with 5000 most frequent words

human218 — Mechanical Turk (Amazon.com)
218 semantic features (“is it manmade?”, “can you hold it?”,...)
Scale of 1t0 5
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fMRI Prediction Results
* JEEE
m First stage: Learn mapping from images to semantic features

Nxp Nxd ¥ £ stm-
= Ridge regression Xe R — F€eR Featrire
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m Second stage: 1-NN classification using knowledge base

ook Cor word w/ § Jogest to
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fMRI Prediction Results
" JE—
m Leave-two-out-cross-validation
[ Learn ridge coefficients using 58 fMRI images

[ Predict semantic features of 15t heldout image
01 Compare whether semantic features of 1t or 2" heldout image are closer

Table 1: Percent ies for leave-t t-cross-validation for 9 fMRI participants (labeled P1-
P9). The values represent classifier percentage accuracy over 3,540 trials when discriminating be-
tween two fMRI images, both of which were omitted from the training set.

P2 P3 P4 P5 P6 P7 P8 P9 Mean ( S‘t&*p 3]6 .

corpus5000 79.6 67.0 695 562 777 655 712 729 679 69.7
human218  90.3 829 866 719 895 753 780 777 762 809

”/ e Dog PrdictonHatch EWF‘ ,e ke
L LB g s
Il I

=

Isitan |Is it man- [Ddjyou s¢ ’dl Can yw \Would you | Doyou | Doesit |lsitwild? | Does it . ’\
animal? | made? 'w Ipful? finditina | loveit? | stand on provide D
? ? ?
' it J[ at ‘l house two legs protection

Figure 1: Ten semantic features from the human218 knowledge base for the words bear and dog.

The true encoding is shown along with the predicted encoding when fMRI images for bear and dog
were left out of the training set.
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fMRI Prediction Results

" JEE
m Leave-one-out-cross-validation

Learn ridge coefficients using 59 fMRI images
Predict semantic features of heldout image

Compare whether very large set of possible other words

Rank Accuracy
100% &
%0%
2 8o%
g
3 1w
8
< 0%
50% {— Chance
0%
corpus000  human218 corpuss000  human218
mrié0 Word Set noun940 Word Set

Figure 2: The mean and median rank accuracies across nine participants for two different semantic

feature sets. Both the original 60 fMRI words and a set of 940 nouns were considered.

im
word selected from 941 concrete nouns in English.

Table 2: The top five predicted words for a novel fMRI image taken for the word in bold (all fMRI
ima aken from participant P1). The number in the parentheses contains the rank of the correct

Bear  Foot Screwdriver Train  Truck Celery House Pants
@ (] @ @) 2) &) ©6) @
bear foot screwdriver  train jeep beet supermarket  clothing
fox feet pin jet truck artichoke  hotel vest
wolf ankle nail Jjail minivan ~ grape theater t-shirt
yak  knee wrench factory  bus cabbage  school clothes
gorilla face  dagger bus sedan  celery factory panties
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m Some material in this lecture was based on slides
provided by:
Tom Mitchell — fMRI
Rob Tibshirani — LASSO
Ryan Tibshirani — Fused LASSO
©Emily Fox 2013 36

18



