Machine Learning for Big Data (CSE 599)

Statistics for Big Data (STAT 592)

(Or how to do really kickass research in the age of big data)

Course Staff

Instructors:

- Emily Fox (Stat)
- Carlos Guestrin (CSE)

TAs:

- Jay Gu (CSE)
- Linda Li (Stat)

CONTENT

What is the course about?

Course Structure

- 4 "case studies"
 - Estimating Click Probabilities
 - Document Retrieval
 - fMRI Prediction
 - Collaborative Filtering
- Not comprehensive, but a sample of tasks and associated solution methods
- Methods broadly applicable beyond these case studies

1. Estimating Click Probabilities

- Goal: Predict whether a person clicks on an ad
- Basic method: logistic regression, online learning

1. Estimating Click Probabilities

- Challenge I: Overfitting, high-dimensional feature space
- Advanced method: L2 regularization, hashing

1. Estimating Click Probabilities

- Challenge II: Dimension of feature space changes
 - New word, new user attribute, etc.
- Advanced method: sketching, hashing

2. Document Retrieval

- Goal: Retrieve documents of interest
- Methods: fast K-NN, k-means, mixture models, spectral clustering, Hadoop

2. Document Retrieval

- Challenge: Document may belong to multiple clusters
- Methods: mixed membership models (e.g., LDA)

3. fMRI Prediction

- Goal: Predict word probability from fMRI image
- Challenge: p >> n (feature dimension >> sample size)
- Methods: L1 regularization (LASSO), parallel learning

3. fMRI Prediction

• Goal: Predict fMRI image for given stimulus

Challenge: zero shot learning (generalization)

 Methods: features of words, Mechanical Turk, graphical LASSO

4. Collaborative Filtering

- Goal: Find movies of interest to a user based on movies watched by the user and others
- Methods: matrix factorization, GraphLab

4. Collaborative Filtering

- Challenge: Cold-start problem (new movie or user)
- Methods: use features of movie/user

Scalability

 Throughout case studies, introduce notions of parallel learning and distributed computations

Assumed Background

Comfortable with:

- Linear regression
- Basic optimization (e.g., gradient descent)
- EM algorithm
- Java

Have seen:

- Graphical models (as a representational tool)
- Gibbs sampling

Computational and mathematical maturity

LOGISTICS

How is the course going to operate?

Website and Google Group

Course website:

http://www.cs.washington.edu/education/courses/cse599c1/13wi/

- Google Group:
 - Used for all discussions
 - Post all questions there (unless personal)
 - See website for sign-up details

Reading

No req'd textbook, but background reading in:

"Machine Learning: A Probabilistic Perspective" Kevin P. Murphy

- Readings will be from papers linked to on course website
- Please do reading before lecture on topic

Homework

- 4 HWs, one for each case study
- Collaboration allowed, but write-ups and coding must be done individually
- Submitted at beginning of class
- Allowed 2 "late days" for entire quarter
- 3rd assignment must be completed individually

Project

- Individual, or teams of two
- New work, but can be connected to research
- Schedule:
 - Proposal (1 page) January 31
 - Progress report (3 pages) February 21
 - Poster presentation March 14
 - Final report (8 pages, NIPS format) March 19

Grading

- HWs 1, 2, 4 (15% each)
- HW 3 (20%) midterm exam
- Final project (35%)

Support/Resources

- Office Hours
 - TAs: MW 4-5pm in CSE 216
 T 3-5pm in CSE 220
 - Emily: Th 12:45-1:45pm in Padelford B-305
 - Carlos: F 1:30-2:30pm in CSE 568
- Recitations
 - Optional tutorial/example-based sections will be held weekly on Thursdays from 5:30-7pm
 - MUE 153, to be confirmed

Conclusion

I like Big Data and I cannot lie

[INSERT SONG HERE]

Or, let's just carry on with the first lecture...