
University of Washington
Department of Computer Science and Engineering / Department of Statistics

CSE 599 / Stat 592 Machine Learning (Statistics) for Big Data

Homework 3– Midterm
Winter 2013

Must be done individually, without any communication with
other students. If you have questions, please contact the

instructors for assistance.

Issued: Friday, February 15, 2013 Due: Thursday, February 28, 2013

Suggested Reading: Assigned Readings in Case Study III (see website).
Instructions: The homework consists of two parts: (i) Problems 3.1 and 3.2 cover
theoretical and analytical questions and (ii) Problem 3.3 covers data analysis questions.
Please submit each portion as separate sets of pages with your name and userid (UW
student number) on each set. For Part II which involves coding, please print out your code
and graphs and attach them to the written part of your homework.

Problem 3.1

Deriving sampling updates for Supervised latent Dirichlet allocation (sLDA) [40
points]

The LDA we covered during lecture is an unsupervised model. It is typically built on a dis-
crete bag-of-words representation of input contents, which can be text documents, images or
even network entities. However, in many practical applications, we can easily obtain useful
side information such as ratings or labels associated with documents or images. Such side
information often provides useful high-level or direct summarization of the content, but it is
not directly used in the original LDA.

A supervised topic model can use side information to discover more predictive low dimen-
sional topical representations of the data by capturing real-valued document ratings as a
regression response. Presented below is the graphical illustration of unsupervised LDA and
supervised LDA.

Recall from lecture that an LDA model with K topics, vocabulary size V , and N words per
document (for notational simplicity, we assume that all documents have the same length)
has the following generative process:

(i) Draw a topic-specific word distribution according to a V -dimensional Dirichlet prior:
βk|λ ∼ Dirichlet(λ1, ..., λV), k = 1, ..., K;

(ii) Draw a document-specific topic mixing proportion vector πd according to aK-dimensional
Dirichlet prior: πd|α ∼ Dirichlet(α1, ..., αK), d = 1, ..., D;

(iii) For the ith word in document d, where 1 ≤ i ≤ N ,

• draw a topic assignment zdi according to πd: zdi |πd ∼ Multinomial(πd), i = 1, ..., N ;

1

�k

wd
i

K

Nd
D

zd
i

⇡d↵ �

�k

wd
i

K

Nd
D

zd
i

⇡d↵ �

yd⌘, �2

(a) (b)

Graphical illustration of (a) unsupervised LDA (Blei et al., 2003) and (b) supervised LDA
(Blei and McAuliffe, 2007).

• draw the word instance wd
i according to zdi , βzdi : wd

i |zdi , βzdi ∼ Multinomial(βzdi)

where zdi is a K-dimensional indicator vector (i.e., only one element is 1; all others are
0).

In order to consider side information for discovering more predictive representations, su-
pervised topic models (sLDA) introduce a response variable yd to LDA for each document
d, as shown in Figure 1(b). The generative process of sLDA is similar to LDA, but with
an additional step—draw a response variable: yd|zd, η, δ2 ∼ N(ηT zd + η0, δ

2) for each doc-
ument d, where η is the regression weight vector, δ2 is a noise variance parameter, and
zd = (1/N)

∑N
i=1 z

d
i are the empirical topic proportions for document d. Here, we consider

Gaussian distributions for the additional labels y, but the derivation can be easily extended
to other models. We treat α, λ, η, η0, δ

2 as unknown constants and restrict ourselves to simply
inferring the latent variables zdi , π

d and βk.

In the following exercise, we will derive an uncollapsed Gibbs sampler for the sLDA model
presented above. Recall that in uncollapsed Gibbs sampling, we iterate over the variables in
the model and sample each conditioned on the observations and our current set of samples for
all other variables. We refer to this distribution as the complete conditional. For example, at
iteration t we sample πd,(t) from p(πd | {yd}, {wd

i }, {z
d,(t)
i }, {βk}, α, η) where {zd,(t)i } represents

the currently sampled topic indicators at iteration t. Due to conditional independencies
between random variables in the model, this full conditional often only depends on a subset
of the other variables.

Please write all answers in terms of in terms of the distributions listed above
describing the generative model. In particular, use: multinomial, Dirichlet, and
normal distributions.

(a) [4 points] Write the joint distribution of the model, as factored according to the graph-
ical model.

2

(b) [5 points] Derive the complete conditional for πd. List the variables in the model
that are not required in the conditioning set (i.e., those for which πd is conditionally
independent given the included variables).

(c) [5 points] Derive the complete conditional for βk. List the variables in the model that
are not required in the conditioning set.

(d) Assume η = 0.

i. [5 points] Derive the complete conditional for zdi . List the variables in the model
that are not required in the conditioning set.

ii. [2 points] How does this model relate to LDA? Provide a brief explanation/justification.

(e) [10 points] Assume η 6= 0. Derive the complete conditional for zdi . List the variables
in the model that are not required in the conditioning set.

(f) [5 points] Fill in the pseudocode in Algorithm 1 for the derived Gibbs sampler.

Algorithm 1: Uncollapsed Gibbs Sampler for sLDA

for t = 1, . . . , Niter do
for k = 1, . . . , K do

FILL IN SAMPLING STEPS
end
for d = 1, . . . , D do

FILL IN SAMPLING STEPS
for i = 1, . . . , N do

FILL IN SAMPLING STEPS
end

end

end

(g) [4 points] Is it possible to derive a collapsed Gibbs sampler for sLDA where the pa-
rameters πd and βk are analytically marginalized? Briefly explain.

Problem 3.2

Deriving Variational Inference for Gaussian Mixture Models [EXTRA CREDIT
16 points]

In Gibbs sampling, there is no clear notion of convergence, or rules of thumb are used to
determine the burn-in samples. Variational Inference is an alternative to Gibbs sampling,
where the posterior distribution P (θ|x) is approximated by a distribution q(θ) that comes
from a restricted family of distributions Q. Here, the main idea is to solve the following
optimization problem:

3

minq∈QKL(q||p) =

∫
q(θ)ln

q(θ)

p(θ|X)
dθ

We will work with a simple mixture of Gaussians model with univariate observations with
known variance σ2 for each cluster to illustrate the variational inference machinery. For a
Bayesian treatment of this model, we place priors on the means and mixing weights:

π|α ∼ Dirichlet(π0)

P (zi = c|π) =πc

µc ∼N(0, ρ2)

P (xi|zi = c, µc) =N(xi;µc, σ
2)

where π0 = αe and e is the all-ones vector (i.e., the prior is a symmetric Dirichlet prior), π
are the mixing proportions, zi is the cluster assignment for data point i, xi is the observable
data, and µc is the mean for cluster c.

Joint probability distribution is P (x, π, z, µ) = P (x|µ, z)P (µ)P (z|π)P (π). In our variational
approach, we will approximate this joint distribution by:

P (π, z, µ|x) ≈q(π, z, µ) = q(z)q(π)q(µ)

In particular, the approximating distributions will be given by:

• q(z) =
∏

i qi(z
i), where each distribution is a multinomial: qi(z

i = c) = φi
c.

• q(π) is Dirichlet with parameters β1, . . . , βK .

• q(µ) =
∏

c qc(µc), where each distribution is a Gaussian qc(µc) = N(µc; ηc, λ
2
c).

In this question, you will derive iterative updates for this approximation. Specify your
answers in terms of the observed data x, the known parameters σ2, ρ2, α, and the variational
parameters φ, β, η, λ.

(a) [4 points extra credit] Write down the “ELBO” for this model.

(b) [4 points extra credit] Provide the variational update for q(z), when q(π) and q(µ) are
given.

(c) [4 points extra credit] Provide the variational update for q(π), when q(z) and q(µ) are
given.

(d) [4 points extra credit] Provide the variational update for q(µ), when q(z) and q(π) are
given.

4

Problem 3.3

READ THE MIND [60 points]

In this problem, you will implement Shotgun (parallel stochastic coordinate descent) for
l1 regularized regression. The goal is to learn a set of sparse linear models to predict word
semantic features from fMRI signals. Using the predicted features, you will construct a bi-
nary classifier (using 1-NN) that takes 2 candidate words and predict which word the subject
was thinking.

Matrix notation: We will use subscript(superscript) to denote the column(row) of a ma-
trix, e.g. For any matrix X, Xj is the jth column, X i is the ith row, and Xi,j is the entry
(i, j).
If you use the starter code we provide, please only print out the functions that you need to fill
in. In this problem there are only two functions: “shoot()” and “scd()” in “Shooting.class”.

Let X ∈ Rn×p and Y ∈ Rn. The LASSO solves the following optimization problem:

min
w0,w

1

2n

n∑
i=1

(yi − w0 − (X i)Tw)2 + λ

p∑
j=1

|wj| (1)

If Y is centered (the mean is 0), we can usually ignore w0 in the above equation. We will keep
this assumption for the rest of this problem. In matrix form, we can rewrite Eq 1 as

min
w
L(w, λ) =

1

2n
‖Y −Xw‖2 + λ‖w‖1 (2)

3.3.1 Deriving the Shooting Algorithm in Practice [15 points]

The general Stochastic Coordinate Descent algorithm is shown in Algorithm 2.

In order to find the minimum at coordinate j, the Shooting algorithm applies the following
procedure: First, let’s split each wi into it’s positive part w+

i and negative part w−i , such
that wi = w+

i − w−i . Note that both w+
i and w−i are non-negative. When wi is positive

w−i = 0 and vice versa. Then, we can rewrite Eq 2 as follows:

min
w̃
L̃(w̃, λ) =

1

2n
‖Y − X̃w̃‖2 + λ

2p∑
j=1

w̃j w̃j >= 0, j = 1, . . . , 2p (3)

where X̃ = [X,−X] ∈ Rn×2p, and w̃ = [w+;w−] ∈ R2p. Taking wi = w̃i − w̃i+p will recover
the original w.

After getting rid of the l1 norm, it becomes straight-forward to take the derivative ∇jL̃(w̃)
at each coordinate j = [1, 2, .., 2p]. However, in the update step, we need to take extra

5

Algorithm 2: General Stochastic Coordinate Descent

input : Objective function L(w)
output: Optimal w
w(0) = 0;
t = 0;
while not converged do

Choose a coordinate j uniformly at random ;
wnew

j ← minwj
L(w

(t)
0 , . . . , w

(t)
j−1, wj, w

(t)
j+1, . . . , w

(t)
p);

w(t+1) ← w(t);
w

(t+1)
j ← wnew

j ;
t← t+ 1;

end

care to enforce the non-negativity constraint. In particular, the minimization step becomes
simply:

w̃
(t+1)
j ← w̃

(t)
j + max{−w̃(t)

j ,−∇jL(w̃(t))} (4)

Algorithm 3 shows the pesudo-code for the Shooting algorithm.

Algorithm 3: Shooting: Sequential Stochastic Coordinate Descent for LASSO

input : X ∈ Rn×p, Y ∈ Rn, and λ
output: ŵ = arg minw L(w, λ)
Set X̃ = [X,−X];
Initialize w̃j = 0 for j = 1, . . . , 2p;
while not converged do

Choose j uniformly at random ;
w̃j ← w̃j + max{−w̃j,−∇jL̃(w̃, λ)}

end
Set wj = w̃j − w̃j+p for j = 1, . . . , p.

(a) [3 points] Derive ∇jL̃(w̃, λ) for Eq 3 in terms of X̃, w̃, Y , and λ.

(b) [3 points] Show how to compute ∇jL̃(w̃, λ) without explicitly replicating X. In other
words, rewrite your solution in terms of X, w+, w−, Y and λ. (In practice, this step
is important to avoid using extra memory.)

(c) [3 points] What is the complexity, in O notation, of computing the derivative?

(d) [3 points] Alternatively, if we cache X̃w̃, we can significantly decrease the complexity.
If we knew the result of this product, what is the cost of the update now?

(e) [3 points] Suppose you updated w̃j = w̃j + δ, show how to update X̃w̃ in terms of δ
efficiently.

6

3.3.2 Shooting at Simulated Data [15 points]

• Download “lasso synthetic.zip” from the course website.

• After unzipping the folder, there should be four files: trainX.mtx, trainY.mtx, testX.mtx,
testY.mtx.

– Xtrain.mtx: The training data X representing a 30 ∗ 200 matrix in dense matrix
market format.

– Ytrain.mtx: The training data Y representing a 30 ∗ 1 matrix in dense matrix
market format.

– Xtest.mtx: The test data X representing a 30∗200 matrix in dense matrix market
format.

– Ytest.mtx: The test data Y representing a 30 ∗ 1 matrix in dense matrix market
format.

If you are not using the starter code, here is how to interpret these files: In the dense
matrix market format, the first line after the comment is ”np”, encoding the number
of rows and columns of the matrix. The matrix is represented as an array which is the
concatenation of all the columns. For example, for a matrix of dimension n × p, the
file looks like:

%%MatrixMarket matrix array real general

%SomeComments

np

A11

A21

. . .

(a) [15 points] Implement the sequential Shooting algorithm for the synthetic data. Use
λ = {0.02, . . . , 0.2} spaced by 0.02. Please submit three plots for this question:

– Plot the squared loss on training data against λ.

– Plot the squared loss on test data against λ.

– Plot the l0 norm of the weight vector ŵ against λ.

(Hint: Complete the two core functions: “shoot()” and “scd()” in “Shooting.class” in
the starter code. You may find pre-implemented linear matrix and vector operations
in “MatUtil.class”.
After implementing those two core functions, you should be able to run “LassoSimu-
lation.class”, which will load the data, run “scd()” and outputs the result.)

7

3.3.3 Point Shotgun at Brain Images [30 points]

The fMRI records the brain activity of one subject while he was being shown a set of
different words. The original data for this question is from http://www.cs.cmu.edu/afs/

cs/project/theo-73/www/science2008/data.html.

The vocabulary set contains 60 nouns covering different categories. For each word, 218
semantic features are extracted. Each feature corresponds to a question about the semantic
meaning of this word. The value is a score ranging from 1 to 5 provided by a human labeler
as his response to the question. For example, feature 1 corresponds to the question: “IS IT
AN ANIMAL”. The word “ant” has value 4 for feature 1, whereas the word “airplane” has
value 1.

At trial i, wordi is shown to the subject. Then the fMRI is recorded as a 21764 dimen-
sion vector X i. Each dimension corresponds to the activity in a voxel (a cube in the 3-d
coordinates of the brain). There are totally 360 trials, for which the results are put into
X ∈ R360×21764 and Y ∈ R360×218. Xi,j is the signal at jth voxel at trial i, and Yi,j is the jth
feature of the word displayed at trial i.

We further standardize X to have mean 0 and unit norm for each column and center Y to
have mean 0 for each column. Finally, the data is split into training set (300 trials) and test
set (60 trials).

The goal is to learn 218 sparse linear models, each predicting a semantic feature of the
output space: wi = LASSO(X, Yi) i = 1 . . . 218. Given a new input Xn+1 the entire
model will output a 218 dimension vector Y n+1. Given two candidate words, we create a
binary classifier by choosing the word whose semantic feature vector is closer to the predicted
one in l2 distance.

• Download “fmri.zip” from the course website.

• After unzipping the folder, there should be seven files:

– subject1 fmri std.train.mtx: The standardized fMRI signal for subject1. This will
be the X of the training data where Xi,j is the signal at jth voxel at trial i.

– subject1 wordid std.train.mtx: Each line corresponds to a word id. Line i is the
id of the word shown to subject1 at trial i.

– subject1 fmri std.test.mtx: Same format as “subject1 fmri std.train.mtx, used for
testing.

– subject1 wordid std.test.mtx: Contains two columns. The first column is the ids
of the ground truth words for test data. The second column contains ids choosing
at random.

– word feature centered.mtx: A 60×218 matrix, where row i is the sementic feature
vector for word with id = i. The matrix is written in the dense Matrix Market

8

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

format.

– meta/dictionary.txt: Mapping from id to the word. Line i is the word whose
id = i.

– meta/semantic feature name.txt: Contains the meta information of the 218 se-
mantic features.

(Hint: For the following two questions, if you already implemented “shoot()” in the previous
question, you should be able to directly run the functions in “FMRIWordPrediction.class”
and see the results.
You do not need to write extra code for parallelism. Those functions in “FMRIWordPrediction.class”
will call the pre-implemented “Shooting.shotgun()” which runs “shoot()” in parallel.)

(a) [15 points] For semantic feature 1, run Shotgun with λ = [0.02, . . . , 0.1] spaced by 0.01.
Please submit three plots for this question:

– Plot the l2 loss on training data against λ.

– Plot the l2 loss on test data against λ.

– Plot the l0 norm of the weight vector ŵ against λ

(b) [15 points] Iterate over all 218 semantic features, run Shotgun with

λ = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4].

Choose the λ that has the smallest error on the test data.
At the end of each iteration, apply the current model to predict the word features on
the test data. Given the two candidate words in the test data, choosing the one whose
semantic feature vector is closest (in Euclidean distance) to the prediction and record
the error rate of the classification. For example, at the end of iteration t, the distance
between the candidate and our prediction for word j is

t∑
i=1

‖Yj,i −Xjwi‖2

– Plot the classification error (number of mistakes / total number) as a function of
number of iterations (same as number of trained features).

9

