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Problem Definition AGM Bound Worst Case Algorithm

The Problem

Given a query Q, and a structure (database) D, what is the algorithmic
complexity for computing Q(D)?

We are interested in data complexity only: Q is fixed, and the input is D.

And we will consider only Conjunctive Queries: ∃x(R1 ∧ R2 ∧⋯).
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The Problem

Suppose Q is in prenex normal form with k variables.
Suppose the domain size is n = ∣D ∣.
A naive algorithm computes Q(D) in time Õ(nk). why the log n factor?

In general, we know the sizes of the input relations ∣R1∣ = N1, ∣R2∣ = N2, . . .
Want an algorithm that is optimal in N1,N2, . . .
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Maximal Output Size

A cardinality constraint (or cardinality statistics) is an assertion
∣Ri ∣ ≤ Ni

A set of cardinality constraints (statistics) is Σ = {∣R1∣ ≤ N1, ∣R2∣ ≤ N2, . . .}.

A database satisfies Σ, D ⊧ Σ, if ∣RD
1 ∣ ≤ N1, ∣RD

2 ∣ ≤ N2, . . .

Q ′ maximal output size is maxD⊧Σ ∣Q(D)∣; written maxΣ ∣Q ∣ or max ∣Q ∣.

Observation Any algorithm takes time Ω(max ∣Q ∣) on some inputs.
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Examples

Assume ∣R ∣ ≤ N1, ∣S ∣ ≤ N2, ∣T ∣ ≤ N3.
What is maxΣ ∣Q ∣ in each case below? In class
Start with the simpler case: N1 = N2 = N3 = N.

Q1(x , y , z) =R(x , y) ∧ S(y , z) // One join

Q2(x , y) =R(x) ∧ S(x , y) ∧T (y) // Bow-tie

Q3(x , y , z ,u) =R(x , y) ∧ S(y , z) ∧T (z ,u) // Two joins

Q4(x , y , z) =R(x , y) ∧ S(y , z) ∧T (z , x) // Triangles

Q5 =∃x∃y∃z(R(x , y) ∧ S(y , z) ∧T (z , x))
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Full CQ and Boolean CQ

Q is full if it all its variables are head variables.

An algorithm is worst case optimal if it runs in time Õ(maxΣ ∣Q ∣).

This week (two lectures): worst-case optimal algorithms for full CQ.

Q is Boolean if all its variables are existentially quantified.

A worst case optimal algorithm is impossible why?. Best techniques
use tree decomposition.

Next week, two guest lectures by Hung Ngo.
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Full CQ

Fix statistics Σ and a full conjunctive query Q.

Problem: compute maxΣ ∣Q ∣.
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The Hypergraph of a Query

A hypergraph is G = (V ,E), where every hyperedge e ∈ E is e ⊆ V .

An undirected graph is the special case when ∣e ∣ = 2 forall e ∈ E .

An edge cover is a subset E ′ ⊆ E s.t. every node x ∈ V occurs in some
edge e ∈ E ′.

Every full query Q(x1, . . . , xk) = R1(X 1) ∧⋯ ∧ Rm(Xm)
is associated to the hypergraph ({x1, . . . , xk},{X 1, . . . ,Xm}).

An edge cover for Q is a subset of atoms Ri1 ,Ri2 , . . . that contain all
variables.
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Full CQ: Main Result

Q(X) = R1(X 1) ∧⋯ ∧ Rm(Xm)

Fact

If Ri1 , . . . ,Riw is an edge-cover, then ∣Q ∣ ≤ ∣Ri1 ∣ ⋅ ∣Ri2 ∣⋯∣Riw ∣

Example: Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
Then ∣Q ∣ ≤ ∣R ∣ ⋅ ∣S ∣ and ∣Q ∣ ≤ ∣R ∣ ⋅ ∣S ∣ and ∣Q ∣ ≤ ∣S ∣ ⋅ ∣T ∣.

Theorem (Atserias,Grohe,Marx (AGM Bound))

If w1, . . . ,wm ∈ [0,1] is a fractional edge cover,a ∣Q ∣ ≤ ∣R1∣w1 ⋅ ∣R2∣w2⋯∣Rm∣wm .

aWill define later; but what could it be?.

Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x) then ∣Q ∣ ≤ (∣R ∣ ⋅ ∣S ∣ ⋅ ∣T ∣)1/2
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Entropy

Definition

Fix a random variable X with N outcomes, with probabilities p1, . . . ,pN .

Its entropy is H(X ) def= −∑i pi log pi .

What everyone should know:

H(X ) ≥ 0.

H(X ) = 0 iff X is deterministic: ∃i ,pi = 1 and ∀j ≠ i ,pj = 0.

H(X ) ≤ logN, where N = number of possible outcomes. proof in class

H(X ) = logN iff X is uniform: p1 = ⋯ = pN = 1
N .
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Entropy of Multiple Variables

Consider k random variables X1, . . . ,Xk .

The tuple (X1, . . . ,Xk) is call the joint random variable.

Its entropy is H(X1⋯Xk).

Thus, we may talk about H(XY ), H(X ), H(Z), H(XYZ) etc.

In class: what is H(∅) =?

We call the function 2{X1,...,Xk} → R, {Xi1 , . . . ,Xim}↦ H(Xi1 . . .Xim) an
entropic function.
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The Entropic Bound

Fix a full CQ and constraints:

Q(X1, . . . ,Xk) =R1(X 1) ∧⋯Rm(Xm)
Σ ={∣Ri ∣ ≤ Ni ∣ i = 1,m}

We say that H satisfies the constraints if H(X i) ≤ logNi for i = 1,m.

Theorem (The Entropic Bound)

log (max
Σ

∣Q ∣) = max
entropic H ⊧ Σ

H(X1⋯Xk)
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Proof of log ∣Q(D)∣ ≤ maxH⊧Σ H(X1⋯Xk)

By example: Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
Consider the answer Q(D) on some D.
Define the uniform probability space on the joint random variables XYZ .
This induces marginal probabilities X , Y , and Z .
Q(D) ∶
x y z
a 3 r 1

5

a 2 q 1
5

b 2 q 1
5

d 3 r 1
5

a 3 q 1
5

RD ∶
x y
a 3 2

5

a 2 1
5

b 2 1
5

d 3 1
5

SD ∶
y z
3 r 2

5

2 q 2
5

3 q 1
5

4 q 0

TD ∶
x z
a r 1

5

a q 2
5

b q 1
5

d r 1
5

H(XYZ) = log 5, and H(XY ) ≤ log ∣RD ∣ = log 4; H(YZ),H(XZ) ≤ log 4.
In general, for any input D: log ∣Q(D)∣ = H(XYZ) ≤ maxH⊧Σ H(XYZ)
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Discussion

Our problem is to compute maxD⊧Σ ∣Q(D)∣.

We observed that this is the same as computing maxH⊧Σ H(X1⋯Xk).

Doesn’t look like great progress.

But will show next how to upper bound H.
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Shannon’s Inequalities

What everyone should know about the entropy:

Emptyset H(∅) = 0

Monotonicity If X ⊆ Y then H(X) ≤ H(Y ).

Submodularity H(X ∩Y ) +H(X ∪Y ) ≤ H(X) +H(Y ).

Definition

A function H ∶ 2{X1,...,Xk} → R with these properties is called polymatroid.

Every entropic function is a polymatroid; converse fails when k ≥ 4.
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Example

Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
Claim: ∣R ∣, ∣S ∣, ∣T ∣ ≤ N implies ∣Q ∣ ≤ N3/2.

Proof:

3 logN = log ∣R ∣ + log ∣S ∣ + log ∣T ∣ ≥ H(XY ) +H(YZ) +H(XZ)
≥H(XYZ) +H(Y ) +H(XZ) why?

≥H(XYZ) +H(XYZ) +H(∅) why?

=2H(XYZ) = 2 log ∣Q ∣

This inequality is a special case of Shearer’s inequality (next).
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Covers in a Hypergraph
Let (V ,E) be a hypergraph,
where V = {X1, . . . ,Xk}, E = {X 1, . . . ,Xm}.

Definition

A fractional edge cover is a vector w = (w1, . . . ,wm) s.t.
“every variable Xi is covered”: ∑j ∶Xi∈X j

wj ≥ 1.

Definition

A fractional vertex packing is a vector v = (v1, . . . , vk) s.t.
“every edge X j is packed”: ∑i ∶Xi∈X j

vi ≤ 1.

Theorem

minw ∑j wj = maxv ∑i vi
def= ρ∗;

This is called the fractional edge covering number of the hypergraph.

Proof on the next slide.
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Proof of minw ∑j wj = maxv ∑i vi

We use the strong duality theorem for linear programs.
Will illustrate on the triangle query:
G = ({x1, x2, x3},{x1, x2},{x2, x3},{x3, x1}).

minimize w1 +w2 +w3

Cover x1: w1+ w3 ≥ 1
Cover x2: w1+ w2 ≥ 1
Cover x3: w2+ w3 ≥ 1

maximize v1 + v2 + v3

Pack {x1, x2}: v1+ v2 ≤ 1
Pack {x2, x3}: v2+ v3 ≤ 1
Pack {x3, x1}: v1+ v3 ≥ 1

These two linear programs are dual, hence
min(w1 +w2 +w3) = max(v1 + v2 + v3).
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Discussion

Optimal fractional edge cover = optimal fractional vertex packing.

Useful exercise: check this statement for these hypegraphs:

R(x , y) ∧ S(y , z) ∧T (z , x)
R(x , y) ∧ S(y , z) ∧T (z ,u) ∧K(u, v)
R(x , y , z) ∧ S(y , z ,u) ∧T (z ,u, x) ∧K(u, x , y)

For integral edge covers / vertex packings, we only have ≥.
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Shearer’s Inequality
Hypergraph V = {X1, . . . ,Xk}, E = {X 1, . . . ,Xm}. H = entropic function.

Theorem (Shearer version 1)

If w1, . . . ,wm is a fractional edge cover then
w1H(X 1) +⋯ +wmH(Xm) ≥ H(X1⋯Xk)

Theorem (Shearer version 2)

If every variable Xi is k-covered (i.e. occurs in at least k hyperedges), then
H(X 1) +⋯ +H(Xm) ≥ kH(X1⋯Xk)

Example:

1

2
H(XY ) + 1

2
H(YZ) + 1

2
H(ZX ) ≥H(XYZ)

H(XY ) +H(YZ) +H(ZX ) ≥2H(XYZ)
The two formulations are equivalent why?
We will prove version 2, by generalizing the proof in the triangle query.
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Proof of H(X 1) +⋯ +H(Xm) ≥ kH(X1⋯Xk)

A sub-modularity step consists of replacing
H(X i) +H(X j) with H(X i ∩X j) +H(X i ∪X j)

Claim 1: Invariant After an SM step, every variable remains k-covered

Proof: A variable X can occur in 0,1 or 2 times in H(X i) +H(X j);
it occurs the same number of times in H(X i ∩X j) +H(X i ∪X j). why?
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Proof of H(X 1) +⋯ +H(Xm) ≥ kH(X1⋯Xk)

Claim 2: Progress If X i /⊆ X j and X j /⊆ X i then,
after an SM step, the quantity ∑` ∣X `∣2 strictly increases.

Proof: ∣X i ∣2 + ∣X j ∣2 < ∣X i ∩X j ∣2 + ∣X i ∪X j ∣2 why?

Dan Suciu Finite Model Theory – Unit 5 Spring 2018 23 / 49



Problem Definition AGM Bound Worst Case Algorithm

Proof of H(X 1) +⋯ +H(Xm) ≥ kH(X1⋯Xk)

Claim 3: Termination We have proven:

H(X 1) +⋯ +H(Xm) ≥H(Y 1) +⋯ +H(Ym)

where every variable is k-covered by Y 1, . . . ,Ym (invariant!)
and Y 1 ⊇ Y 2 ⊇ Y 3 ⊇ ⋯ (no more progress!)

That means that Y 1 = Y 2 = ⋯ = Y k = {X1, . . . ,Xk} why?, thus:

H(X 1) +⋯ +H(Xm) ≥kH(X1⋯Xk) + [stuff] ≥ H(X1⋯Xk)
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Discussion

We proved something stronger: Shearer’s inequality holds for all
polymatroids H.

The converse also holds: if ∑j wjH(X j) ≥ H(X1 . . .Xk) for all
entropic functions, then w1, . . . ,wk is a fractional edge cover.

Next: the AGM bound is Sheare’s lemma restated in terms of a query
PLUS a proof that the inequality is tight.
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AGM Bound for Q(X1, . . . ,Xk) = R1(X 1) ∧⋯ ∧ Rm(Xm)
Assume uniform statistics ∣R1∣, ∣R2∣, . . . , ∣Rm∣ ≤ N.

Lemma

(a) If w1, . . . ,wm is a fractional edge cover, then ∀D, ∣Q(D)∣ ≤ Nw1+⋯+wm .
(b) If v1, . . . , vk is a fractional vertex packing, then ∃D, ∣Q(D)∣ = Nv1+⋯+vk

Proof. (a) log max ∣Q(D)∣ ≤ maxH(X) ≤ ∑j wjH(X j) (Shearer)

(b) “Product database”: RD
j

def= ∏Xi∈X j
[Nvi ].

Then ∣RD
j ∣ ≤ N, ∀j , and Q(D) = Nv1+⋯+vk

E.g. Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x); vx = vy = vz = 1
2 .

RD def= [N1/2] × [N1/2] SD def= [N1/2] × [N1/2] TD def= [N1/2] × [N1/2]

Then ∣RD ∣, ∣SD ∣, ∣TD ∣ ≤ N, and Q(D) = [N1/2] × [N1/2] × [N1/2]
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AGM Bound

Theorem (AGM Bound - Uniform cardinalities)

max ∣Q(D)∣ = max 2H(X) = Nρ∗

We denote this quantity by AGM(Q).

Proof:

log max ∣Q(D)∣ ≤ maxH(X) was the proof by example.

H(X) ≤ ∑wjH(X j) = ρ∗ logN Shearer’s inequality.

Nρ∗ ≤ max ∣Q(D)∣ worst-case (product) instance D.
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AGM Bound for Q(X1, . . . ,Xk) = R1(X 1) ∧⋯ ∧ Rm(Xm)

Assume general statistics ∣R1∣ ≤ N1, . . . , ∣Rm∣ ≤ Nm.
A generalized fractional vertex packing is v1, . . . , vk s.t. for every edge
Rj(X j): ∑i ∶Xi∈X j

vi ≤ logNj .

Lemma

(a) If w1, . . . ,wm is a fractional edge cover, then ∀D, ∣Q(D)∣ ≤ Nw1
1 ⋯Nwm

m .
(b) If v1, . . . , vk is a generalized frac vertex packing, ∃D, ∣Q(D)∣ = 2v1+⋯+vk

Proof: straightforward generalization of the previous arguments. (Will skip
in class, but it really helps if you review it at home.)
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AGM Bound

Theorem (AGM Bound - general cardinalities)

max ∣Q(D)∣ = max 2H(X) = minw ∏j ∣Rj ∣wj .

We denote this quantity by AGM(Q).
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Example

Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
Find maxQ(D)
For any fractional edge cover wR ,wS ,wT : ∣Q ∣ ≤ ∣NR ∣wR ⋅ ∣NS ∣wS ⋅ ∣NT ∣wT .

wR wS wT ∣NR ∣wR ⋅ ∣NS ∣wS ⋅ ∣NT ∣wT

1/2 1/2 1/2
√
NRNSNT

1 1 0 NRNS

0 1 1 NSNT

1 0 1 NRNT

The smallest of these values is the tight bound of ∣Q(D)∣.
In class: what is the worst case instance D?
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Example

In class:

Q(x , y) =R(x) ∧ S(x , y) ∧T (y)

Find maxQ(D)
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Discussion

The worst case database, where Q(D) = AGM(Q) is a product
database.

To compute AGM(Q) we need to compute minw N
wj

j where w ranges
over all fractional edge covers.

There are infinitely many w ’s!

Good news: suffices to check vertices of the edge covering polytope,
of which there are only finitely many.
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Vertices of the Edge Covering Polytope

A polytope P ⊆ Rk is the intersection of semi-spaces:
P = ⋂i{w ∣ ∑j aijwj ≤ bj}

A polytope is convex: if w1,w2 ∈ P then (1 − λ)w1 + λw2 ∈ P.

Call w ∈ P a vertex if it is no strict convex combination1 of points in P.

For any linear function f (w) def= ∑j bjwj its minimum is at a vertex of the
polytope why?

It follows, for the edge-covering polytope:
minw∈P N

wj

j = minw∈vertices(P)N
wj

j

In class find the vertices of R(x , y) ∧ S(y , z) ∧T (z ,u) ∧K(u, x).

1A strict convex combination is w = (1 − λ)w 1 + λw 2 with λ ≠ 0, λ ≠ 1.
Dan Suciu Finite Model Theory – Unit 5 Spring 2018 33 / 49



Problem Definition AGM Bound Worst Case Algorithm

Discussion

The AGM bound is Shearer’s inequality PLUS tightness proof.

The bound is reached by some “product” database instance.

To be of practical value (in databases) the AGM bound needs to be
extended to handle more complex statistics: this is not trivial. Next:
a simple extension that is trivial.
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Simple Functional Dependencies

Fix a relation R(A1, . . . ,A`).
A simple functional dependency is of the form Ai → Aj .
Meaning: every two tuples in R that agree on Ai must also agree on Aj .

Let Σ = set of statistics; Γ = set of simple FD’s.

Problem: find AGMΓ(Q) def= maxD⊧Σ,Γ ∣Q(D)∣.

In general, AGMΓ(Q) ≤ AGM(Q), but it is not tight.
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Simple Functional Dependencies

Given Q, Γ, denote Q̄ the query obtained as follows:

If some relation Rj satisfies the simple FD A→ B and Ri contains the
attribute (variable) A, then add B to Ri (and increase its arity).

Repeat until no more change.

Then AGMΓ(Q) = AGM(Q̄).
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Examples

Assume ∣R ∣, ∣S ∣, ∣T ∣ ≤ N.

Example 1: Q(x , y , z) = R(x , y) ∧ S(y , z)
Compute AGMS .y→S.z(Q).

AGM(Q) = N2

y → z implies Q̄(x , y , z) = R(x , y , z) ∧ S(y , z)
AGMS .y→S .z(Q) = N

Example 2: Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
Compute AGMS .y→S.z(Q)

AGM(Q) = N3/2

y → z implies Q̄(x , y , z) = R(x , y , z) ∧ S(y , z) ∧T (z , x)
AGMS .y→S .z(Q) = N
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Worst Case Optimal Algorithm

Problem: find an algorithm to compute Q(D) in time Õ(AGM(Q)).

First such algorithm described by [Ngo, Porat, Re, Rudra]; it was a
breakthrough but too complex. Later they simplified it significantly to an
algorithm called Generic Join. Everyone should know GJ.
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Generic Join

Q(x1, . . . , xk) = R1(X 1) ∧⋯ ∧ Rm(Xm)

Compute by calling Generic-join(Q,k ,()):

Generic-join(Q, k , a):
if k = 0 then print a
choose any variable x
let J = {j ∣ x ∈ X j} // atoms containing x
let Dj = Πx(Rj), forall j ∈ J // domains of x
for v in ⋂j∈J Dj

// must compute intersection in time O(min(∣Dj ∣))
Generic-join(Q[v/x], k − 1, (a, v))

Q[v/x] is the residual query, where x is substituted with constant v .
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Example

Q(x , y , z) = R(x , y) ∧ S(y , z) ∧T (z , x)
let DR = Πx(R), DT = Πx(T )
for u in DR ∩DT do

// compute query R(u, y) ∧ S(y , z) ∧T (z ,u)
let DR = Πy(σx=u(R)), DS = Πy(S)
for v in DR ∩DS do

// compute query R(u, v) ∧ S(v , z) ∧T (z ,u)
let DS = Πz(σy=v(S)), DT = Πz(σx=u(T ))
for w in DS ∩DT do

print u, v ,w

Next: we will prove its runtime.
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Runtime of GJ

Q(x1, . . . , xk) = R1(X 1) ∧⋯ ∧ Rm(Xm)

Let TGJ(Q) be the runtime of GJ, assuming every relation RD
j (X j) is

sorted lexicographically, by the attribute order in GJ.

Theorem

Let w1, . . . ,wm be any fractional edge cover. Then TGJ(Q) = Õ(∏j N
wj

j ).

It follows that TGJ(Q) = Õ(AGM(Q)).

We will prove the theorem by induction on the number of variables in Q.
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Background: Intersection

Given 2 sorted lists (of numbers, or strings) D1,D2, compute D1 ∩D2.

In class:

Describe an algorithm that runs in time Õ(∣D1∣ + ∣D2∣).
(this is = Õ(max(∣D1∣, ∣D2∣))).

Describe a better algorithm that runs in time Õ(min(∣D1∣, ∣D2∣)).
Example: if ∣D1∣ = 1 then compute intersection in time
Õ(1) = O(log n). who is n?
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Runtime of GJ: Base Case: Q has a single variable x

Q(x) = R1(x) ∧⋯ ∧ Rk(x)

Let w1, . . . ,wk be a fractional edge cover.

Then the runtime is TGJ(Q) = Õ(min(N1, . . . ,Nk))

Claim: min(N1, . . . ,Nk) ≤ Nw1
1 ⋯Nwk

k why?

This proves TGJ(Q) = Õ(Nw1
1 ⋯Nwk

k ).
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Background: Hölder’s Generalized Inequality

Cauchy-Schwartz:

∑
i

a
1
2
i b

1
2
i ≤ (∑

i

ai)
1
2

(∑
i

bi)
1
2

Hölder: if w1 +w2 ≥ 1, then

∑
i

aw1
i bw2

i ≤ (∑
i

ai)
w1

(∑
i

bi)
w2

Generalized Hölder: if w1 +w2 +w3 + . . . ≥ 1, then

∑
i

aw1
i bw2

i cw3
i ⋯ ≤ (∑

i

ai)
w1

(∑
i

bi)
w2

(∑
i

ci)
w3

⋯
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Runtime of GJ: Induction Step; GJ iterates over x1

Q(x1, . . . , xk) =R1(X 1) ∧⋯ ∧ Rj0(X j0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Contain x1

∧Rj0+1(X j0+1) ∧⋯ ∧ Rm(Xm)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

don’t contain x1

We prove TGJ(Q) = Õ(Nw1
1 ⋯Nwm

m ).

Time for Πx(R1) ∩⋯ ∩Πx(Rj0) is Õ(Nw1
1 ⋯N

wj0
j0

) ≤ Õ(Nw1
1 ⋯Nwm

m )
Time for residual query Q[a/x]. By induction:

TGJ(Q[a/x1]) = Nw1
1,a

±
def
= ∣σx1=a(R1)∣

⋯ N
wj0
j0,a

±
def
= ∣σx1=a(Rj0

)∣

⋅Nwj0+1

j0+1 ⋯Nwm
m

Total runtime is obtained by summing on a:

∑
a

Nw1
1,a⋯N

wj0
j0,a

⋅Nwj0+1

j0+1 ⋯Nwm
m ≤(∑

a

N1,a)
w1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(N1)

w1

⋯(∑
a

Nj0,a)
wj0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(Nj0

)
wj0

⋅Nwj0+1

j0+1 ⋯Nwm
m
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Discussion

The AGM bound can be smaller than maxj Nj . This means that GJ
may not necessarily read all the data.
E.g. computing R1 ∩ R2 when N1 ≪ N2: do a binary search in R2.

Hölder’s generalized inequality only holds when w1 +w2 +⋯ ≥ 1.
Thus, it is necessary that x1 be “covered” (and same for x2, x3, . . .).

Our proof of the runtime also implies Q(D) ≤∏j N
wj

j . But this
means that we have proven Shearer’s inequality again! What is the
clean proof of Shearer’s inequality that corresponds to GJ?
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Conditional Polymatroid/Entropy
We will define the conditional polymatroid as H(Z ∣Y ) def= H(YZ)−H(Y ).

When H is entropic, then the conditional entropy has a meaning the
entropy of a conditional probability space. We don’t need this here.

Lemma

(1) H(Z ∣Y ) ≥ H(Z ∣XY ) (2) H ′(Z) def= H(Z ∣Y ) is a polymatroid.

Proof: (1)

H(XY ) +H(YZ) ≥H(XYZ) +H( (XY ) ∩ (YZ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

not necessarily Y why?

)

≥H(XYZ) +H(Y )
H(YZ) −H(Y ) ≥H(XYZ) −H(XY )

(2) exercise.
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Proof #2 of Shearer’s Inequality

We prove: for any polymatroid H: ∑j wjH(X j) ≥ H(X1 . . .Xk).
when w1, . . . ,wm is a fractional edge cover.

(w1H(X 1) + . . . +wj0H(X j0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

contain X1

+ (. . . +wmH(Xm))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
do not contain X1

=

=(w1 + . . . +wj0)H(X1) + (w1H(X 1∣X1) + . . . +wj0H(X j0 ∣X1)) + (. . . +H(Xm))
≥H(X1) + (w1H(X 1∣X1) + . . . +wj0H(X j0 ∣X1)) + (. . . +H(Xm))
≥H(X1) + (w1H(X 1∣X1) + . . . +wj0H(X j0 ∣X1)) + (. . . +H(Xm∣X1))
≥H(X1) +H(X1X2 . . .Xk ∣X1)
=H(X1X2 . . .Xk)
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Discussion

Main take away: GJ is very simple and worst case optimal!

Query engines in database systems are not worst case optimal.

GJ requires all relations to be pre-sorted. If not, then sort them
dynamically; the additional cost ∑j Nj logNj may exceed the AGM
bound.

GJ does only intersection: great candidate for vectorization.

GJ is designed for on Full CQ. In practice, most data analytics queries
are aggregates; e.g. ∃-aggregate (a.k.a. Boolean query), count,sum,
etc. Next week, Thursday at 9 ∶ 30 and Friday at 10, Hung Ngo will
give two lectures on the FAQ algorithm for aggregate queries.
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