Dan Suciu

Spring 2018

599c: Finite Model Theory

Unit 4: Query Containment and Equivalence

Resources

- Abitebou, Hull, Vianu, Database Theory (Alice book)
- Simon's Institute: Logical Structures in Computation Boot Camp, 2016

https:

//simons.berkeley.edu/workshops/logic2016-boot-camp
See Kolaiti's tutorial on Logic and Databases

• Cerignou, Vollmer, Boolean Constraint Satisfaction Problem.

Fix a vocabulary σ .

An FO query is defined by formula Q(x) with k free variables Q maps $\mathbf{A} \in \mathsf{STRUCT}[\sigma]$ to the relation $Q(\mathbf{A}) \subseteq A^k$:

$$Q(\mathbf{A}) \stackrel{\mathsf{def}}{=} \{ \mathbf{a} \subseteq A^k \mid \mathbf{A} \vDash Q[\mathbf{a}] \}$$

discuss connection to FO reduction $STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

When k = 0 then we call it a Boolean query: $Q(\mathbf{D})$ is true or false.

Warning: we use conflicting notations $Q(\mathbf{A})$ and $Q(\mathbf{x})$.

Problem Definition

Definition (Query Containment)

We say that Q_1 is contained in Q_2 , $Q_1 \subseteq Q_2$ if forall \boldsymbol{A} , $Q_1(\boldsymbol{A}) \subseteq Q_2(\boldsymbol{A})$. The containment problem for a language L is: given $Q_1, Q_2 \in L$ check if $Q_1 \subseteq Q_2$.

When Q_1, Q_2 are Boolean queries, then containment is logical implication: $Q_1 \rightarrow Q_2$.

Definition (Query Equivalence)

We say that Q_1 is equivalent to Q_2 , $Q_1 \equiv Q_2$ if forall \boldsymbol{A} , $Q_1(\boldsymbol{A}) = Q_2(\boldsymbol{A})$. The equivalence problem for a language L is: given $Q_1, Q_2 \in L$ check if $Q_1 \equiv Q_2$.

Discussion

• If *L* is closed under ∧ or closed under ∨ then containment and equivalence have the same complexity. proof in class

Thus, containment and equivalence are essentially the same problem.

• However, it is undecidable for FO:

Theorem

The problem "given $Q_1, Q_2 \in FO$, is $Q_1 \subseteq Q_2$?" is undecidable.

proof in class

• Thus, we study containment for fragments $L \subseteq FO$.

Fix two structures **A** =
$$(A, R_1^A, ..., R_m^A)$$
, **B** = $(B, R_1^B, ..., R_m^B)$.

A homomorphism $f : \mathbf{A} \to \mathbf{B}$ is a function $f : A \to B$ s.t. $f(R_j^A) \subseteq R_j^B$ for j = 1, m.

Definition (The Homomorphism Problem)

The homomorphism problem is: given two structures A, B, check if there exists a homomorphism $h: A \rightarrow B$

The Homomorphism Problem: Complexity

Find $f: \mathbf{A} \to \mathbf{B}$

Theorem

- (1) The homomorphism problem is NP-hard in general.
- (2) There exists a fixed **B** s.t. the homomorphism problem is NP-hard.

Prove (2) in class, twice: 3-colorability (ternary domain of \boldsymbol{B}), 3SAT (binary domain of \boldsymbol{B}).

Conjunctive Query

A Conjunctive Query (CQ) is a query of the form:

$$Q(\mathbf{x}) = \exists \mathbf{y}(R_{j_1}(\mathbf{u}_1) \wedge R_{j_1}(\mathbf{u}_1) \wedge \cdots)$$

We often write it in datalog notation, dropping ∃:

$$Q(\mathbf{x}) \leftarrow R_{j_1}(\mathbf{u}_1) \wedge R_{j_1}(\mathbf{u}_1) \wedge \cdots$$

Each $R_{j_i}(\mathbf{u}_i)$ is called an atom, or a subgoal.

Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ Q, denoted Q^D , is the following:

- Domain = $\{x_1, \ldots, x_n\}$ (all variables of Q)
- Relation $R_j^{Q^D}$ = all atoms $R_j(\boldsymbol{u})$ in Q.

E.g.:
$$Q = R(x,y) \wedge R(z,y) \wedge S(z,x)$$

CQ evaluation is the same as the homomrphism problem:

Fact

For any structure (database) D, $D \models Q$ iff there exists a homomorphism $Q^D \rightarrow D$.

The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, $\mathbf{D} = (R_1^D, \dots, R_m^D)$. Fix *n* variables x_1, \ldots, x_n .

Homomorphism Problem

A constraint is an expression $R_i(x_{i_1}, \ldots, x_{i_{\nu}})$.

Definition

A Constraint Satisfaction Problem is a set Q of constraints.

A solution is $f: \{x_1, \dots, x_n\} \to D$ s.t. for every constraint $R_i(x_i, \dots, x_{i_k})$, $(f(x_{i_1}),\ldots,f(x_{i_{\nu}}))\subseteq R_i^D.$

If $D = \{0, 1\}$ then we call it a Boolean CSP.

Examples

3SAT is a CSP in class

Homomorphism and the CSP

Fact

The CSP problem has a solution iff there exists a homomorphism $Q \rightarrow \mathbf{D}$.

The homomorphism goes from the problem Q to the logical relations D.

Discussion

 CQ Evaluation and CSP are the same thing! And they are the same as the homomorphism problem:

$$f: \mathbf{A} \to \mathbf{B}$$

- But they look at different "sides":
 - CSP: fix logical relations B, the input is the problem A.
 NP-hard in general.
 Schaefer's dichotomy for Boolean CSP into PTIME v.s. NP-hard.
 - CQ: fix the query A, the input is the database B.
 Always in PTIME (data complexity).

The Homomorphism Theorem for Containment of CQ

Consider Boolean queries only; extension to non-Boolean is straightfoward.

Theorem

Let Q_1 , Q_2 be CQ. The following are equivalent:

- $Q_1 \subseteq Q_2$
- There exists a homomorphism $f: Q_2 \rightarrow Q_1$.
- Q_2 is true on the canonical database given by Q_1 .

Consequence: $Q_1 \equiv Q_2$ iff there exists two homomorphisms $Q_2 \rightarrow Q_1$ and $Q_1 \rightarrow Q_2$.

In class prove that $Q_3 \subseteq Q_2 \equiv Q_1$:

$$Q_1 \leftarrow E(x, y), E(z, y), E(z, u), E(u, v)$$

$$Q_2 \leftarrow E(r, s), E(s, t)$$

$$Q_3 \leftarrow E(a, b), E(b, c), E(c, d)$$

CQ Query Minimization

A CQ Q is called *minimal* if: forall Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f: Q \to Q'$, $g: Q' \to Q$ be two homomorphisms.

Then $g \circ f : Q \to Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. why?

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.

The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

- (1) Start with Q' = Q.
- (2) For each atom R_i of Q', check if there exists a homomorphism $f: Q' \to Q' - \{R_i\}$; if yes, then set $Q' = Q' - \{R_i\}$ and continue.
- (3) If no such R_i exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!

Discussion

- CQ query evaluation is CSP from the other side, and in PTIME.
- CQ query containment/equivalence is CSP from both ends, and NP-complete.
- To minimize Q, simply remove atoms one by one, in any order, until no other removal is possible.
- If G is a graph, then a core is a subgraph $G_0 \subseteq G$ s.t. (a) there exists a homomorphism $G \to G_0$, and (b) G_0 is smallest with this property. is the core unique? how does one find it?

Clauses

A Knowledge Base (in AI) is often described by a collection of clauses:

$$C = \forall x (L_1 \vee L_2 \vee \cdots)$$

where each literal is some $R(\boldsymbol{u})$ or $\neg R(\boldsymbol{u})$.

Fact

If C, C' are two positive clauses (w/o negation) then the implication problem $C \to C'$ is decidable and co-NP complete.

proof in class (reduction to CQ)

Note: this fact seems little known!

Unions of Conjunctive Queries

A Conjunctive Query (CQ) is a query of the form:

$$Q(\mathbf{x}) = \exists \mathbf{y}(R_{j_1}(\mathbf{u}_1) \wedge R_{j_1}(\mathbf{u}_1) \wedge \cdots)$$

A Union of Conjunctive Queries (UCQ) is a query of the form:

$$Q(\mathbf{x}) = Q_1(\mathbf{x}) \vee Q_2(\mathbf{x}) \vee \cdots$$

where Q_1, Q_2, \cdots are CQ's with the same free variables.

Example

Equivalently, a UCQ is a non-recursive datalog program. Example:

$$P_{1}(x,y) \leftarrow E(x,y)$$

$$P_{2}(x,y) \leftarrow P_{1}(x,y) \qquad P_{2}(x,y) \leftarrow P_{1}(x,z) \wedge P_{1}(z,y)$$

$$P_{3}(x,y) \leftarrow P_{2}(x,y) \qquad P_{3}(x,y) \leftarrow P_{2}(x,z) \wedge P_{2}(z,y)$$

$$P_{4}(x,y) \leftarrow P_{3}(x,y) \qquad P_{4}(x,y) \leftarrow P_{3}(x,z) \wedge P_{3}(z,y)$$

$$Q(x,y) \leftarrow P_{4}(x,y) \qquad Q \leftarrow P_{4}(x,z) \wedge P_{4}(z,y)$$

How much larger is the UCQ compared to the datalog program?

Containment for UCQ

We discuss Boolean queries only; non-Boolean queries are handled similarly, straightforwardly:

$$Q = Q_1 \lor Q_2 \lor \cdots \lor Q_m$$
$$Q' = Q'_1 \lor Q'_2 \lor \cdots \lor Q'_n$$

Theorem

 $Q \subseteq Q'$ iff $\forall i \exists j$ such that $Q_i \subseteq Q'_j$. Hence, containment of UCQ is NP-complete.

Proof in class

Minimizing UCQ

$$Q = Q_1 \vee Q_2 \vee \cdots \vee Q_m$$

- (1) Minimize each CQ Q_i .
- (2) For all i, if there exists j s.t. $Q_i \subseteq Q_i$, then remove Q_i .
- (3) The remaining query is minimal, and unique up to isomorphism. proof in class

Domain-Independent Queries

Q is called *domain-independent* if for any two structures D, D' with the same relations but different domains, we have Q(D) = Q(D'):

$$\mathbf{D} = (D, R_1^D, \dots, R_m^D)$$

 $\mathbf{D}' = (D', R_1^D, \dots, R_m^D)$

Which queries are domain independent?

$$\exists x \exists y R(x, y) \qquad \exists x \exists y \neg R(x, y)$$

$$\exists x \exists y (R(x) \land \neg S(x, y)) \qquad \exists x \exists y (R(x) \land \neg S(x, y) \land T(y))$$

$$\forall y S(y) \qquad \forall x \forall y (R(x, y) \rightarrow S(y))$$

In databases we consider only domain-independent queries.

Checking if Q is domain independent is undecidable in general why?

Monotone Queries

Two structures are contained, $\mathbf{A} \subseteq \mathbf{B}$, if the domains and all their relations are contained: $A \subseteq B$, $R_j^A \subseteq R_j^B$, j = 1, m.

A query Q is monotone if $A \subseteq B$ implies $Q(A) \subseteq Q(B)$

Checking if Q is monotone is undecidable in general why?

More Query Languages

The languages $CQ^{<}$, CQ^{\neg} , $CQ^{<,\neg}$ extend CQ with < or \neg respectively; similarly UCQ.

Examples to which language do they belong?

$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z)$$

 $\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \neg \text{Boss}(z)$
 $\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z) \land x < z$

In class do we need = in CQ, i.e. CQ=?

Summary of Query Languages

Syntax	FO fragment	Domain independent?	Monotone?
CQ	$FO(\exists, \land)$	yes	yes
CQ<	<i>FO</i> (∃, ∧, <)	yes	yes
CQ⁻	$FO(\exists, \land, \neg)$	no	no
	(Negation Normal Form)		
UCQ	$FO(\exists,\vee,\wedge)$	yes	yes
UCQ<	$FO(\exists, \lor, \land, <)$	yes	yes
UCQ⁻	$FO(\exists, \lor, \land, \lnot)$	no	no
	(Negation Normal Form)		

Dan Suciu

Theorem

The containment problem for $UCQ^{<,\neg}$ is decidable.

Proof: consider Boolean queries only.

Any UCQ $^{<,\neg}$ query can be written as $\exists x \varphi(x)$. Then:

$$Q_{1} \subseteq Q_{2} \qquad \text{iff } \models \exists \boldsymbol{x} \varphi_{1}(\boldsymbol{x}) \rightarrow \exists \boldsymbol{y} \varphi_{2}(\boldsymbol{y})$$

$$\text{iff } \models (\neg \exists \boldsymbol{x} \varphi_{1}(\boldsymbol{x})) \lor (\exists \boldsymbol{y} \varphi_{2}(\boldsymbol{y}))$$

$$\text{iff } \models (\forall \boldsymbol{x} \neg \varphi_{1}(\boldsymbol{x})) \lor (\exists \boldsymbol{y} \varphi_{2}(\boldsymbol{y}))$$

$$\text{iff } \models \forall \boldsymbol{x} \exists \boldsymbol{y} (\neg \varphi_{1}(\boldsymbol{x}) \lor \varphi_{2}(\boldsymbol{y}))$$

The latter is the negation of a Bernays-Schönfinkel formula $\exists^* \forall^*$, hence validity is decidable.

Containment Procedure for CQ<

Main idea: it is insufficient to treat < as any other predicate.

$$Q_1 = R(x, y) \land R(y, z) \land x < z$$

$$Q_2 = R(u, v), u < v$$

Then $Q_1 \subseteq Q_2$ why? yet there is no homomorphism $Q_2 \to Q_1$ that maps u < v to some <-atom.

Solution: expand Q_1 by considering all linear orders of variables

$$Q_{11} = R(x, y) \land R(y, z) \land y < x < z$$
 $Q_{12} = R(x, y) \land R(y, z) \land x = y < z$ Q_{13} $Q_{14} = R(x, y) \land R(y, z) \land x < y = z$ $Q_{15} = R(x, y) \land R(y, z) \land x < z < y$

$$Q_{14} = R(x, y) \land R(y, z) \land x < y = z \quad Q_{15} = R(x, y) \land R(y, z) \land x < z < y$$

Prove in class: $Q_1 \equiv Q_{11} \lor \cdots \lor Q_{15} \subseteq Q_2$.

Theorem

The Containment problem for $CQ^{<}$ (and for $UCQ^{<}$) is Π_2^p -complete.

Negation

Once we add negation, a query may not be domain independent. Problem: the abbreviated syntax suggests two interpretations. E.g.

$$Q \leftarrow R(x, y) \land \neg S(y, z)$$

Interpretation 1: $\exists x \exists y \exists z (R(x,y) \land \neg S(y,z))$

Interpretation 2: the result of this datalog program:

$$NotS(y) \leftarrow S(y, z)$$

 $Q \leftarrow R(x, y) \land NotS(y)$

Note: this menas $\exists x \exists y \forall z (R(x, y) \land \neg S(y, z))$

Negation: Interpretation 1

Theorem

Containment of CQ^{\neg} queries under interpretation 1 is Π_2^p complete.

Curiously, I could never find a published proof!

Negation: Interpretation 2

Theorem

Containment of CQ^{\neg} queries under interpretation 2 is undecidable.

Discussion

- Containment of $FO(\exists, \lor, \land)$ is decidable (and in Π_2^p) because of Bernays-Schönfinkel.
- Better complexities (meaning NP) for various fragments.
- Checking containment $Q_1 \subseteq Q_2$ is related to query evaluation of Q_2 on some database(s) derived from Q_1 .
- All results discussed here carry over to implication of universally quantified clauses. seems little known in the Al community