Finite Model Theory
Unit 4

Dan Suciu

Spring 2018
599c: Finite Model Theory

Unit 4: Query Containment and Equivalence
Resources

- Abitebou, Hull, Vianu, *Database Theory* (Alice book)

 https://simons.berkeley.edu/workshops/logic2016-boot-camp
 See Kolaiti’s tutorial on Logic and Databases

- Cerignou, Vollmer, *Boolean Constraint Satisfaction Problem*.
Query

Fix a vocabulary σ.

An FO query is defined by formula $Q(x)$ with k free variables Q maps $A \in \text{STRUCT}[\sigma]$ to the relation $Q(A) \subseteq A^k$:

$$Q(A) \overset{\text{def}}{=} \{a \subseteq A^k \mid A \models Q[a]\}$$

discuss connection to FO reduction $\text{STRUCT}[\sigma] \rightarrow \text{STRUCT}[\tau]$.

When $k = 0$ then we call it a **Boolean** query: $Q(D)$ is true or false.

Warning: we use conflicting notations $Q(A)$ and $Q(x)$.
Problem Definition

Definition (Query Containment)

We say that Q_1 is contained in Q_2, $Q_1 \subseteq Q_2$ if for all A, $Q_1(A) \subseteq Q_2(A)$.

The **containment problem** for a language L is:

given $Q_1, Q_2 \in L$ check if $Q_1 \subseteq Q_2$.

When Q_1, Q_2 are Boolean queries, then containment is logical implication: $Q_1 \rightarrow Q_2$.

Definition (Query Equivalence)

We say that Q_1 is equivalent to Q_2, $Q_1 \equiv Q_2$ if for all A, $Q_1(A) = Q_2(A)$.

The **equivalence problem** for a language L is:

given $Q_1, Q_2 \in L$ check if $Q_1 \equiv Q_2$.
Discussion

- If L is closed under \land or closed under \lor then containment and equivalence have the same complexity. proof in class

Thus, containment and equivalence are essentially the same problem.

- However, it is undecidable for FO:

Theorem

The problem “given $Q_1, Q_2 \in FO$, is $Q_1 \subseteq Q_2$?” is undecidable.

proof in class

- Thus, we study containment for fragments $L \subseteq FO$.
The Homomorphism Problem

Fix two structures $A = (A, R_1^A, \ldots, R_m^A)$, $B = (B, R_1^B, \ldots, R_m^B)$.

A homomorphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ s.t. $f(R_j^A) \subseteq R_j^B$ for $j = 1, m$.

Definition (The Homomorphism Problem)

The homomorphism problem is: given two structures A, B, check if there exists a homomorphism $h : A \rightarrow B$.
The Homomorphism Problem: Complexity

Find $f : A \rightarrow B$

Theorem

1. The homomorphism problem is NP-hard in general.
2. There exists a fixed B s.t. the homomorphism problem is NP-hard.

Prove (2) in class, twice: 3-colorability (ternary domain of B), 3SAT (binary domain of B).
Conjunctive Query

A **Conjunctive Query** (CQ) is a query of the form:

\[Q(x) = \exists y (R_{j_1}(u_1) \land R_{j_1}(u_1) \land \cdots) \]

We often write it in datalog notation, dropping \(\exists \):

\[Q(x) \leftarrow R_{j_1}(u_1) \land R_{j_1}(u_1) \land \cdots \]

Each \(R_{j_i}(u_i) \) is called an *atom*, or a *subgoal*.
Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ Q, denoted Q^D, is the following:

- Domain = $\{x_1, \ldots, x_n\}$ (all variables of Q)
- Relation $R_j^{Q^D} = \text{all atoms } R_j(u)$ in Q.

E.g.: $Q = R(x, y) \land R(z, y) \land S(z, x)$

$Q^D : \begin{array}{cc}
R & \\
\hline
x & y \\
z & y \\
\end{array}$

$S : \begin{array}{cc}
\hline
z & x \\
\end{array}$

CQ evaluation is the same as the homomorphism problem:

Fact

For any structure (database) D, $D \models Q$ iff there exists a homomorphism $Q^D \rightarrow D$.
The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, $D = (R_1^D, \ldots, R_m^D)$. Fix n variables x_1, \ldots, x_n. A constraint is an expression $R_j(x_{i_1}, \ldots, x_{i_k})$.

Definition

A Constraint Satisfaction Problem is a set Q of constraints. A solution is $f : \{x_1, \ldots, x_n\} \to D$ s.t. for every constraint $R_j(x_{i_1}, \ldots, x_{i_k})$, $(f(x_{j_1}), \ldots, f(x_{j_k})) \subseteq R_j^D$.

If $D = \{0, 1\}$ then we call it a Boolean CSP.
Examples

3-colorability. $Q =$ the graph; logical relation = E^D:

<table>
<thead>
<tr>
<th></th>
<th>red</th>
<th>green</th>
<th>blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3SAT is a CSP in class
Homomorphism and the CSP

Fact

The CSP problem has a solution iff there exists a homomorphism $Q \rightarrow D$.

The homomorphism goes from the problem Q to the logical relations D.
Discussion

- CQ Evaluation and CSP are the same thing! And they are the same as the homomorphism problem:

\[f : A \rightarrow B \]

- But they look at different “sides”:
 - CSP: fix logical relations \(B \), the input is the problem \(A \). NP-hard in general. Schaefer’s dichotomy for Boolean CSP into PTIME v.s. NP-hard.
 - CQ: fix the query \(A \), the input is the database \(B \). Always in PTIME (data complexity).
The Homomorphism Theorem for Containment of CQ

Consider Boolean queries only; extension to non-Boolean is straightforward.

Theorem

Let Q_1, Q_2 be CQ. The following are equivalent:

- $Q_1 \subseteq Q_2$
- There exists a homomorphism $f: Q_2 \rightarrow Q_1$.
- Q_2 is true on the canonical database given by Q_1.

Consequence: $Q_1 \equiv Q_2$ iff there exists two homomorphisms $Q_2 \rightarrow Q_1$ and $Q_1 \rightarrow Q_2$.
Example

In class prove that $Q_3 \subseteq Q_2 \equiv Q_1$:

$Q_1 \leftarrow E(x, y), E(z, y), E(z, u), E(u, v)$
$Q_2 \leftarrow E(r, s), E(s, t)$
$Q_3 \leftarrow E(a, b), E(b, c), E(c, d)$
CQ Query Minimization

A CQ Q is called *minimal* if:
forall Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \rightarrow Q'$, $g : Q' \rightarrow Q$ be two homomorphisms.

Then $g \circ f : Q \rightarrow Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. why?

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \to Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exists, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
Discussion

- CQ query evaluation is CSP *from the other side*, and in PTIME.

- CQ query containment/equivalence is CSP *from both ends*, and NP-complete.

- To minimize Q, simply remove atoms one by one, in any order, until no other removal is possible.

- If G is a graph, then a **core** is a subgraph $G_0 \subseteq G$ s.t. (a) there exists a homomorphism $G \rightarrow G_0$, and (b) G_0 is smallest with this property. Is the core unique? How does one find it?
Clauses

A Knowledge Base (in AI) is often described by a collection of *clauses*:

$$C = \forall x (L_1 \lor L_2 \lor \ldots)$$

where each literal is some $R(u)$ or $\neg R(u)$.

Fact

If C, C' are two positive clauses (w/o negation) then the implication problem $C \rightarrow C'$ is decidable and co-NP complete.

pseudo proof in class (reduction to CQ)

Note: this fact seems little known!
Unions of Conjunctive Queries

A Conjunctive Query (CQ) is a query of the form:

\[Q(x) = \exists y (R_{j_1}(u_1) \land R_{j_1}(u_1) \land \ldots) \]

A Union of Conjunctive Queries (UCQ) is a query of the form:

\[Q(x) = Q_1(x) \lor Q_2(x) \lor \ldots \]

where \(Q_1, Q_2, \ldots \) are CQ’s with the same free variables.
Example

Equivalently, a UCQ is a non-recursive datalog program. Example:

\[
\begin{align*}
P_1(x, y) & \leftarrow E(x, y) \\
P_2(x, y) & \leftarrow P_1(x, y) \\
P_3(x, y) & \leftarrow P_2(x, y) \\
P_4(x, y) & \leftarrow P_3(x, y) \\
Q(x, y) & \leftarrow P_4(x, y) \\
P_2(x, y) & \leftarrow P_1(x, z) \land P_1(z, y) \\
P_3(x, y) & \leftarrow P_2(x, z) \land P_2(z, y) \\
P_4(x, y) & \leftarrow P_3(x, z) \land P_3(z, y) \\
Q & \leftarrow P_4(x, z) \land P_4(z, y)
\end{align*}
\]

How much larger is the UCQ compared to the datalog program?
Containment for UCQ

We discuss Boolean queries only; non-Boolean queries are handled similarly, straightforwardly:

\[Q = Q_1 \lor Q_2 \lor \cdots \lor Q_m \]
\[Q' = Q'_1 \lor Q'_2 \lor \cdots \lor Q'_n \]

Theorem

\(Q \subseteq Q' \) iff \(\forall i \exists j \text{ such that } Q_i \subseteq Q'_j \). Hence, containment of UCQ is \(\text{NP-complete} \).

Proof in class
Minimizing UCQ

\[Q = Q_1 \lor Q_2 \lor \ldots \lor Q_m \]

(1) Minimize each CQ \(Q_j \).

(2) For all \(i \), if there exists \(j \) s.t. \(Q_i \subseteq Q_j \), then remove \(Q_i \).

(3) The remaining query is minimal, and unique up to isomorphism. \textit{proof in class}
Domain-Independent Queries

Q is called *domain-independent* if for any two structures D, D' with the same relations but different domains, we have $Q(D) = Q(D')$:

$$D = (D, R_1^D, \ldots, R_m^D)$$
$$D' = (D', R_1^D, \ldots, R_m^D)$$

Which queries are domain independent?

$$\exists x \exists y R(x, y)$$
$$\exists x \exists y (R(x) \land \neg S(x, y))$$
$$\forall y S(y)$$

$$\exists x \exists y \neg R(x, y)$$
$$\exists x \exists y (R(x) \land \neg S(x, y) \land T(y))$$
$$\forall x \forall y (R(x, y) \rightarrow S(y))$$

In databases we consider **only** domain-independent queries.

Checking if Q is domain independent is undecidable in general why?
Monotone Queries

Two structures are contained, \(A \subseteq B \), if the domains and all their relations are contained: \(A \subseteq B, R_j^A \subseteq R_j^B, j = 1, m \).

A query \(Q \) is monotone if \(A \subseteq B \) implies \(Q(A) \subseteq Q(B) \).

Checking if \(Q \) is monotone is undecidable in general why?
More Query Languages

The languages $CQ^<$, CQ^\neg, $CQ^{<,\neg}$ extend CQ with $<$ or \neg respectively; similarly UCQ.

Examples to which language do they belong?

$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z)$$

$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \neg \text{Boss}(z)$$

$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z) \land x < z$$

In class do we need $=$ in CQ, i.e. $CQ^=$?
Summary of Query Languages

<table>
<thead>
<tr>
<th>Syntax</th>
<th>FO fragment</th>
<th>Domain independent?</th>
<th>Monotone?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>$FO(∃, ∧)$</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>CQ$<$</td>
<td>$FO(∃, ∧, <$)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>CQ$¬$</td>
<td>$FO(∃, ∧, ¬)$ (Negation Normal Form)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>UCQ</td>
<td>$FO(∃, ∨, ∧)$</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>UCQ$<$</td>
<td>$FO(∃, ∨, ∧, <$)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>UCQ$¬$</td>
<td>$FO(∃, ∨, ∧, ¬)$ (Negation Normal Form)</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Decidability

Theorem

The containment problem for UCQ $\langle, \neg \rangle$ is decidable.

Proof: consider Boolean queries only.
Any UCQ $\langle, \neg \rangle$ query can be written as $\exists x \varphi(x)$. Then:

$$Q_1 \subseteq Q_2 \text{ iff } \equiv \exists x \varphi_1(x) \rightarrow \exists y \varphi_2(y)$$

$$\text{iff } \equiv (\neg \exists x \varphi_1(x)) \lor (\exists y \varphi_2(y))$$

$$\text{iff } \equiv (\forall x \neg \varphi_1(x)) \lor (\exists y \varphi_2(y))$$

$$\text{iff } \equiv \forall x \exists y (\neg \varphi_1(x) \lor \varphi_2(y))$$

The latter is the negation of a Bernays-Schönfinkel formula $\exists^* \forall^*$, hence validity is decidable.
Containment Procedure for $CQ^<$

Main idea: it is insufficient to treat $<$ as any other predicate.

$$Q_1 = R(x, y) \land R(y, z) \land x < z \quad \quad Q_2 = R(u, v), u < v$$

Then $Q_1 \subseteq Q_2$ why? yet there is no homomorphism $Q_2 \rightarrow Q_1$ that maps $u < v$ to some $<$-atom.

Solution: expand Q_1 by considering all linear orders of variables

$$Q_{11} = R(x, y) \land R(y, z) \land y < x < z \quad Q_{12} = R(x, y) \land R(y, z) \land x = y < z \quad Q_{13}$$
$$Q_{14} = R(x, y) \land R(y, z) \land x < y = z \quad Q_{15} = R(x, y) \land R(y, z) \land x < z < y$$

Prove in class: $Q_1 \equiv Q_{11} \lor \cdots \lor Q_{15} \subseteq Q_2$.

Theorem

The Containment problem for $CQ^<$ (and for $UCQ^<$) is Π^p_2-complete.
Negation

Once we add negation, a query may not be domain independent. Problem: the abbreviated syntax suggests two interpretations. E.g.

\[Q \leftarrow R(x, y) \land \neg S(y, z) \]

Interpretation 1: \(\exists x \exists y \exists z (R(x, y) \land \neg S(y, z)) \)

Interpretation 2: the result of this datalog program:

\[
\begin{align*}
NotS(y) &\leftarrow S(y, z) \\
Q &\leftarrow R(x, y) \land NotS(y)
\end{align*}
\]

Note: this means \(\exists x \exists y \forall z (R(x, y) \land \neg S(y, z)) \)
Negation: Interpretation 1

Theorem

Containment of CQ^\neg queries under interpretation 1 is \Pi^P_2 complete.

Curiously, I could never find a published proof!
Negation: Interpretation 2

Theorem

Containment of CQ^- queries under interpretation 2 is undecidable.
Discussion

- Containment of $FO(\exists, \lor, \land)$ is decidable (and in Π^p_2) because of Bernays-Schönfinkel.

- Better complexities (meaning NP) for various fragments.

- Checking containment $Q_1 \subseteq Q_2$ is related to query evaluation of Q_2 on some database(s) derived from Q_1.

- All results discussed here carry over to implication of universally quantified clauses. *seems little known in the AI community*