Finite Model Theory

Unit 4

Dan Suciu

Spring 2018
Unit 4: Query Containment and Equivalence
Resources

- Abitebou, Hull, Vianu, *Database Theory* (Alice book)

 https://simons.berkeley.edu/workshops/logic2016-boot-camp
 See Kolaiti’s tutorial on Logic and Databases

- Cerignou, Vollmer, *Boolean Constraint Satisfaction Problem*.
Query

Fix a vocabulary σ.

An FO query is defined by formula $Q(x)$ with k free variables Q maps $A \in \text{STRUCT}[\sigma]$ to the relation $Q(A) \subseteq A^k$:

$$Q(A) \overset{\text{def}}{=} \{ a \subseteq A^k \mid A \models Q[a] \}$$

Discuss connection to FO reduction $\text{STRUCT}[\sigma] \rightarrow \text{STRUCT}[\tau]$.

When $k = 0$ then we call it a Boolean query: $Q(D)$ is true or false.

Warning: we use conflicting notations $Q(A)$ and $Q(x)$.
Problem Definition

Definition (Query Containment)

We say that Q_1 is contained in Q_2, $Q_1 \subseteq Q_2$ if for all A, $Q_1(A) \subseteq Q_2(A)$. The **containment problem** for a language L is: given $Q_1, Q_2 \in L$ check if $Q_1 \subseteq Q_2$.

When Q_1, Q_2 are Boolean queries, then containment is logical implication: $Q_1 \rightarrow Q_2$.

Definition (Query Equivalence)

We say that Q_1 is equivalent to Q_2, $Q_1 \equiv Q_2$ if for all A, $Q_1(A) = Q_2(A)$. The **equivalence problem** for a language L is: given $Q_1, Q_2 \in L$ check if $Q_1 \equiv Q_2$.
Problem Definition

Definition (Query Containment)

We say that Q_1 is contained in Q_2, $Q_1 \subseteq Q_2$ if forall A, $Q_1(A) \subseteq Q_2(A)$.

The **containment problem** for a language L is:

given $Q_1, Q_2 \in L$ check if $Q_1 \subseteq Q_2$.

When Q_1, Q_2 are Boolean queries, then containment is logical implication: $Q_1 \rightarrow Q_2$.

Definition (Query Equivalence)

We say that Q_1 is equivalent to Q_2, $Q_1 \equiv Q_2$ if forall A, $Q_1(A) = Q_2(A)$.

The **equivalence problem** for a language L is:

given $Q_1, Q_2 \in L$ check if $Q_1 \equiv Q_2$.
Discussion

- If L is closed under \land or closed under \lor then containment and equivalence have the same complexity. \textit{proof in class}

 Thus, containment and equivalence are essentially the same problem.

- However, it is undecidable for FO:

\begin{theorem}

The problem “given $Q_1, Q_2 \in FO$, is $Q_1 \subseteq Q_2$?” is undecidable.

\end{theorem}

proof in class

- Thus, we study containment for fragments $L \subseteq FO$.
The Homomorphism Problem

Fix two structures $A = (A, R_1^A, \ldots, R_m^A)$, $B = (B, R_1^B, \ldots, R_m^B)$.

A homomorphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ s.t. $f(R_j^A) \subseteq R_j^B$ for $j = 1, m$.

Definition (The Homomorphism Problem)

The homomorphism problem is: given two structures A, B, check if there exists a homomorphism $h : A \rightarrow B$
The Homomorphism Problem: Complexity

Find $f : A \rightarrow B$

Theorem

(1) The homomorphism problem is NP-hard in general.
(2) There exists a fixed B s.t. the homomorphism problem is NP-hard.

Prove (2) in class, twice: 3-colorability (ternary domain of B), 3SAT (binary domain of B).
Conjunctive Query

A Conjunctive Query (CQ) is a query of the form:

\[Q(x) = \exists y (R_{j_1}(u_1) \land R_{j_1}(u_1) \land \ldots) \]

We often write it in datalog notation, dropping \(\exists \):

\[Q(x) \leftarrow R_{j_1}(u_1) \land R_{j_1}(u_1) \land \ldots \]

Each \(R_{j_i}(u_i) \) is called an atom, or a subgoal.
Homomorphism and CQ Evaluation

The **canonical database** of a Boolean CQ Q, denoted Q^D, is the following:

- **Domain** = $\{x_1, \ldots, x_n\}$ (all variables of Q)
- **Relation** $R_j^{Q^D} = \text{all atoms } R_j(u)$ in Q.

E.g.: $Q = R(x, y) \land R(z, y) \land S(z, x)$

CQ evaluation is the same as the homomorphism problem:

Fact

For any structure (database) D, $D \models Q$ iff there exists a homomorphism $Q^D \to D$.

Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ Q, denoted Q^D, is the following:

- **Domain** = $\{x_1, \ldots, x_n\}$ (all variables of Q)
- **Relation** $R_j^Q = \text{all atoms } R_j(u) \text{ in } Q$.

E.g.: $Q = R(x, y) \land R(z, y) \land S(z, x)$

CQ evaluation is the same as the homomorphism problem:

Fact

For any structure (database) D, $D \models Q$ iff there exists a homomorphism $Q^D \rightarrow D$.
Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ Q, denoted Q^D, is the following:

- Domain = $\{x_1, \ldots, x_n\}$ (all variables of Q)
- Relation $R^Q_j = \text{all atoms } R_j(u)$ in Q.

E.g.: $Q = R(x, y) \land R(z, y) \land S(z, x)$

CQ evaluation is the same as the homomorphism problem:

<table>
<thead>
<tr>
<th>Q^D</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fact

For any structure (database) D, $D \models Q$ iff there exists a homomorphism $Q^D \rightarrow D$.
The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, $D = (R_1^D, \ldots, R_m^D)$.
Fix n variables x_1, \ldots, x_n.
A constraint is an expression $R_j(x_{i_1}, \ldots, x_{i_k})$.

Definition

A Constraint Satisfaction Problem is a set Q of constraints.
A solution is $f : \{x_1, \ldots, x_n\} \to D$ s.t. for every constraint $R_j(x_{i_1}, \ldots, x_{i_k})$, $(f(x_{j_1}), \ldots, f(x_{j_k})) \subseteq R_j^D$.

If $D = \{0, 1\}$ then we call it a Boolean CSP.
The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, $D = (R_1^D, \ldots, R_m^D)$. Fix n variables x_1, \ldots, x_n. A constraint is an expression $R_j(x_{i_1}, \ldots, x_{i_k})$.

Definition

A **Constraint Satisfaction Problem** is a set Q of constraints. A solution is $f : \{x_1, \ldots, x_n\} \rightarrow D$ s.t. for every constraint $R_j(x_{i_1}, \ldots, x_{i_k})$, $(f(x_{j_1}), \ldots, f(x_{j_k})) \subseteq R_j^D$.

If $D = \{0, 1\}$ then we call it a Boolean CSP.
Examples

3-colorability. $Q = \text{the graph};$ logical relation =

$$E^D: \begin{array}{cc}
\text{red} & \text{green} \\
\text{red} & \text{blue} \\
\text{green} & \text{blue}
\end{array}$$

3SAT is a CSP in class
Examples

3-colorability. \(Q = \) the graph; logical relation =

<table>
<thead>
<tr>
<th>(E^D)</th>
</tr>
</thead>
</table>
| red | green
| red | blue
| green | blue

3SAT is a CSP in class
Homomorphism and the CSP

Fact

The CSP problem has a solution iff there exists a homomorphism \(Q \rightarrow D \).

The homomorphism goes from the problem \(Q \) to the logical relations \(D \).
Discussion

- CQ Evaluation and CSP are the same thing! And they are the same as the homomorphism problem:

\[f : A \rightarrow B \]

- But they look at different “sides”:
 - CSP: fix logical relations \(B \), the input is the problem \(A \). NP-hard in general. Schaefer’s dichotomy for Boolean CSP into PTIME v.s. NP-hard.
 - CQ: fix the query \(A \), the input is the database \(B \). Always in PTIME (data complexity).
The Homomorphism Theorem for Containment of CQ

Consider Boolean queries only; extension to non-Boolean is straightforward.

Theorem

Let Q_1, Q_2 be CQ. The following are equivalent:

- $Q_1 \subseteq Q_2$
- There exists a homomorphism $f : Q_2 \rightarrow Q_1$.
- Q_2 is true on the canonical database given by Q_1.

Consequence: $Q_1 \equiv Q_2$ iff there exists two homomorphisms $Q_2 \rightarrow Q_1$ and $Q_1 \rightarrow Q_2$.
Example

In class prove that \(Q_3 \subseteq Q_2 \equiv Q_1 \):

\[
Q_1 \leftarrow E(x, y), E(z, y), E(z, u), E(u, v)
\]
\[
Q_2 \leftarrow E(r, s), E(s, t)
\]
\[
Q_3 \leftarrow E(a, b), E(b, c), E(c, d)
\]
CQ Query Minimization

A CQ Q is called *minimal* if:
for all Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \rightarrow Q'$, $g : Q' \rightarrow Q$ be two homomorphisms.

Then $g \circ f : Q \rightarrow Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. why?

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
CQ Query Minimization

A CQ Q is called *minimal* if:
forall Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \rightarrow Q'$, $g : Q' \rightarrow Q$ be two homomorphisms.

Then $g \circ f : Q \rightarrow Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. why?

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
CQ Query Minimization

A CQ Q is called *minimal* if:
for all Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \to Q'$, $g : Q' \to Q$ be two homomorphisms.

Then $g \circ f : Q \to Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. *why?*

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
CQ Query Minimization

A CQ Q is called *minimal* if:
for all Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \to Q'$, $g : Q' \to Q$ be two homomorphisms.

Then $g \circ f : Q \to Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. why?

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
CQ Query Minimization

A CQ Q is called *minimal* if:
forall Q', if $Q' \equiv Q$, then Q' has at least as many atoms as Q.

Theorem

If $Q \equiv Q'$ and both are minimal, then Q, Q' are isomorphic.

Proof. Let $f : Q \rightarrow Q'$, $g : Q' \rightarrow Q$ be two homomorphisms.

Then $g \circ f : Q \rightarrow Q$ is also a homomorphism.

Since Q is minimal, $g \circ f$ must be surjective. *why?*

Since the body of Q is finite (has finitely many atoms), $g \circ f$ is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
CQ Query Minimization

A CQ \(Q \) is called *minimal* if:
forall \(Q' \), if \(Q' \equiv Q \), then \(Q' \) has at least as many atoms as \(Q \).

Theorem

If \(Q \equiv Q' \) and both are minimal, then \(Q, Q' \) are isomorphic.

Proof. Let \(f : Q \rightarrow Q' \), \(g : Q' \rightarrow Q \) be two homomorphisms.

Then \(g \circ f : Q \rightarrow Q \) is also a homomorphism.

Since \(Q \) is minimal, \(g \circ f \) must be surjective. *why?*

Since the body of \(Q \) is finite (has finitely many atoms), \(g \circ f \) is a bijection.

Hence both \(f, g \) are bijections, i.e. isomorphisms.
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

1. Start with $Q' = Q$.

2. For each atom R_j of Q', check if there exists a homomorphism $f : Q' \rightarrow Q' \setminus \{R_j\}$; if yes, then set $Q' = Q' \setminus \{R_j\}$ and continue.

3. If no such R_j exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \to Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \to Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \rightarrow Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \rightarrow Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exits, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
The Minimization Procedure

Given Q, we want to find the (unique) minimal query Q_m s.t. $Q \equiv Q_m$.

(1) Start with $Q' = Q$.

(2) For each atom R_j of Q', check if there exists a homomorphism $f : Q' \rightarrow Q' - \{R_j\}$; if yes, then set $Q' = Q' - \{R_j\}$ and continue.

(3) If no such R_j exists, then stop and return $Q_m = Q'$.

Prove in class: this procedure returns the unique minimal query equivalent to Q.

Note: the minimal query is always a subset of the atoms of Q!
Discussion

- CQ query evaluation is CSP \textit{from the other side}, and in PTIME.

- CQ query containment/equivalence is CSP \textit{from both ends}, and NP-complete.

- To minimize Q, simply remove atoms one by one, in any order, until no other removal is possible.

- If G is a graph, then a core is a subgraph $G_0 \subseteq G$ s.t. (a) there exists a homomorphism $G \rightarrow G_0$, and (b) G_0 is smallest with this property. Is the core unique? How does one find it?
Clauses

A Knowledge Base (in AI) is often described by a collection of *clauses*:

\[C = \forall x (L_1 \lor L_2 \lor \ldots) \]

where each literal is some \(R(u) \) or \(\neg R(u) \).

Fact

If \(C, C' \) are two positive clauses (w/o negation) then the implication problem \(C \rightarrow C' \) is decidable and co-NP complete.

proof in class (reduction to CQ)

Note: this fact seems little known!
Unions of Conjunctive Queries

A Conjunctive Query (CQ) is a query of the form:

$$Q(x) = \exists y (R_{j_1}(u_1) \land R_{j_1}(u_1) \land \ldots)$$

A Union of Conjunctive Queries (UCQ) is a query of the form:

$$Q(x) = Q_1(x) \lor Q_2(x) \lor \ldots$$

where Q_1, Q_2, \ldots are CQ’s with the same free variables.
Example

Equivalently, a UCQ is a non-recursive datalog program. Example:

\[
\begin{align*}
P_1(x, y) & \leftarrow E(x, y) \\
P_2(x, y) & \leftarrow P_1(x, y) \\
P_3(x, y) & \leftarrow P_2(x, y) \\
P_4(x, y) & \leftarrow P_3(x, y) \\
Q(x, y) & \leftarrow P_4(x, y)
\end{align*}
\]

\[
\begin{align*}
P_2(x, y) & \leftarrow P_1(x, z) \land P_1(z, y) \\
P_3(x, y) & \leftarrow P_2(x, z) \land P_2(z, y) \\
P_4(x, y) & \leftarrow P_3(x, z) \land P_3(z, y) \\
Q & \leftarrow P_4(x, z) \land P_4(z, y)
\end{align*}
\]

How much larger is the UCQ compared to the datalog program?
Containment for UCQ

We discuss Boolean queries only; non-Boolean queries are handled similarly, straightforwardly:

\[Q = Q_1 \lor Q_2 \lor \ldots \lor Q_m \]
\[Q' = Q'_1 \lor Q'_2 \lor \ldots \lor Q'_n \]

Theorem

\(Q \subseteq Q' \) iff \(\forall i \exists j \text{ such that } Q_i \subseteq Q'_j \). Hence, containment of UCQ is \(NP \)-complete.

Proof in class
Minimizing UCQ

\[Q = Q_1 \lor Q_2 \lor \ldots \lor Q_m \]

(1) Minimize each CQ \(Q_j \).

(2) For all \(i \), if there exists \(j \) s.t. \(Q_i \subseteq Q_j \), then remove \(Q_i \).

(3) The remaining query is minimal, and unique up to isomorphism. \text{proof in class}
Domain-Independent Queries

Q is called *domain-independent* if for any two structures D, D' with the same relations but different domains, we have $Q(D) = Q(D')$:

$D = (D, R_1^D, \ldots, R_m^D)$

$D' = (D', R_1^D, \ldots, R_m^D)$

Which queries are domain independent?

$\exists x \exists y R(x, y)$

$\exists x \exists y (R(x) \land \neg S(x, y))$

$\forall y S(y)$

$\exists x \exists y \neg R(x, y)$

$\exists x \exists y (R(x) \land \neg S(x, y) \land T(y))$

$\forall x \forall y (R(x, y) \rightarrow S(y))$

In databases we consider only domain-independent queries.

Checking if Q is domain independent is undecidable in general *why?*
Monotone Queries

Two structures are contained, \(A \subseteq B \), if the domains and all their relations are contained: \(A \subseteq B, R^A_j \subseteq R^B_j, j = 1, m \).

A query \(Q \) is monotone if \(A \subseteq B \) implies \(Q(A) \subseteq Q(B) \).

Checking if \(Q \) is monotone is undecidable in general why?
More Query Languages

The languages $CQ^<$, CQ^\neg, $CQ^{<,\neg}$ extend CQ with $<$ or \neg respectively; similarly UCQ.

Examples to which language do they belong?

$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z)$$
$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \neg \text{Boss}(z)$$
$$\exists y \exists z \text{Friend}(x, y) \land \text{Friend}(y, z) \land \text{Boss}(z) \land x < z$$

In class do we need $=$ in CQ, i.e. $CQ^=$?
Summary of Query Languages

<table>
<thead>
<tr>
<th>Syntax</th>
<th>FO fragment</th>
<th>Domain independent?</th>
<th>Monotone?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td>(FO(\exists, \land))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>CQ(<)</td>
<td>(FO(\exists, \land, <))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>CQ(\neg)</td>
<td>(FO(\exists, \land, \neg)) (Negation Normal Form)</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>UCQ</td>
<td>(FO(\exists, \lor, \land))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>UCQ(<)</td>
<td>(FO(\exists, \lor, \land, <))</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>UCQ(\neg)</td>
<td>(FO(\exists, \lor, \land, \neg)) (Negation Normal Form)</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Decidability

Theorem

The containment problem for UCQ\(\leq\), \(\neg\) is decidable.

Proof: consider Boolean queries only. Any UCQ\(\leq\), \(\neg\) query can be written as \(\exists x \varphi(x)\). Then:

\[
\begin{align*}
Q_1 \subseteq Q_2 & \text{ iff } \models \exists x \varphi_1(x) \rightarrow \exists y \varphi_2(y) \\
& \text{ iff } \models (\neg \exists x \varphi_1(x)) \lor (\exists y \varphi_2(y)) \\
& \text{ iff } \models (\forall x \neg \varphi_1(x)) \lor (\exists y \varphi_2(y)) \\
& \text{ iff } \models \forall x \exists y (\neg \varphi_1(x) \lor \varphi_2(y))
\end{align*}
\]

The latter is the negation of a Bernays-Schönfinkel formula \(\exists^* \forall^*\), hence validity is decidable.
Containment Procedure for $CQ^<$

Main idea: it is insufficient to treat $<$ as any other predicate.

$$Q_1 = R(x, y) \land R(y, z) \land x < z$$

$$Q_2 = R(u, v), \quad u < v$$

Then $Q_1 \subseteq Q_2$ why? yet there is no homomorphism $Q_2 \rightarrow Q_1$ that maps $u < v$ to some $<$-atom.

Solution: expand Q_1 by considering all linear orders of variables

$$Q_{11} = R(x, y) \land R(y, z) \land y < x < z$$

$$Q_{12} = R(x, y) \land R(y, z) \land x = y < z$$

$$Q_{13} = R(x, y) \land R(y, z) \land x < z < y$$

$$Q_{14} = R(x, y) \land R(y, z) \land x < y = z$$

$$Q_{15} = R(x, y) \land R(y, z) \land x < z \land x < y$$

Prove in class: $Q_1 \equiv Q_{11} \lor \cdots \lor Q_{15} \subseteq Q_2$.

Theorem

The Containment problem for $CQ^<$ (and for $UCQ^<$) is Π^p_2-complete.
Negation

Once we add negation, a query may not be domain independent. Problem: the abbreviated syntax suggests two interpretations. E.g.

\[Q \leftarrow R(x, y) \land \neg S(y, z) \]

Interpretation 1: \(\exists x \exists y \exists z (R(x, y) \land \neg S(y, z)) \)

Interpretation 2: the result of this datalog program:

\[\text{Not}S(y) \leftarrow S(y, z) \]
\[Q \leftarrow R(x, y) \land \text{Not}S(y) \]

Note: this means \(\exists x \exists y \forall z (R(x, y) \land \neg S(y, z)) \)
Negation: Interpretation 1

Theorem

\textit{Containment of CQ}^\neg \textit{ queries under interpretation 1 is } \Pi^p_2 \textit{ complete.}

Curiously, I could never find a published proof!
Negation: Interpretation 2

Theorem

Containment of CQ^- queries under interpretation 2 is undecidable.
Discussion

- Containment of $\mathit{FO}(\exists, \lor, \land)$ is decidable (and in Π_2^p) because of Bernays-Schönfinkel.

- Better complexities (meaning NP) for various fragments.

- Checking containment $Q_1 \subseteq Q_2$ is related to query evaluation of Q_2 on some database(s) derived from Q_1.

- All results discussed here carry over to implication of universally quantified clauses. \textit{seems little known in the AI community}