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Resources

Abitebou, Hull, Vianu, Database Theory (Alice book)

Simon’s Institute: Logical Structures in Computation Boot Camp,
2016
https:

//simons.berkeley.edu/workshops/logic2016-boot-camp

See Kolaiti’s tutorial on Logic and Databases

Cerignou, Vollmer, Boolean Constraint Satisfaction Problem.
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Query

Fix a vocabulary σ.

An FO query is defined by formula Q(x) with k free variables
Q maps A ∈ STRUCT[σ] to the relation Q(A) ⊆ Ak :

Q(A)
def
= {a ⊆ Ak

∣ A ⊧ Q[a]}

discuss connection to FO reduction STRUCT[σ] → STRUCT[τ].

When k = 0 then we call it a Boolean query: Q(D) is true or false.

Warning: we use conflicting notations Q(A) and Q(x).
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Problem Definition

Definition (Query Containment)

We say that Q1 is contained in Q2, Q1 ⊆ Q2 if forall A, Q1(A) ⊆ Q2(A).
The containment problem for a language L is:
given Q1,Q2 ∈ L check if Q1 ⊆ Q2.

When Q1,Q2 are Boolean queries, then containment is logical implication:
Q1 → Q2.

Definition (Query Equivalence)

We say that Q1 is equivalent to Q2, Q1 ≡ Q2 if forall A, Q1(A) = Q2(A).
The equivalence problem for a language L is:
given Q1,Q2 ∈ L check if Q1 ≡ Q2.
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Discussion

If L is closed under ∧ or closed under ∨ then containment and
equivalence have the same complexity. proof in class

Thus, containment and equivalence are essentially the same problem.

However, it is undecidable for FO:

Theorem

The problem “given Q1,Q2 ∈ FO, is Q1 ⊆ Q2?” is undecidable.

proof in class

Thus, we study containment for fragments L ⊆ FO.
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The Homomorphism Problem

Fix two structures A = (A,RA
1 , . . . ,R

A
m), B = (B,RB

1 , . . . ,R
B
m).

A homomorphism f ∶ A→ B is a function f ∶ A→ B s.t. f (RA
j ) ⊆ RB

j for
j = 1,m.

Definition (The Homomorphism Problem)

The homomorphism problem is: given two structures A,B, check if there
exists a homomorphism h ∶ A→ B
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The Homomorphism Problem: Complexity

Find f ∶ A→ B

Theorem

(1) The homomorphism problem is NP-hard in general.
(2) There exists a fixed B s.t. the homomorphism problem is NP-hard.

Prove (2) in class, twice: 3-colorability (ternary domain of B), 3SAT
(binary domain of B).
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Conjunctive Query

A Conjunctive Query (CQ) is a query of the form:

Q(x) =∃y(Rj1(u1) ∧ Rj1(u1) ∧⋯)

We often write it in datalog notation, dropping ∃:

Q(x) ←Rj1(u1) ∧ Rj1(u1) ∧⋯

Each Rji (u i) is called an atom, or a subgoal.
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Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ Q, denoted QD , is the following:

Domain = {x1, . . . , xn} (all variables of Q)

Relation RQD

j = all atoms Rj(u) in Q.

E.g.: Q = R(x , y) ∧ R(z , y) ∧ S(z , x) QD
∶

R

x y
z y

S

z x

CQ evaluation is the same as the homomrphism problem:

Fact

For any structure (database) D, D ⊧ Q iff there exists a homomorphism
QD

→ D.
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The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, D = (RD
1 , . . . ,R

D
m).

Fix n variables x1, . . . , xn.
A constraint is an expression Rj(xi1 , . . . , xik ).

Definition

A Constraint Satisfaction Problem is a set Q of constraints.
A solution is f ∶ {x1, . . . , xn} → D s.t. for every constraint Rj(xi1 , . . . , xik ),
(f (xj1), . . . , f (xjk )) ⊆ RD

j .

If D = {0,1} then we call it a Boolean CSP.
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Examples

3-colorability. Q = the graph; logical relation =

ED
∶

red green
red blue
green blue

3SAT is a CSP in class
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Homomorphism and the CSP

Fact

The CSP problem has a solution iff there exists a homomorphism Q → D.

The homomorphism goes from the problem Q to the logical relations D.
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Discussion

CQ Evaluation and CSP are the same thing! And they are the same
as the homomorphism problem:

f ∶A→ B

But they look at different “sides”:

▸ CSP: fix logical relations B, the input is the problem A.
NP-hard in general.
Schaefer’s dichotomy for Boolean CSP into PTIME v.s. NP-hard.

▸ CQ: fix the query A, the input is the database B.
Always in PTIME (data complexity).
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The Homomorphism Theorem for Containment of CQ

Consider Boolean queries only; extension to non-Boolean is straightfoward.

Theorem

Let Q1,Q2 be CQ. The following are equivalent:

Q1 ⊆ Q2

There exists a homomorphism f ∶ Q2 → Q1.

Q2 is true on the canonical database given by Q1.

Consequence: Q1 ≡ Q2 iff there exists two homomorphisms Q2 → Q1 and
Q1 → Q2.
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Example

In class prove that Q3 ⊆ Q2 ≡ Q1:

Q1 ←E(x , y),E(z , y),E(z ,u),E(u, v)

Q2 ←E(r , s),E(s, t)

Q3 ←E(a,b),E(b, c),E(c ,d)
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CQ Query Minimization

A CQ Q is called minimal if:
forall Q ′, if Q ′

≡ Q, then Q ′ has at least as many atoms as Q.

Theorem

If Q ≡ Q ′ and both are minimal, then Q, Q ′ are isomorphic.

Proof. Let f ∶ Q → Q ′, g ∶ Q ′
→ Q be two homomorphisms.

Then g ○ f ∶ Q → Q is also a homomorphism.

Since Q is minimal, g ○ f must be surjective. why?

Since the body of Q is finite (has finitely many atoms), g ○ f is a bijection.

Hence both f ,g are bijections, i.e. isomorphisms.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qm s.t. Q ≡ Qm.

(1) Start with Q ′
= Q.

(2) For each atom Rj of Q ′, check if there exists a homomorphism
f ∶ Q ′

→ Q ′
− {Rj}; if yes, then set Q ′

= Q ′
− {Rj} and continue.

(3) If no such Rj exits, then stop and return Qm = Q ′.

Prove in class: this procedure returns the unique minimal query equivalent
to Q.

Note: the minimal query is always a subset of the atoms of Q!
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Discussion

CQ query evaluation is CSP from the other side, and in PTIME.

CQ query containment/equivalence is CSP from both ends, and
NP-complete.

To minimize Q, simply remove atoms one by one, in any order, until
no other removal is possible.

If G is a graph, then a core is a subgraph G0 ⊆ G s.t. (a) there exists
a homomorphism G → G0, and (b) G0 is smallest with this property.
is the core unique? how does one find it?
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Clauses

A Knowledge Base (in AI) is often described by a collection of clauses:

C =∀x(L1 ∨ L2 ∨⋯)

where each literal is some R(u) or ¬R(u).

Fact

If C ,C ′ are two positive clauses (w/o negation) then the implication
problem C → C ′ is decidable and co-NP complete.

proof in class (reduction to CQ)

Note: this fact seems little known!
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Unions of Conjunctive Queries

A Conjunctive Query (CQ) is a query of the form:

Q(x) =∃y(Rj1(u1) ∧ Rj1(u1) ∧⋯)

A Union of Conjunctive Queries (UCQ) is a query of the form:

Q(x) =Q1(x) ∨Q2(x) ∨⋯

where Q1,Q2,⋯ are CQ’s with the same free variables.
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Example

Equivalently, a UCQ is a non-recursive datalog program. Example:

P1(x , y) ←E(x , y)

P2(x , y) ←P1(x , y) P2(x , y) ← P1(x , z) ∧ P1(z , y)

P3(x , y) ←P2(x , y) P3(x , y) ← P2(x , z) ∧ P2(z , y)

P4(x , y) ←P3(x , y) P4(x , y) ← P3(x , z) ∧ P3(z , y)

Q(x , y) ←P4(x , y) Q ← P4(x , z) ∧ P4(z , y)

How much larger is the UCQ compared to the datalog program?
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Containment for UCQ

We discuss Boolean queries only; non-Boolean queries are handled
similarly, straightforwardly:

Q =Q1 ∨Q2 ∨⋯ ∨Qm

Q ′
=Q ′

1 ∨Q ′

2 ∨⋯ ∨Q ′

n

Theorem

Q ⊆ Q ′ iff ∀i∃j such that Qi ⊆ Q ′

j . Hence, containment of UCQ is
NP-complete.

Proof in class
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Minimizing UCQ

Q = Q1 ∨Q2 ∨⋯ ∨Qm

(1) Minimize each CQ Qj .

(2) For all i , if there exists j s.t. Qi ⊆ Qj , then remove Qi .

(3) The remaining query is minimal, and unique up to isomorphism. proof
in class
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Domain-Independent Queries

Q is called domain-independent if for any two structures D,D ′ with the
same relations but different domains, we have Q(D) = Q(D ′

):

D =(D,RD
1 , . . . ,R

D
m)

D ′
=(D ′,RD

1 , . . . ,R
D
m)

Which queries are domain independent?

∃x∃yR(x , y) ∃x∃y¬R(x , y)

∃x∃y(R(x) ∧ ¬S(x , y)) ∃x∃y(R(x) ∧ ¬S(x , y) ∧T (y))

∀yS(y) ∀x∀y(R(x , y) → S(y))

In databases we consider only domain-independent queries.

Checking if Q is domain independent is undecidable in general why?
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Monotone Queries

Two structures are contained, A ⊆ B, if the domains and all their relations
are contained: A ⊆ B,RA

j ⊆ RB
j , j = 1,m.

A query Q is monotone if A ⊆ B implies Q(A) ⊆ Q(B)

Checking if Q is monotone is undecidable in general why?
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More Query Languages

The languages CQ<, CQ¬, CQ<,¬ extend CQ with < or ¬ respectively;
similarly UCQ.

Examples to which language do they belong?

∃y∃zFriend(x , y) ∧ Friend(y , z) ∧Boss(z)

∃y∃zFriend(x , y) ∧ Friend(y , z) ∧ ¬Boss(z)

∃y∃zFriend(x , y) ∧ Friend(y , z) ∧Boss(z) ∧ x < z

In class do we need = in CQ, i.e. CQ=?
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Summary of Query Languages

Syntax FO fragment Domain independent? Monotone?
CQ FO(∃,∧) yes yes

CQ< FO(∃,∧,<) yes yes

CQ¬ FO(∃,∧,¬) no no
(Negation Normal Form)

UCQ FO(∃,∨,∧) yes yes

UCQ< FO(∃,∨,∧,<) yes yes

UCQ¬ FO(∃,∨,∧,¬) no no
(Negation Normal Form)
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Decidability

Theorem

The containment problem for UCQ<,¬ is decidable.

Proof: consider Boolean queries only.
Any UCQ<,¬ query can be written as ∃xϕ(x). Then:

Q1 ⊆Q2 iff ⊧∃xϕ1(x) → ∃yϕ2(y)
iff ⊧(¬∃xϕ1(x)) ∨ (∃yϕ2(y))
iff ⊧(∀x¬ϕ1(x)) ∨ (∃yϕ2(y))
iff ⊧∀x∃y(¬ϕ1(x) ∨ ϕ2(y))

The latter is the negation of a Bernays-Schönfinkel formula ∃
∗
∀
∗, hence

validity is decidable.

Dan Suciu Finite Model Theory – Unit 4 Spring 2018 29 / 34



Containment&Equivalence Problems Homomorphism Problem CQ UCQ Query Languages

Containment Procedure for CQ<

Main idea: it is insufficient to treat < as any other predicate.

Q1 =R(x , y) ∧ R(y , z) ∧ x < z Q2 =R(u, v),u < v

Then Q1 ⊆ Q2 why? yet there is no homomorphism Q2 → Q1 that maps
u < v to some <-atom.
Solution: expand Q1 by considering all linear orders of variables

Q11 =R(x , y) ∧ R(y , z) ∧ y < x < z Q12 =R(x , y) ∧ R(y , z) ∧ x = y < z Q13 =R(x , y) ∧ R(y , z) ∧ x < y < z

Q14 =R(x , y) ∧ R(y , z) ∧ x < y = z Q15 =R(x , y) ∧ R(y , z) ∧ x < z < y

Prove in class: Q1 ≡ Q11 ∨⋯ ∨Q15 ⊆ Q2.

Theorem

The Containment problem for CQ< (and for UCQ<) is Πp
2-complete.
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Negation

Once we add negation, a query may not be domain independent.
Problem: the abbreviated syntax suggests two interpretations. E.g.

Q ←R(x , y) ∧ ¬S(y , z)

Interpretation 1: ∃x∃y∃z(R(x , y) ∧ ¬S(y , z))

Interpretation 2: the result of this datalog program:

NotS(y) ←S(y , z)

Q ←R(x , y) ∧NotS(y)

Note: this menas ∃x∃y∀z(R(x , y) ∧ ¬S(y , z))
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Negation: Interpretation 1

Theorem

Containment of CQ¬ queries under interpretation 1 is Πp
2 complete.

Curiously, I could never find a published proof!
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Negation: Interpretation 2

Theorem

Containment of CQ¬ queries under interpretation 2 is undecidable.
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Discussion

Containment of FO(∃,∨,∧) is decidable (and in Πp
2) because of

Bernays-Schönfinkel.

Better complexities (meaning NP) for various fragments.

Checking containment Q1 ⊆ Q2 is related to query evaluation of Q2

on some database(s) derived from Q1.

All results discussed here carry over to implication of universally
quantified clauses. seems little known in the AI community
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