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Resources

@ Abitebou, Hull, Vianu, Database Theory (Alice book)

@ Simon'’s Institute: Logical Structures in Computation Boot Camp,
2016
https:
//simons.berkeley.edu/workshops/logic2016-boot-camp
See Kolaiti's tutorial on Logic and Databases

@ Cerignou, Vollmer, Boolean Constraint Satisfaction Problem.
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Containment&Equivalence Problems

Homomorphism Problem

Query Lan;

Query
Fix a vocabulary o.

An FO query is defined by formula Q(x) with k free variables
Q maps A ¢ STRUCT[o] to the relation Q(A) c AX:

Q(A) E{ac A“| Ak Q[a]}

discuss connection to FO reduction STRUCT[o] — STRUCT[].
When k =0 then we call it a Boolean query: Q(D) is true or false.

Warning: we use conflicting notations Q(A) and Q(x).
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Problem Definition

Definition (Query Containment)

We say that @y is contained in @, Q1 € @ if forall A, Q1(A) € @(A).
The containment problem for a language L is:

given @1, Q@ € L check if Q1 € Q».

When Q1, Q> are Boolean queries, then containment is logical implication:

Q1 — Qo
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Problem Definition

Definition (Query Containment)

We say that @y is contained in @, Q1 € @ if forall A, Q1(A) € @(A).
The containment problem for a language L is:
given @1, Q@ € L check if Q1 € Q».

When Q1, Q> are Boolean queries, then containment is logical implication:

Q1 — Qo

Definition (Query Equivalence)

We say that @ is equivalent to @2, Q1 = @, if forall A, Q1(A) = Q2(A).
The equivalence problem for a language L is:
given Q1, Q> € L check if Q1 = Q».
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Containment&Equivalence Problems Homomorphism Problem

Discussion

@ If L is closed under A or closed under v then containment and
equivalence have the same complexity. proof in class

Thus, containment and equivalence are essentially the same problem.

@ However, it is undecidable for FO:

Theorem
The problem ‘“given Q1, Q> € FO, is Q1 € Q27" is undecidable. J

proof in class

@ Thus, we study containment for fragments L ¢ FO.
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The Homomorphism Problem
Fix two structures A= (A, R{,...,RA), B=(B,RE,... RE).

A homomorphism f: A — B is a function f : A > B s.t. f(RJA) c RJ-B for
j=1m.

Definition (The Homomorphism Problem)

The homomorphism problem is: given two structures A, B, check if there
exists a homomorphism h: A - B
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The Homomorphism Problem: Complexity

Find f:A—> B

Theorem

(1) The homomorphism problem is NP-hard in general.
(2) There exists a fixed B s.t. the homomorphism problem is NP-hard.

Prove (2) in class, twice: 3-colorability (ternary domain of B), 3SAT
(binary domain of B).
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Conjunctive Query

A Conjunctive Query (CQ) is a query of the form:
Q(x) =3y (R, (u1) A R; (u1) A-+)
We often write it in datalog notation, dropping 3:
Q(x) <Rj(u1) ARy (uy) A+

Each R;(u;) is called an atom, or a subgoal.

Dan Suciu Finite Model Theory — Unit 4 Spring 2018

9/34



Containment&Equivalence Problems Homomorphism Problem

Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ @, denoted QP, is the following:
e Domain = {xi,...,x,} (all variables of Q)

@ Relation RJ.QD = all atoms R;(u) in Q.
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Query Lan

Homomorphism Problem

Containment&Equivalence Problems

Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ @, denoted QP, is the following:

e Domain = {xi,...,x,} (all variables of Q)

@ Relation RJ.QD = all atoms R;(u) in Q.

Eg: Q=R(x,y) AR(z,y) AS(z,x) QP

x
<
]
]
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Homomorphism and CQ Evaluation

The canonical database of a Boolean CQ @, denoted QP, is the following:

e Domain = {xi,...,x,} (all variables of Q)

@ Relation RJ.QD = all atoms R;(u) in Q.

Eg: Q=R(x,y) AR(z,y) AS(z,x) QP:

N X%
< <
]
]

CQ evaluation is the same as the homomrphism problem:

Fact

For any structure (database) D, D & Q iff there exists a homomorphism
QP > D.
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The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, D = (RP,... RD).
Fix n variables xi, ..., Xxp.
A constraint is an expression Rj(xi,...,X;,).
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The Constraint Satisfaction Problem (CSP)

Fix a domain D and a set of logical relations, D = (RP,... RD).
Fix n variables xi, ..., Xxp.
A constraint is an expression Rj(xi,...,X;,).

Definition
A Constraint Satisfaction Problem is a set @ of constraints.
A solution is f : {x1,...,Xx,} = D s.t. for every constraint R;(x;,...,X;),

(F(x1)s- -+, F(x3,)) € RP.

If D ={0,1} then we call it a Boolean CSP.
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Homomorphism Problem

Examples

ED
3 ) _ ) . | red green
3-colorability. Q = the graph; logical relation = red blue

green | blue
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Homomorphism Problem

Examples

ED
3 ) _ ) . | red green
3-colorability. Q = the graph; logical relation = red blue

green | blue

3SAT is a CSP in class
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Homomorphism Problem

Homomorphism and the CSP

Fact

The CSP problem has a solution iff there exists a homomorphism Q — D. J

The homomorphism goes from the problem Q to the logical relations D.
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Discussion

e CQ Evaluation and CSP are the same thing! And they are the same
as the homomorphism problem:

f:A-B

@ But they look at different “sides”:

» CSP: fix logical relations B, the input is the problem A.
NP-hard in general.
Schaefer’s dichotomy for Boolean CSP into PTIME v.s. NP-hard.

» CQ: fix the query A, the input is the database B.
Always in PTIME (data complexity).
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Query Lar

The Homomorphism Theorem for Containment of CQ

Consider Boolean queries only; extension to non-Boolean is straightfoward.

Theorem

Let Q1, Q> be CQ. The following are equivalent:
o 1 c@
@ There exists a homomorphism f : Q, — Q1.

@ (), is true on the canonical database given by Q.

Consequence: Q1 = @ iff there exists two homomorphisms Q> - @ and

Q1 — Q.
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Example

In class prove that Q3 € @ = Q1:

Q1 <E(x,y),E(z,y),E(z,u), E(u,v)
QZ <—E(r,s),E(S, t)
Q3 <_E(aa b)7 E(ba C)a E(Ca d)
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = @, then Q' has at least as many atoms as Q.
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = Q, then Q' has at least as many atoms as

Theorem

If Q = Q" and both are minimal, then Q, Q" are isomorphic.

Q.
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = @, then Q' has at least as many atoms as Q.

Theorem

If Q = Q" and both are minimal, then Q, Q" are isomorphic. J

Proof. Let f: Q - @', g: @ — Q be two homomorphisms.
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = @, then Q' has at least as many atoms as Q.

Theorem

If Q = Q" and both are minimal, then Q, Q" are isomorphic.

Proof. Let f: Q - @', g: @ — Q be two homomorphisms.

Then gof: @ — Q is also a homomorphism.
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = @, then Q' has at least as many atoms as Q.

Theorem

If Q = Q" and both are minimal, then Q, Q" are isomorphic.

Proof. Let f: Q - @', g: @ — Q be two homomorphisms.
Then gof: @ — Q is also a homomorphism.

Since @ is minimal, g o f must be surjective. why?
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CQ Query Minimization

A CQ Q is called minimal if;
forall Q', if Q' = @, then Q' has at least as many atoms as Q.

Theorem
If Q = Q" and both are minimal, then Q, Q" are isomorphic.

Proof. Let f: Q - @', g: @ — Q be two homomorphisms.
Then gof: @ — Q is also a homomorphism.

Since @ is minimal, g o f must be surjective. why?

Since the body of Q is finite (has finitely many atoms), g o f is a bijection.

Hence both f, g are bijections, i.e. isomorphisms.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.

(1) Start with Q" = Q.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.
(1) Start with Q" = Q.

(2) For each atom R; of Q', check if there exists a homomorphism
f:Q — Q —{R;}; if yes, then set Q"= Q" - {R;} and continue.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.
(1) Start with Q" = Q.

(2) For each atom R; of Q', check if there exists a homomorphism
f:Q — Q —{R;}; if yes, then set Q"= Q" - {R;} and continue.

(3) If no such R; exits, then stop and return Qn, = Q'
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.
(1) Start with Q" = Q.

(2) For each atom R; of Q', check if there exists a homomorphism
f:Q — Q —{R;}; if yes, then set Q"= Q" - {R;} and continue.

(3) If no such R; exits, then stop and return Qn, = Q'

Prove in class: this procedure returns the unique minimal query equivalent

to Q.
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The Minimization Procedure

Given Q, we want to find the (unique) minimal query Qn, s.t. Q = Q.
(1) Start with Q" = Q.

(2) For each atom R; of Q', check if there exists a homomorphism
f:Q — Q —{R;}; if yes, then set Q"= Q" - {R;} and continue.

(3) If no such R; exits, then stop and return Qn, = Q'

Prove in class: this procedure returns the unique minimal query equivalent

to Q.

Note: the minimal query is always a subset of the atoms of Q!
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Discussion

o CQ query evaluation is CSP from the other side, and in PTIME.

e CQ query containment/equivalence is CSP from both ends, and
NP-complete.

@ To minimize @, simply remove atoms one by one, in any order, until
no other removal is possible.

o If G is a graph, then a core is a subgraph Gp € G s.t. (a) there exists
a homomorphism G — Gg, and (b) Gy is smallest with this property.
is the core unique? how does one find it?
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Clauses

A Knowledge Base (in Al) is often described by a collection of clauses:
C=Vx(Lyviyv-)

where each literal is some R(u) or =R(u).

Fact

If C,C’" are two positive clauses (w/o negation) then the implication
problem C — C' is decidable and co-NP complete.

proof in class (reduction to CQ)

Note: this fact seems little known!
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Unions of Conjunctive Queries

A Conjunctive Query (CQ) is a query of the form:

Q(x) =E|y(Rj1(u1) A le(ul) A)

A Union of Conjunctive Queries (UCQ) is a query of the form:

Q(X) :Ql(X) Vv Q2(X) VS

where @1, @>,--- are CQ’'s with the same free variables.
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Example

Equivalently, a UCQ is a non-recursive datalog program. Example:

Pl(va) <_E(X7y)

Pa(x,y) <Pi(x,y) Pa(x,y) < Pi(x,z) A P1(z,y)
P3(x,y) «<Pa(x,y) P3(x,y) < Pa(x,z) A Pa(z,y)
Pa(x,y) <P3(x,y) Pa(x,y) < P3(x,z) A P3(z,y)
Q(x,y) <Pa(x,y) Q < Pa(x,2) A Pa(z,y)

How much larger is the UCQ compared to the datalog program?
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Containment for UCQ

We discuss Boolean queries only; non-Boolean queries are handled
similarly, straightforwardly:

QRQ=Q1v@QVv-VvQny
Q' =QvQiv-vQ,

Theorem

Q ¢ Q" iff Vi3] such that Q; ¢ Q. Hence, containment of UCQ is
NP-complete.

Proof in class
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Minimizing UCQ

RQ=QVvQV-VQn
(1) Minimize each CQ Q;.
(2) For all i, if there exists j s.t. Q; € Q;, then remove Q;.

(3) The remaining query is minimal, and unique up to isomorphism. proof
in class
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Query Languages

Domain-Independent Queries

Q is called domain-independent if for any two structures D, D’ with the
same relations but different domains, we have Q(D) = Q(D’):

D=(D,RP,...,RP)
D' =(D'.RP,...,RD)

Which queries are domain independent?

Ix3IyR(x,y) IxJy-R(x,y)
IxTy (R(x) A=5(x,y)) IxTy (R(x) A=S(x,y) A T(y))
VyS(y) VxVy(R(x,y) = S(y))

In databases we consider only domain-independent queries.

Checking if Q is domain independent is undecidable in general why?
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Monotone Queries

Two structures are contained, A ¢ B, if the domains and all their relations
are contained: Ac B, RjA c RJ-B,j =1, m.
A query Q is monotone if A< B implies Q(A) € Q(B)

Checking if @ is monotone is undecidable in general why?
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More Query Languages

The languages CQ<, CQ™, CQ<™ extend CQ with < or — respectively;
similarly UCQ.

Examples to which language do they belong?

Jy3zFriend(x, y) A Friend(y, z) A Boss(z)
Jy3zFriend(x, y) A Friend(y, z) A —Boss(z)
Jy3IzFriend(x, y) A Friend(y,z) ABoss(z) Ax < z

In class do we need = in CQ, i.e. CQ77?
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Query Languages

Summary of Query Languages

Syntax | FO fragment Domain independent? | Monotone?

cQ FO(3,n) yes yes

cQs FO(3,A,<) yes yes

cQ FO(3,A,-) no no
(Negation Normal Form)

ucQ FO(3,v,A) yes yes

UCQ® | FO(3,v,A,<) yes yes

UCQ™ | FO(3,v,A,-) no no
(Negation Normal Form)
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Decidability
Theorem
The containment problem for UCQ*™ is decidable. J

Proof: consider Boolean queries only.
Any UCQ*™ query can be written as Ixp(x). Then:

Q<@ iff E3xp1(x) = Jypa(y)
iff =(-3xp1(x)) v (3yp2(y))
iff =(Vx-¢1(x)) v (Jyp2(y))
iff EVx3y(=p1(x) Vv p2(y))

The latter is the negation of a Bernays-Schonfinkel formula 3*V*, hence
validity is decidable.
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Query Languages

Containment Procedure for CQ<
Main idea: it is insufficient to treat < as any other predicate.

Q1 =R(x,y)AR(y,z) Ax<z @ =R(u,v),u<v

Then Q1 € Q2 why? yet there is no homomorphism Q> — Q1 that maps
u < v to some <-atom.

Solution: expand @1 by considering all linear orders of variables

Qi1 =R(x,y)AR(y,z) Ay <x<z Qu2=R(x,y)AR(y,z)Ax=y<z @3
Qua =R(x,y)AR(y,z) Ax<y=2z Qis=R(x,y)AR(y,z)Ax<z<y
Prove in class: Q1= Q11 V-V Q15 € Q.

Theorem

The Containment problem for CQ< (and for UCQ*) is M5-complete. J
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Negation

Once we add negation, a query may not be domain independent.
Problem: the abbreviated syntax suggests two interpretations. E.g

Q (_R(Xay) /\—|5(y,Z)

Interpretation 1: 3x3y3Iz(R(x,y) A-5(y,z))

Interpretation 2: the result of this datalog program:

NotS(y) «<S(y,z)
Q <R(x,y) A NotS(y)

Note: this menas 3x3yVz(R(x,y) A-5(y,z))
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Query Languages

Negation: Interpretation 1

Theorem

Containment of CQ™ queries under interpretation 1 is I'I’2’ complete. J

Curiously, | could never find a published proof!
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Negation: Interpretation 2

Containment of CQ™ queries under interpretation 2 is undecidable.

Theorem J
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Discussion

Containment of FO(3, Vv, A) is decidable (and in %) because of
Bernays-Schonfinkel.

Better complexities (meaning NP) for various fragments.

Checking containment Q1 € Q> is related to query evaluation of Q>
on some database(s) derived from Q.

@ All results discussed here carry over to implication of universally
quantified clauses. seems little known in the Al community
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