Finite Model Theory Unit 3

Dan Suciu

Spring 2018

Dan Suciu

Finite Model Theory – Unit 3

Spring 2018 1 / 75

Logic on Strings

599c: Finite Model Theory

Unit 3: Logic and Complexity

Resources

- Libkin, Finite Model Theory
- Immerman, Descriptive Complexity (Ch.3)
- Grädel, Kolaitis, Vardi, *On the Decision Problem for Two-Variable First-Order Logic.*
- Vardi, Why is Modal Logic so Robustly Decidable?
- Halpern, Harper, Immerman, Kolaitis, Vardi, Vianu, *On the Unusual Effectiveness of Logic in Computer Science*

Logic and Complexity

Two problems:

• Satisfiability: given φ , does it have a (finite) model **A**?

• Model checking: given a finite **A** and φ , is **A** a model of φ ?

Trakhtenbrot's Theorem

A sentence φ is finitely satisfiable if there exists a finite model **A**.

Theorem (Trakhtenbrot)

Suppose the vocabulary σ has at least one relation with arity ≥ 2 . Then the problem "given φ check if it is finitely satisfiable" is undecidable.

What about unary vocabularies? \Rightarrow Homework!

Before we prove it, let's see some consequences.

Denote $\varphi \equiv_{fin} \psi$ if φ, ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then the following problem is undecidable: "given two sentences φ, ψ , check whether $\varphi \equiv_{fin} \psi$.".

Proof in class

Denote $\varphi \equiv_{\mathsf{fin}} \psi$ if φ, ψ are equivalent on all finite structures:

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then the following problem is undecidable: "given two sentences φ, ψ , check whether $\varphi \equiv_{\text{fin}} \psi$.".

Proof in class

Proof: Reduce it to UNSAT. Assuming we have an oracle for $\varphi \equiv_{\text{fin}} \psi$, we can check UNSAT by checking if $\varphi \equiv_{\text{fin}} F$.

Let $f : \mathbb{N} \to \mathbb{N}$ a function with the following property: every finitely satisfiable sentence φ has a model of size $\leq f(|\varphi|)$.

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then no computable function f exists with the property above.

Proof in class

Let $f : \mathbb{N} \to \mathbb{N}$ a function with the following property: every finitely satisfiable sentence φ has a model of size $\leq f(|\varphi|)$.

Corollary

If the vocabulary σ has at least one relation with arity ≥ 2 , then no computable function f exists with the property above.

Proof in class

Proof: If we had such an f, then we can check finite satisfiability as follows. Given φ , compute $n = f(|\varphi|)$, and try out all structures of size $\leq n$:

- If one of the structures is a model then answer YES.
- Otherwise answer NO.

Simple fact:

Fact

The set of finitely satisfiable sentences φ is recursively enumerable.

Why?

Simple fact:

Fact

The set of finitely satisfiable sentences φ is recursively enumerable.

Why?

Proof: for each n = 1, 2, 3, ... enumerate all structures **A** of size $\leq n$, and all FO[n] sentences φ that are true in **A**.

What is FO[n]? Is it finite?

Simple fact:

Fact

The set of finitely satisfiable sentences φ is recursively enumerable.

Why?

Proof: for each n = 1, 2, 3, ... enumerate all structures **A** of size $\leq n$, and all FO[n] sentences φ that are true in **A**.

What is FO[n]? Is it finite?

It is FO restricted to quantifier rank n, and we know it is finite.

"Finiteness is not axiomatizable."

We say that φ is finitely valid, $\vDash_{fin} \varphi$, if it holds in every finite model **A**.

Corollary

There is no r.e. set of axioms Σ such that $\Sigma \vdash \varphi$ iff $\vDash_{fin} \varphi$.

Proof in class

"Finiteness is not axiomatizable."

We say that φ is finitely valid, $\vDash_{fin} \varphi$, if it holds in every finite model **A**.

Corollary

There is no r.e. set of axioms Σ such that $\Sigma \vdash \varphi$ iff $\vDash_{fin} \varphi$.

Proof in class

Proof:

- By the previous fact, the set of finitely satisfiable sentences φ is r.e.
- Hence, the set of finitely valid sentences is co-r.e. (since ⊨_{fin} φ iff ¬φ is not finitely satisfiable).
- Since Σ is r.e. the set $\{\varphi \mid \Sigma \vdash \varphi\}$ is r.e.
- If Σ ⊢ φ iff ⊨_{fin} φ then this set is both r.e. and co-r.e., hence it is decidable. why?

Proof of Trakhtenbrot's Theorem

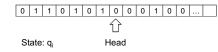
By reduction from the Halting Problem:

• Given a Turing Machine *M*, does *M* halt on the empty input?

The proof consist of the following: given M we will construct a sentence φ_M s.t. M halts iff φ_M is finitely satisfiable.

 $M = (Q, \Sigma, \Delta, q_0, Q_F)$ where:

- $Q = \{q_0, q_1, \dots, q_m\}$ are the states; q_0 is the initial state; $Q_F \subseteq Q$ are the final states.
- Σ is the tape alphabet; we take $\Sigma = \{0, 1\}$
- $\Delta \subseteq Q \times \Sigma \times \Sigma \times \{\text{Left}, \text{Right}\} \times Q$ are the transitions.



A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- *c*_{*τ*} is a final configuration what does that mean?
- Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- c_T is a final configuration what does that mean?
- Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- c_T is a final configuration what does that mean?
- Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

An accepting computation is a sequence $C = c_1, c_2, \ldots, c_T$ where:

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- c_T is a final configuration what does that mean?

• Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

A configuration is a triple c = (w, h, q) where:

- $w \subseteq \Sigma^*$ is a tape content.
- $h \in \mathbb{N}$ is the head position.
- $q \in Q$ is a state.

- Each c_i is a configuration.
- c₁ is the initial configuration what does that mean?
- c_T is a final configuration what does that mean?
- Forall t, (c_t, c_{t+1}) is a valid transition what does that mean?

Proof Plan

M halts iff

$\exists C, C \text{ is an accepting computation of } M.$

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \models \varphi.$

This suggests the proof plan:

- Computation $C \equiv$ structure A.
- **C** is an accepting computation iff **A** is a model of φ .

Proof Plan

M halts iff

$\exists C, C \text{ is an accepting computation of } M.$

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \vDash \varphi.$

This suggests the proof plan:

- Computation $C \equiv$ structure A.
- C is an accepting computation iff A is a model of φ.

Proof Plan

M halts iff

$\exists C, C \text{ is an accepting computation of } M.$

 φ is finitely satisfiable iff

 $\exists \mathbf{A} \text{ such that } \mathbf{A} \vDash \varphi.$

This suggests the proof plan:

- Computation $C \equiv$ structure A.
- **C** is an accepting computation iff **A** is a model of φ.

Proof Details

Fix a Turing Machine M.

• Describe a vocabulary σ_M and sentence φ_M whose models correspond precisely to accepting computations of M.

• Describe an FO encoding of σ_M and φ_M into a single binary relation.

Proof Details

Fix $M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$. Define: $\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$

Intended meaning:

- < is a total order</p>
- $T_0(t,p), T_1(t,p)$: the tape content at time t position p is 0 or 1.
- H(t, p): the head at time t is on position p.
- $S_q(t)$: the Turning Machine is stated q at time t.

Proof Details

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

The sentence φ_M asserts the following:

- General consistency: < is a total order, every tape has exactly one symbol, the head is on exactly one position, etc.
- At time *t* = min, the TM is in the initial configuration.
- At time *t* = max, the TM is in an accepting configuration.
- Every transition from t to t + 1 is correct

details in class (also next slides)

Proof Details: General Consistency

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

- < is a total order.</pre>
- Exactly one tape symbol: $\forall t, \forall p(T_0(t,p) \lor T_1(t,p)) \land \neg(T_0(t,p) \land T_1(t,p))$
- Exactly one head position at each time: ...
- Exactly one state at each time: ...

Proof Details: Initial Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time $t = \min$, the TM is in the initial configuration:

 $\forall pT_0(\min, p) \land H(\min, \min) \land S_{q_0}(\min)$

Note that we can name min by $\exists x \neg \exists y (y < x)$; similarly max.

Proof Details: Final Configuration

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

At time $t = \max$, the TM is in the final configuration:

 $\bigvee_{q \in Q_F} S_q(\max)$

Proof Details: All Transitions are Correct

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

Each transition from t to t + 1 corresponds to one valid $\delta \in \Delta$:

$$\forall t(t < \max \rightarrow \bigvee_{\delta \in \Delta} \mathsf{CHECK}_{\delta}(t))$$

Proof Details: All Transitions are Correct (Detail)

$$M = (Q, \{0, 1\}, \Delta, q_0, Q_F)$$

$$\sigma_M = (\langle, T_0(\cdot, \cdot), T_1(\cdot, \cdot), H(\cdot, \cdot), (S_q(\cdot))_{q \in Q})$$

Example transition: $\delta = (q_5, 1, 0, \text{Left}, q_3)$ ("If in state q_5 and the tape is 1, then write 0, move Left, enter q_3 ")

$$\begin{array}{lll} \mathsf{CHECK}_{\delta}(t)=&S_{q_5}(t) & \mathsf{Check we are in } q_5 \\ & \wedge \forall s(\neg H(t,s) \rightarrow (T_0(t,s) \leftrightarrow T_0(t+1,s))) & \mathsf{Leave non-head} \\ & & \mathsf{symbols unchaged} \\ & \wedge \forall s(H(t,s) \rightarrow T_1(t,s) \wedge T_0(t+1,s)) & \mathsf{the head was } 1 \\ & & \mathsf{set it to } 0 \\ & \wedge H(t+1,s-1) & \mathsf{move to the left} \\ & \wedge S_{q_3}(t+1) & \mathsf{enter } q_3 \end{array}$$

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**?

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**? The number of time steps required by *M*.
- Is **A** unique?

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**? The number of time steps required by *M*.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**? The number of time steps required by *M*.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <?

Discussion

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**? The number of time steps required by *M*.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <? succ is not finitely axiomatizable.

Discussion

- A structure s.t. $\mathbf{A} \models \varphi_M$ is precisely a successful computation of the Turing Machine M.
- How large is |A|, the domain of **A**? The number of time steps required by *M*.
- Is **A** unique? Not necessarily. But it is unique when *M* is deterministic.
- Is succ enough, or do we need <? succ is not finitely axiomatizable.
- We still need to reduce the vocabulary σ_M to a vocabulary with a single binary relation *E*.

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function Q: STRUCT $[\sigma] \rightarrow$ STRUCT $[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT $[\sigma] \rightarrow \{0, 1\}$.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_i has arity (T_i) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

 $B \stackrel{\text{def}}{=} A \qquad \text{same domain}$ $\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function $Q: STRUCT[\sigma] \rightarrow STRUCT[\tau]$.

A Boolean query, or a problem, is a function P : STRUCT $[\sigma] \rightarrow \{0, 1\}$.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_j has arity (T_j) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

 $B \stackrel{\text{def}}{=} A \qquad \text{same domain}$ $\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function Q: STRUCT $[\sigma] \rightarrow$ STRUCT $[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_j has arity (T_j) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

 $B \stackrel{\text{def}}{=} A \qquad \text{same domain}$ $\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function Q: STRUCT $[\sigma] \rightarrow$ STRUCT $[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_i has arity (T_i) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

$$B \stackrel{\text{def}}{=} A \qquad \text{same domain}$$
$$\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$$

Let $\sigma = \{S_1, \ldots, S_m\}, \tau = \{T_1, \ldots, T_n\}$ be two relational vocabularies.

A query from σ to τ is a function Q: STRUCT $[\sigma] \rightarrow$ STRUCT $[\tau]$.

A Boolean query, or a problem, is a function P: STRUCT[σ] \rightarrow {0,1}.

A First Order Query Q consists of n formulas, $Q = (q_1, ..., q_n)$, where each q_i has arity (T_i) free variables; it defines the mapping $Q(\mathbf{A}) \stackrel{\text{def}}{=} \mathbf{B}$ where:

$$B \stackrel{\text{def}}{=} A \qquad \text{same domain}$$
$$\forall j: \quad T_j^B \stackrel{\text{def}}{=} \{ \boldsymbol{b} \mid \boldsymbol{A} \vDash q_j(\boldsymbol{b}) \}$$

Query STRUCT[σ] \rightarrow STRUCT[τ] (Problems on STRUCT[τ]) \rightarrow (Problems on STRUCT[σ])

Definition

A First Order Reduction is an FO query Q from σ to τ .

It "reduces" a problem P' on τ from the problem $P \stackrel{\text{def}}{=} P' \circ Q$ on σ .

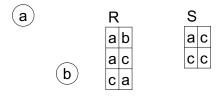
Obviously, P' is at least as hard as P.

 $\sigma = \{E\}$ a graph.

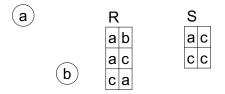
 τ = any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$.

Question: Given a τ -structure $\mathbf{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\mathbf{G})$, $S^A = Q_2(\mathbf{G})$

 $\sigma = \{E\}$ a graph. $\tau =$ any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$

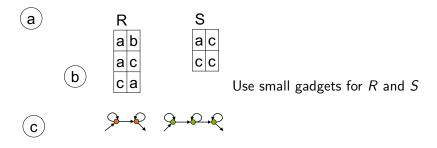


 $\sigma = \{E\}$ a graph. $\tau =$ any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$

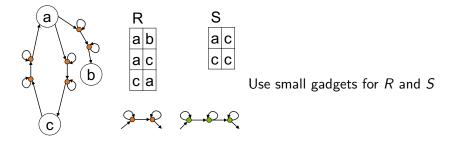


Use small gadgets for R and S

 $\sigma = \{E\}$ a graph. $\tau =$ any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$



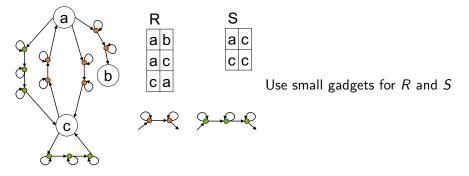
 $\sigma = \{E\}$ a graph. $\tau =$ any vocabulary. For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$



 $\sigma = \{E\}$ a graph. $\tau = \text{any vocabulary.}$ For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$



 $\sigma = \{E\}$ a graph. $\tau = \text{any vocabulary.}$ For simplicity, assume $\tau = \{R(\cdot, \cdot), S(\cdot, \cdot)\}$. Question: Given a τ -structure $\boldsymbol{A} = (R^A, S^A)$, encode it as a graph G s.t. you can decode it: $R^A = Q_1(\boldsymbol{G}), S^A = Q_2(\boldsymbol{G})$



The query (1) first checks that G is a correct encoding how?, then (2) decodes R and S how?

Dan Suciu

Finite Model Theory - Unit 3

Summary of Trakhtenbrot's Theorem

Assume an oracle: given φ , check if φ has a finite model **A**. We reduce the halting problem for a Turning Machine *M*.

- Construct the vocabulary σ_M and the sentence φ_M that says "the model **A** represents an accepting computation of *M*.
- Consider the FO reduction Q from a graph $\{E\}$ to σ_M , and denote $\psi_M = \varphi \circ Q$. This is a sentence over the vocabulary $\{E\}$.
- Claim: ψ_M is satisfiable iff M terminates. Proof:
 - If *M* terminates, then there exists a model *A* ⊨ φ_M. From *A*, we construct a graph encoding *G* s.t. Q(*G*) = *A*. This is a model of ψ_M.
 - If ψ_M has a model **G** then: (a) if **G** is an invalid encoding, then $Q(\mathbf{G})$ returns the empty structure **A**, which is not a model of φ_M . (b) otherwise, **G** is a valid encoding of some structure **A**, which, in turn, represents an accepting computation.

Discussion

Satisfiability in the finite or in general (finite or infinite) are quite different!

- The problem "given φ , is φ finitely satisfiable?" is r.e. why?
- The problem "given φ , is φ satisfiable?" is co-r.e. why?

The Finite Model Property

Let $L \subseteq FO$ be a subset of FO.

Definition

We say that *L* has the finite model property, or it is *finitely controllable* if: $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model.

Definition

We say that *L* has the small model property if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model of size $\leq f(|\varphi|)$.

The Finite Model Property

Let $L \subseteq FO$ be a subset of FO.

Definition

We say that *L* has the finite model property, or it is *finitely controllable* if: $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model.

Definition

We say that *L* has the small model property if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ s.t. $\forall \varphi \in L, \varphi$ has a model iff φ has a finite model of size $\leq f(|\varphi|)$.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

- If *φ* is SAT it is also finitely satisfiable, hence some model **A** will show up in the first list; answer YES.
- If φ is UNSAT then $\neg \varphi$ will show up in the second list; answer NO.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

- If φ is SAT it is also finitely satisfiable, hence some model **A** will show up in the first list; answer YES.
- If φ is UNSAT then $\neg \varphi$ will show up in the second list; answer NO.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

- If φ is SAT it is also finitely satisfiable, hence some model **A** will show up in the first list; answer YES.
- If φ is UNSAT then $\neg \varphi$ will show up in the second list; answer NO.

Theorem

If L has the small model property then L is decidable.

To check $SAT(\varphi)$ enumerate all structures up to size $f(|\varphi|)$; if any is a model return YES, if none is a model return NO.

Theorem

If L has the finite model property then L is decidable.

- If φ is SAT it is also finitely satisfiable, hence some model **A** will show up in the first list; answer YES.
- If φ is UNSAT then $\neg \varphi$ will show up in the second list; answer NO.

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof in class

 $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t. $\mathbf{A} \models \forall y_1 \dots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then, obviously: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof in class $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$

Let **A** be a model of φ . Then there exists values $\mathbf{a} = (a_1, \dots, a_m)$ s.t. $\mathbf{A} \models \forall y_1 \dots \forall y_n \psi[\mathbf{a}/\mathbf{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then, obviously: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof in class $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$

Let \boldsymbol{A} be a model of φ . Then there exists values $\boldsymbol{a} = (a_1, \dots, a_m)$ s.t. $\boldsymbol{A} \models \forall y_1 \dots \forall y_n \psi[\boldsymbol{a}/\boldsymbol{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then, obviously: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

Let *L* be the set of sentences with quantifier prefix $\exists^* \forall^*$. *L* is called the Bernays-Schönfinkel class.

Theorem

The set of $\exists^* \forall^*$ sentences has the small model property, hence it is decidable.

Proof in class

 $\varphi = \exists x_1 \cdots \exists x_m \forall y_1 \cdots \forall y_n \psi.$

Let \boldsymbol{A} be a model of φ . Then there exists values $\boldsymbol{a} = (a_1, \dots, a_m)$ s.t. $\boldsymbol{A} \models \forall y_1 \dots \forall y_n \psi[\boldsymbol{a}/\boldsymbol{x}]$

Let A_0 be the structure restricted to the value a_1, \ldots, a_m . Then, obviously: $A_0 \models \forall y_1 \cdots \forall y_n \psi[a/x]$

Application 2: FO²

Theorem

 FO^2 has the small model property, with an exponential f. More precisely: for any sentence in $\varphi \in FO^2$, if φ is satisfiable then it has a model of size $2^{O(|\varphi|)}$. In particular, FO^2 is decidable.

We omit the proof. Please check Grädel, Kolaitis, Vardi.

Main topic: correspondence between logics and computational complexity classes.

Fix a class $\ensuremath{\mathcal{C}}$ of finite structures.

Examples: (1) all strings w ∈ {0,1}*; (2) all graphs (V, E); (3) all ordered graphs (V, E, <); (4) all strings representing FO² sentences, φ ∈ {x, y, R, (,), →, ¬, ∀}*.

A problem is a function $P: \mathcal{C} \to \{0, 1\}$.

- A *computational complexity class* is the set of problems that can be **answered** within some fixed computational resources. E.g. LOGSPACE, PTIME, PSPACE, etc.
- A *descriptive complexity class* is the set of problems that can be represented in some fixed logic language *L*. E.g. FO, FO+Fixpoint, BSO, SO, etc.

Fix a class $\ensuremath{\mathcal{C}}$ of finite structures.

Examples: (1) all strings w ∈ {0,1}*; (2) all graphs (V, E); (3) all ordered graphs (V, E, <); (4) all strings representing FO² sentences, φ ∈ {x, y, R, (,), →, ¬, ∀}*.

A problem is a function $P: \mathcal{C} \to \{0, 1\}$.

- A computational complexity class is the set of problems that can be answered within some fixed computational resources. E.g. LOGSPACE, PTIME, PSPACE, etc.
- A *descriptive complexity class* is the set of problems that can be **represented** in some fixed logic language *L*. E.g. FO, FO+Fixpoint, \exists SO, SO, etc.

Fix a class $\ensuremath{\mathcal{C}}$ of finite structures.

- Examples: (1) all strings w ∈ {0,1}*; (2) all graphs (V, E); (3) all ordered graphs (V, E, <); (4) all strings representing FO² sentences, φ ∈ {x, y, R, (,), →, ¬, ∀}*.
- A problem is a function $P: \mathcal{C} \to \{0, 1\}$.
 - A *computational complexity class* is the set of problems that can be answered within some fixed computational resources. E.g. LOGSPACE, PTIME, PSPACE, etc.
 - A descriptive complexity class is the set of problems that can be represented in some fixed logic language *L*. E.g. FO, FO+Fixpoint, ∃SO, SO, etc.

Fix a class $\ensuremath{\mathcal{C}}$ of finite structures.

- Examples: (1) all strings w ∈ {0,1}*; (2) all graphs (V, E); (3) all ordered graphs (V, E, <); (4) all strings representing FO² sentences, φ ∈ {x, y, R, (,), →, ¬, ∀}*.
- A problem is a function $P: \mathcal{C} \to \{0, 1\}$.
 - A *computational complexity class* is the set of problems that can be answered within some fixed computational resources. E.g. LOGSPACE, PTIME, PSPACE, etc.
 - A descriptive complexity class is the set of problems that can be represented in some fixed logic language L. E.g. FO, FO+Fixpoint, ∃SO, SO, etc.

Computational Complexity

Very brief review of computational complexity classes:

- AC⁰
- LOGSPACE
- NLOGSPACE
- PTIME
- NP
- PSPACE
- (what about NPSACE?)
- EXPTIME
- NEXPTIME

Computational Complexity of Model Checking

The model checking problem is: given $\mathbf{A} \in \mathcal{C}, \varphi \in L$, check whether $\mathbf{A} \models \varphi$.

Vardi's classification of complexity:

Data complexity: φ is fixed, study the complexity as a function of **A**. Note: different complexity for every φ . We focus on data complexity

Query complexity: (or expression complexity): **A** is fixed, study the complexity as a function of φ .

Combined complexity: both A, φ are input.

Computational Complexity of Model Checking

The model checking problem is: given $\mathbf{A} \in \mathcal{C}, \varphi \in L$, check whether $\mathbf{A} \models \varphi$.

Vardi's classification of complexity:

Data complexity: φ is fixed, study the complexity as a function of **A**. Note: different complexity for every φ . We focus on data complexity

Query complexity: (or expression complexity): **A** is fixed, study the complexity as a function of φ .

Combined complexity: both A, φ are input.

Computational Complexity of Model Checking

The model checking problem is: given $\mathbf{A} \in \mathcal{C}, \varphi \in L$, check whether $\mathbf{A} \models \varphi$.

Vardi's classification of complexity:

Data complexity: φ is fixed, study the complexity as a function of **A**. Note: different complexity for every φ . We focus on data complexity

Query complexity: (or expression complexity): **A** is fixed, study the complexity as a function of φ .

Combined complexity: both A, φ are input.

Computational Complexity of Model Checking

The model checking problem is: given $\mathbf{A} \in \mathcal{C}, \varphi \in L$, check whether $\mathbf{A} \models \varphi$.

Vardi's classification of complexity:

Data complexity: φ is fixed, study the complexity as a function of **A**. Note: different complexity for every φ . We focus on data complexity

Query complexity: (or expression complexity): **A** is fixed, study the complexity as a function of φ .

Combined complexity: both \boldsymbol{A}, φ are input.

Descriptive Complexity: Overview of Results

•
$$FO(+,*) = FO(<,BIT) = AC^0$$

- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE; will omit this
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- ∃SO=NP

All these refer to data complexity. We will briefly discuss expression complexity at the end.

Encodings

- A Turning Machine (or other computational device), accepts a language L ⊆ {0,1}*.
- A sentence φ defines a set of models \subseteq STRUCT[σ].

• To compare them, we need some encoding between them.

Encode $\mathbf{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 01ⁿ.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$

Encode $\boldsymbol{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 01ⁿ.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$
- Example:

Encode $\boldsymbol{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 01ⁿ.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$
- Example:

 $\underbrace{0111}_{n=3}\underbrace{010001010}_{3\times3}$ matrix

Encode $\boldsymbol{A} = ([n], R_1^A, R_2^A, \ldots)$ as follows:

- Start with 01ⁿ.
- Encode R_i^A using "adjacency matrix", of length $n^{\operatorname{arity}(R_i)}$
- Example:

 $\underbrace{0111}_{n=3}\underbrace{010001010}_{3\times 3 \text{ matrix}}$

• Length of encoding: $n^{1+\operatorname{arity}(R_1)+\operatorname{arity}(R_2)+\cdots} = n^{O(1)} = \operatorname{poly}(n)$.

Encoding $\{0,1\}^*$ to STRUCT $[\sigma]$

Choose $\sigma = \{U(\cdot)\}$ and encode $w \in \{0,1\}^*$ as the structure ([n], U), where $U \subseteq [n]$.

Descriptive Complexity: Overview of Results

- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE

• 3SO=NP

Fix n > 0. A Boolean circuit C with n inputs is a DAG where:

- Leaves are labeled with input variables $X_1, \ldots, X_n \in \{0, 1\}$.
- Internal nodes are labeled with \lor , \land (unbounded fan-in), and \neg .
- There is one root node.

size(C)
$$\stackrel{\text{def}}{=}$$
 number of gates
depth(C) $\stackrel{\text{def}}{=}$ length of longest path

Definition

A language $L \subseteq \{0,1\}^*$ is in non-uniform AC^0 if forall *n* there exists a circuit C_n s.t.

- C_n computes $L \cap \{0,1\}^n$,
- size(C_n) = $n^{O(1)}$ (polynomial in n),
- depth $(C_n) = O(1)$ (constant, indep. on n).

Example: given a graph G = ([n], E), check $\forall x \forall y \exists z (E(x, z) \land E(z, y))$ draw C_n (actually C_{n^2}) in class.

Theorem

The data complexity of any $\varphi \in FO$ is in non-uniform AC^0 . This still holds if we include in FO all interpreted predicate (+, <, ...). Thus $FO(ALL) \subseteq AC^0$, where ALL means all predicates on [n].

Definition

A language $L \subseteq \{0,1\}^*$ is in non-uniform AC^0 if forall *n* there exists a circuit C_n s.t.

- C_n computes $L \cap \{0,1\}^n$,
- size(C_n) = $n^{O(1)}$ (polynomial in n),
- depth $(C_n) = O(1)$ (constant, indep. on n).

Example: given a graph G = ([n], E), check $\forall x \forall y \exists z (E(x, z) \land E(z, y))$ draw C_n (actually C_{n^2}) in class.

Theorem

The data complexity of any $\varphi \in FO$ is in non-uniform AC^0 . This still holds if we include in FO all interpreted predicate (+, <, ...). Thus $FO(ALL) \subseteq AC^0$, where ALL means all predicates on [n].

Definition

A language $L \subseteq \{0,1\}^*$ is in non-uniform AC^0 if forall *n* there exists a circuit C_n s.t.

- C_n computes $L \cap \{0,1\}^n$,
- size(C_n) = $n^{O(1)}$ (polynomial in n),
- depth $(C_n) = O(1)$ (constant, indep. on n).

Example: given a graph G = ([n], E), check $\forall x \forall y \exists z (E(x, z) \land E(z, y))$ draw C_n (actually C_{n^2}) in class.

Theorem

The data complexity of any $\varphi \in FO$ is in non-uniform AC^0 . This still holds if we include in FO all interpreted predicate (+, <, ...). Thus $FO(ALL) \subseteq AC^0$, where ALL means all predicates on [n].

- AC⁰ is supposed to be the lowest complexity class, but there's a wrinkle:
- If L is in non-uniform AC^0 , is L computable?

- AC⁰ is supposed to be the lowest complexity class, but there's a wrinkle:
- If L is in non-uniform AC^0 , is L computable? NO! E.g. L is the set of all words of length n, where n encodes a Turning Machine that halts on the empty input. Describe C_n in class

- AC⁰ is supposed to be the lowest complexity class, but there's a wrinkle:
- If L is in non-uniform AC^0 , is L computable? NO! E.g. L is the set of all words of length n, where n encodes a Turning Machine that halts on the empty input. Describe C_n in class
- Recall: EVEN is the problem "is the domain size n an even number?". Obviously EVEN ∈ FO[ALL] why?

- AC⁰ is supposed to be the lowest complexity class, but there's a wrinkle:
- If L is in non-uniform AC^0 , is L computable? NO! E.g. L is the set of all words of length n, where n encodes a Turning Machine that halts on the empty input. Describe C_n in class
- Recall: EVEN is the problem "is the domain size n an even number?". Obviously EVEN ∈ FO[ALL] why?
- Theorem [Furst-Saxe-Sipser, Ajtai] The xor-function X₁ ⊕ X₂ ⊕ … ⊕ X_n is not in non-uniform AC⁰ discuss in class
- PARITY is the problem: given a structure with one unary relation, ([n], U ⊆ [n]), check whether |U| is even. Then PARITY ∉ FO[ALL].

Uniform AC⁰

Informally: *L* is in "uniform" AC^0 if there exists an easily computable function $n \mapsto C_n$ (usually LOGSPACE).

A better definition uses FO. For fixed n, define these relations on [n]:

$$+ = \{(x, y, z) | x + y = z\}$$

$$* = \{(x, y, z) | x * y = z\}$$

$$<= \{(x, y) | x < y\}$$

$$BIT = \{(x, y) | the y's bit of x is 1$$

One can show FO(+, *) = FO(<, BIT) (we omit the proof).

Definition

A language $L \subseteq \{0,1\}^*$ is in uniform AC^0 if it is definable in FO(+,*); equivalently, it is definable in FO(<,BIT).

Uniform AC⁰

Informally: *L* is in "uniform" AC^0 if there exists an easily computable function $n \mapsto C_n$ (usually LOGSPACE).

A better definition uses FO. For fixed n, define these relations on [n]:

$$+ = \{(x, y, z) | x + y = z\}$$

$$* = \{(x, y, z) | x * y = z\}$$

$$<= \{(x, y) | x < y\}$$

$$BIT = \{(x, y) | the y's bit of x is 1\}$$

One can show FO(+, *) = FO(<, BIT) (we omit the proof).

Definition

A language $L \subseteq \{0,1\}^*$ is in uniform AC^0 if it is definable in FO(+,*); equivalently, it is definable in FO(<,B|T).

Uniform AC⁰

Informally: *L* is in "uniform" AC^0 if there exists an easily computable function $n \mapsto C_n$ (usually LOGSPACE).

A better definition uses FO. For fixed n, define these relations on [n]:

$$+ = \{(x, y, z) | x + y = z\}$$

$$* = \{(x, y, z) | x * y = z\}$$

$$<= \{(x, y) | x < y\}$$

$$BIT = \{(x, y) | the y's bit of x is 1\}$$

One can show FO(+, *) = FO(<, BIT) (we omit the proof).

Definition

A language $L \subseteq \{0,1\}^*$ is in uniform AC^0 if it is definable in FO(+,*); equivalently, it is definable in FO(<,BIT).

- Main take away: AC^0 is FO.
- The reason is simple: ∨, ∧ have bounded fan-in, ∃, ∀ have unbounded fan-in, and the depth is constant.
- But there is a fine print in the equality $AC^0 = FO$:
 - Non-uniform AC^0 can express any predicate on [n], much beyond FO.
 - We define Uniform AC⁰ as FO(+, *) or as FO(<, BIT); the choice to restrict to the predicates +, * (or <, BIT) is somewhat arbitrary, yet leads to a natural definition of Uniform AC⁰.

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE

● ∃SO=NP

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in \mathsf{FO}$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin)	
	$\exists SO = NP.$

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem; will prove next.

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in FO$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin)		l
	$\exists SO = NP.$	ļ

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem; will prove next.

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in FO$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem; will prove next.

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in \mathsf{FO}$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin)		I
	$\exists SO = NP.$	 ļ

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem; will prove next.

 $\exists SO$ consists of sentences $\exists S_1 \cdots \exists S_m \varphi$, where $\varphi \in \mathsf{FO}$ over vocabulary $\sigma \cup \{S_1, \ldots, S_m\}$.

Theorem (Fagin)		Ì
	$\exists SO = NP.$	 ļ

In words:

- $\exists SO \subseteq NP$: the data complexity of $\psi \in \exists SO$ is in NP proof in class
- NP ⊆ ∃SO: for any problem in NP, there exists a sentence ψ ∈ ∃SO that expresses precisely that problem; will prove next.

Let $L \subseteq \{0,1\}^*$ be a language in NP. This means: \exists Turing Machine M and d > 0 s.t. for any input $w \subseteq \{0,1\}^n$: M has an accepting computation of length $\leq n^d$ iff $w \in L$.

Define ψ_M s.t. $([n], U) \vDash \psi_M$ iff¹ $U \in L$, as in Trakhtenbrot's theorem:

$\psi_{M} = \exists \langle \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M}$

where φ_M is as in Trakthenbrot's proof, with two changes:

- Assert that the initial configuration is the string U (i.e. not 0's)
- The time/space can now go up to n^d: encode it using a d-tuple instead of a single value in class;
 T₀, T₁, H now have arity 2d and S_{q0}, S_{q1},... have arity d

 $U \subseteq [n]$ denotes a string $w \in \{0,1\}^n$ how?.

Dan Suciu

Let $L \subseteq \{0,1\}^*$ be a language in NP. This means: \exists Turing Machine M and d > 0 s.t. for any input $w \subseteq \{0,1\}^n$: M has an accepting computation of length $\leq n^d$ iff $w \in L$. Define ψ_M s.t. $([n], U) \models \psi_M$ iff¹ $U \in L$, as in Trakhtenbrot's theorem: $\psi_M = \exists < \exists T_0(\cdot, \cdot) \exists T_1(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_0}(\cdot) \exists S_{q_1}(\cdot) \cdots \varphi_M$

where φ_M is as in Trakthenbrot's proof, with two changes:

- Assert that the initial configuration is the string U (i.e. not 0's)
- The time/space can now go up to n^d: encode it using a d-tuple instead of a single value in class;
 T₀, T₁, H now have arity 2d and S_{q0}, S_{q1},... have arity d

¹ $U \subseteq [n]$ denotes a string $w \in \{0,1\}^n$ how?.

Dan Suciu

Let $L \subseteq \{0,1\}^*$ be a language in NP. This means: \exists Turing Machine M and d > 0 s.t. for any input $w \subseteq \{0,1\}^n$: M has an accepting computation of length $\leq n^d$ iff $w \in L$. Define ψ_M s.t. $([n], U) \models \psi_M$ iff¹ $U \in L$, as in Trakhtenbrot's theorem:

 $\psi_{M} = \exists \langle \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{a_{0}}(\cdot) \exists S_{a_{1}}(\cdot) \cdots \varphi_{M} \rangle$

where φ_M is as in Trakthenbrot's proof, with two changes:

- Assert that the initial configuration is the string U (i.e. not 0's)
- The time/space can now go up to n^d: encode it using a d-tuple instead of a single value in class;
 T₀, T₁, H now have arity 2d and S_{q0}, S_{q1},... have arity d

¹ $U \subseteq [n]$ denotes a string $w \in \{0,1\}^n$ how?.

Dan Suciu

Let $L \subseteq \{0,1\}^*$ be a language in NP. This means: \exists Turing Machine M and d > 0 s.t. for any input $w \subseteq \{0,1\}^n$: M has an accepting computation of length $\leq n^d$ iff $w \in L$. Define ψ_M s.t. $([n], U) \vDash \psi_M$ iff¹ $U \in L$, as in Trakhtenbrot's theorem:

$$\psi_{M} = \exists \langle \exists T_{0}(\cdot, \cdot) \exists T_{1}(\cdot, \cdot) \exists H(\cdot, \cdot) \exists S_{q_{0}}(\cdot) \exists S_{q_{1}}(\cdot) \cdots \varphi_{M} \rangle$$

where φ_M is as in Trakthenbrot's proof, with two changes:

- Assert that the initial configuration is the string U (i.e. not 0's)
- The time/space can now go up to n^d: encode it using a d-tuple instead of a single value in class;
 T₀, T₁, H now have arity 2d and S_{q0}, S_{q1},... have arity d

¹ $U \subseteq [n]$ denotes a string $w \in \{0,1\}^n$ how?.

- ∃*SO* = *NP* is a very elegant result!
- Main lesson: $\exists SO$ is very expressive.
- This suggests a restriction to monadic existential SO. $\exists MSO$ is also called monadic NP.
- Is there a very easy query that is not expressible in $\exists MSO$?

- ∃*SO* = *NP* is a very elegant result!
- Main lesson: $\exists SO$ is very expressive.
- This suggests a restriction to monadic existential SO. $\exists MSO$ is also called monadic NP.
- Is there a very easy query that is not expressible in ∃MSO? Connectivity!

Detour: Spectra and Counting

The spectrum of a sentence φ is the set of numbers *n* s.t. φ has a model of size *n*.

Examples:

• Let $\sigma = \{E\}$ and let φ says "*E* is a matching of the domain". What is $Spec(\varphi)$?

Detour: Spectra and Counting

The spectrum of a sentence φ is the set of numbers *n* s.t. φ has a model of size *n*.

Examples:

Let σ = {E} and let φ says "E is a matching of the domain". What is Spec(φ)? {2n | n ∈ N}.

The spectrum of a sentence φ is the set of numbers *n* s.t. φ has a model of size *n*.

Examples:

- Let $\sigma = \{E\}$ and let φ says "*E* is a matching of the domain". What is $\text{Spec}(\varphi)$? $\{2n \mid n \in \mathbb{N}\}$.
- Let $\sigma = (+, *, 0, 1)$ and φ be the axioms of a field. What is Spec(φ)?

The spectrum of a sentence φ is the set of numbers *n* s.t. φ has a model of size *n*.

Examples:

- Let $\sigma = \{E\}$ and let φ says "*E* is a matching of the domain". What is $\text{Spec}(\varphi)$? $\{2n \mid n \in \mathbb{N}\}$.
- Let $\sigma = (+, *, 0, 1)$ and φ be the axioms of a field. What is Spec (φ) ? $\{p^c \mid p \text{ prime}, c \ge 1\}.$

The spectrum of a sentence φ is the set of numbers *n* s.t. φ has a model of size *n*.

Examples:

- Let $\sigma = \{E\}$ and let φ says "*E* is a matching of the domain". What is $\text{Spec}(\varphi)$? $\{2n \mid n \in \mathbb{N}\}$.
- Let $\sigma = (+, *, 0, 1)$ and φ be the axioms of a field. What is Spec (φ) ? $\{p^c \mid p \text{ prime}, c \ge 1\}.$

We study the decision problem: "given *n*, check if $n \in \text{Spec}(\varphi)$ ".

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(arphi) \mid arphi \in \mathsf{FO}\}$ = NETIME

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?)

The counting problem is: given *n*, count the number of models $\#_n(\varphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(\varphi) \mid \varphi \in FO\} = NETIME$

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?)

If the input n is given in unary: $\{Spec(\varphi) \mid \varphi \in FO\} = NP_1$

The counting problem is: given *n*, count the number of models $\#_n(arphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(\varphi) \mid \varphi \in FO\} = NETIME$

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?) If the input n is given in unary: $\{Spec(\varphi) \mid \varphi \in FO\} = NP_1$

The counting problem is: given n, count the number of models $\#_n(arphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(\varphi) \mid \varphi \in FO\} = NETIME$

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?)

If the input n is given in unary: $\{Spec(\varphi) \mid \varphi \in FO\} = NP_1$

The counting problem is: given *n*, count the number of models $\#_n(\varphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

NETIME = problems solvable in time $\bigcup_{c\geq 0} 2^{cn}$ (don't confuse with NEXPTIME = problems solvable in time $\bigcup_{c\geq 0} 2^{n^c}$)

Theorem (Jones&Selman'1972)

If the input n is given in binary: $\{Spec(\varphi) \mid \varphi \in FO\} = NETIME$

Theorem (Special case of Fagin's theorem, for $\sigma = \emptyset$ why?)

If the input n is given in unary: $\{Spec(\varphi) \mid \varphi \in FO\} = NP_1$

The counting problem is: given *n*, count the number of models $\#_n(\varphi)$

Theorem

If the input n is given in unary: $\{n \mapsto \#_n(\varphi) \mid \varphi \in FO\} = \#P_1$ In particular, there exists a sentence φ s.t. $\#_n(\varphi)$ is $\#P_1$ -complete.

This explains why it is hard to compute $\mu_n(\varphi)$ exactly! Notice: no "natural" hard problem is known for $\#P_1$.

Dan Suciu

Finite Model Theory - Unit 3

Descriptive Complexity: Overview of Results

- $FO(+,*) = FO(<,BIT) = AC^0$
- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE;
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE

• 3SO=NP

Fixpoints

Let U be a finite set, and $f: 2^U \rightarrow 2^U$.

- A fixpoint is a set $X \subseteq U$ s.t. f(X) = X.
- A least fixpoint is a fixpoint X_0 s.t. for any fixpoint X, $X_0 \subseteq X$.

• When it exists, the least fixpoint is unique why?; denote it lfp(f).

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is *inflationary* if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is *inflationary* if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is inflationary if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The *inflationary fixpoint* of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is inflationary if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The *inflationary fixpoint* of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

When f is monotone, $\mathtt{lfp}(f) = \mathtt{ifp}(f) = \mathtt{pfp}(f) = f^{\infty}$.

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is inflationary if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

Fix finite $U, f: 2^U \to 2^U$. Define $f^0 \stackrel{\text{def}}{=} \emptyset, f^{n+1} \stackrel{\text{def}}{=} f(f^n), f^{\infty} \stackrel{\text{def}}{=} \bigcup_n f^n$.

Theorem (Tarski-Knaster)

If f is monotone $(X \subseteq Y \rightarrow f(X) \subseteq f(Y))$ then $lfp(f) = f^{\infty}$.

Definition (Partial Fixpoint)

If $f^{n+1} = f^n$ for $n \ge 0$, then $pfp(f) \stackrel{\text{def}}{=} f^n$ is called the *partial fixpoint* of f.

f is inflationary if $X \subseteq f(X)$; then f^{∞} is a fixpoint why?

Definition (Inflationary Fixpoint)

The inflationary fixpoint of f is $ifp(f) \stackrel{\text{def}}{=} g^{\infty}$, where $g(X) \stackrel{\text{def}}{=} X \cup f(X)$.

Fixpoint Logics

Let $R \notin \sigma$ be a new relational symbol. Define three new formulas:

$$\begin{split} & [\texttt{lfp}_{R, \mathbf{x}} \varphi(R, \mathbf{x})][\mathbf{t}] \\ & [\texttt{ifp}_{R, \mathbf{x}} \varphi(R, \mathbf{x})][\mathbf{t}] \\ & [\texttt{pfp}_{R, \mathbf{x}} \varphi(R, \mathbf{x})][\mathbf{t}] \end{split}$$

where $|\mathbf{x}| = |\mathbf{t}| = \operatorname{arity}(R)$; \mathbf{x} are free in φ , and bound in $[\operatorname{lfp}_{R,\mathbf{x}}(\cdots)]$. Their meaning in a structure \mathbf{A} is this. Define the function:

$$f(R) = \{ \boldsymbol{a} \mid (\boldsymbol{A}, R) \vDash \varphi[\boldsymbol{a}/\boldsymbol{x}] \}$$

Then the formulas "mean" lfp(f), ifp(f), pfp(f) respectively².

Three new logics: FO(lfp), FO(ifp), FO(pfp).

²For lfp we must ensure that φ is monotone. See homework.

 This is horrible syntax. Here is how we check if a, b are connected in a graph G = (V, E):

$$[lfp_{T,x,y}(E(x,y) \lor \exists z(E(x,z) \land T(z,y)))](a,b)$$

Now you really love datalog, were we write:

$$T(x,y) \leftarrow E(x,y)$$
$$T(x,y) \leftarrow E(x,z), T(z,y)$$
Answer() $\leftarrow T(a,b)$

- We made a few arbitrary choices: allow free variables? allow simultaneous recursion? It turns out these don't add expressive power, so use them if needed.
- Gurevitch and Shelah proved FO(lfp) = FO(ifp);
 We will only discuss ifp and pfp.

Dan Suciu

The game is played by two players on a graph G. A pebble is placed initially on a node, then players take turn, and each player may move the pebble along an edge. The player who can't move loses. Write a query to compute the positions from which the *first* player has a winning strategy.

The game is played by two players on a graph G. A pebble is placed initially on a node, then players take turn, and each player may move the pebble along an edge. The player who can't move loses. Write a query to compute the positions from which the *first* player has a winning strategy.

$$S(x) \leftarrow \exists y (E(x,y) \land \neg S(y))$$
 or $[pfp_{S,x} \exists y (E(x,y) \land \neg S(y))](x)$

The game is played by two players on a graph G. A pebble is placed initially on a node, then players take turn, and each player may move the pebble along an edge. The player who can't move loses. Write a query to compute the positions from which the *first* player has a winning strategy.

$$S(x) \leftarrow \exists y(E(x,y) \land \neg S(y))$$
 or $[pfp_{S,x} \exists y(E(x,y) \land \neg S(y))](x)$

This is not monotone, hence may not have a fixpoint!

The game is played by two players on a graph G. A pebble is placed initially on a node, then players take turn, and each player may move the pebble along an edge. The player who can't move loses. Write a query to compute the positions from which the *first* player has a winning strategy.

$$S(x) \leftarrow \exists y(E(x,y) \land \neg S(y))$$
 or $[pfp_{S,x} \exists y(E(x,y) \land \neg S(y))](x)$

This is not monotone, hence may not have a fixpoint! When it has a fixpoint, then it can obtain as:

$$S(x) \leftarrow \exists y (E(x,y) \land (\forall z E(y,z) \to S(z)))$$

Or:

$$[lfp_{S,x} \exists y (E(x,y) \land (\forall z E(y,z) \rightarrow S(z)))](x)$$

FO[ifp] captures PTIME

Theorem

(1) $FO[ifp] \subseteq PTIME$ and (2) FO[ifp, <] = PTIME.

Proof in class:

- $FO[ifp] \subseteq PTIME$ Show that the data complexity is PTIME.
- PTIME ⊆ FO[ifp,<]. Given a PTIME language L ⊆ {0,1}*, write an FO(ifp,<)-formula φ s.t. on any input structure ([n], U,<), φ is true iff U ∈ L. Note: we are given the order < for free.</p>

FO[pfp] captures PSPACE

Theorem

(1) $FO[pfp] \subseteq PSPACE$ and (2) FO[pfp, <] = PSPACE.

Proof in class:

- FO[pfp] ⊆ PSPACE. The hard part is negation: Immerman proved that ¬pfp can be rewritten as some pfp, and this implied that PSPACE is closed under negation.
- PSPACE ⊆ FO[pfp, <]. Given a PSPACE language L ⊆ {0,1}*, write an FO(pfp, <)-formula φ s.t. on any input structure ([n], U, <), φ is true iff U ∈ L. Note: we can't use the time any more.

• Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)?</p>

• Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: $FO(lfp) \subseteq L_{\infty\omega}^{\omega}$ and cannot express EVEN.

- Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: $FO(lfp) \subseteq L_{\infty\omega}^{\omega}$ and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?

- Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: FO(lfp) ⊆ L^ω_{∞ω} and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?
 - If FO(ifp) = FO(pfp) then they remain = after adding <, hence PTIME = PSPACE.

- Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: FO(lfp) ⊆ L^ω_{∞ω} and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?
 - If FO(ifp) = FO(pfp) then they remain = after adding <, hence PTIME = PSPACE.
 - Abiteboul and Vianu proved the converse: if *PTIME* = *PSPACE* then *FO*(ifp) = *FO*(pfp). The proof uses the *FO^k* types in a very clever way discuss in class.

- Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: FO(lfp) ⊆ L^ω_{∞ω} and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?
 - If FO(ifp) = FO(pfp) then they remain = after adding <, hence PTIME = PSPACE.
 - Abiteboul and Vianu proved the converse: if *PTIME* = *PSPACE* then *FO*(ifp) = *FO*(pfp). The proof uses the *FO^k* types in a very clever way discuss in class.
- If we could use some game to separate FO(ifp) ≠ FO(pfp), then we have proven PTIME ≠ PSPACE!

- Do we need order, e.g. could be the case that FO(lfp) = PTIME (without <)? Yes: FO(lfp) ⊆ L^ω_{∞ω} and cannot express EVEN.
- Clearly $FO(ifp) \subseteq FO(pfp)$. Could they be equal?
 - If FO(ifp) = FO(pfp) then they remain = after adding <, hence PTIME = PSPACE.
 - Abiteboul and Vianu proved the converse: if *PTIME* = *PSPACE* then *FO*(ifp) = *FO*(pfp). The proof uses the *FO^k* types in a very clever way discuss in class.
- If we could use some game to separate FO(ifp) ≠ FO(pfp), then we have proven PTIME ≠ PSPACE!
- Main open problem in FMT: find a logic for *PTIME* (no order)

Descriptive Complexity: Overview of Results

- FO(det-TC, <) =LOGSPACE, and FO(TC, <) =NLOGSPACE; will omit this
- FO(LeastFixpoint, <) =FO(InflationaryFixpoint, <) =PTIME
- FO(PartialFixpoint, <) = PSPACE
- ∃SO=NP

Next: combined complexity.

We sill study both FO and the restriction to the quantifier prefix \exists^* . \exists^* is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer
$$\leftarrow E(x, y) \land E(y, z) \land E(z, y)$$

Answer $\leftarrow \neg E(x, y) \land \neg E(y, z) \land \neg E(z, y)$

what does it say?

We sill study both FO and the restriction to the quantifier prefix \exists^* . \exists^* is important in databases: Unions of Conjunctive Queries with negation.

UCQ with negation (same as non-recursive datalog with negation):

Answer
$$\leftarrow E(x, y) \land E(y, z) \land E(z, y)$$

Answer $\leftarrow \neg E(x, y) \land \neg E(y, z) \land \neg E(z, y)$

what does it say? In the \exists^* fragment:

 $\exists x \exists y \exists z (E(x,y) \land E(y,z) \land E(z,y) \lor \neg E(x,y) \land \neg E(y,z) \land \neg E(z,y))$

Special case: Conjunctive Query (CQ) means no \vee and no \neg .

Theorem

The combined complexity of the \exists^* fragment of FO is in NP.

Theorem

The combined complexity of FO is in PSPACE.

In class: give a algorithm that runs in NP (PSPACE) and does this: given A, φ , checks if $A \models \varphi$.

Theorem

The combined complexity of the \exists^* fragment of FO is in NP.

Theorem

The combined complexity of FO is in PSPACE.

In class: give a algorithm that runs in NP (PSPACE) and does this: given \mathbf{A}, φ , checks if $\mathbf{A} \models \varphi$.

Can we design better algorithms?

Combined Complexity

No better algorithm is possible!

Then there exists a structure **A** such that:

Theorem

The expression complexity for CQ (a subset of \exists^* -FO) is NP-complete.

Theorem

The expression complexity for FO is PSPACE-complete.

The structure **A** is the same in both. We will prove them together.

The SAT problem is: given a Boolean formula $F(X_1, \ldots, X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \ldots F(X_1, \ldots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

The SAT problem is: given a Boolean formula $F(X_1, \ldots, X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \ldots F(X_1, \ldots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

The SAT problem is: given a Boolean formula $F(X_1, \ldots, X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \ldots F(X_1, \ldots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3(X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

The SAT problem is: given a Boolean formula $F(X_1, \ldots, X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \ldots F(X_1, \ldots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3(X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

The SAT problem is: given a Boolean formula $F(X_1, \ldots, X_n)$ check if it has a satisfying assignment.

The QBF problem is: given a quantified Boolean formula $Q_1X_1, Q_2X_2, \ldots F(X_1, \ldots, X_n)$, check if it is true. E.g. $\forall X_1 \exists X_2 \forall X_3(X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3)$.

SAT is the special case $\exists X_1 \cdots \exists X_n F(X_1, \dots, X_n)$.

Theorem

In a 3CNF there are 4 kinds of 3-clauses:

$X \lor Y \lor Z \qquad \neg X \lor Y \lor Z \qquad \neg X \lor \neg Y \lor Z \qquad \neg X \lor \neg Y \lor \neg Z$

Consider the structure **A** with domain $\{0,1\}$ and with four relations:

SAT to CQ by example:

 $(X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land R_1(x_3, x_1, x_4) \land R_1(x_3, x_3, x_4) \land R_1(x_3, x_4, x_4) \land R_1(x_4, x_4) \land R_1(x$

QBE to FO by example:

 $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land R_0(x_2, x_3, x_4) \land R_0(x_2, x_3, x_4) \land R_0(x_2, x_3, x_4) \land R_0(x_3 \lor x_4, x_4) \land R_0(x_4 \lor x_4) \land R_0(x$

In a 3CNF there are 4 kinds of 3-clauses:

$$X \lor Y \lor Z \qquad \neg X \lor Y \lor Z \qquad \neg X \lor \neg Y \lor Z \qquad \neg X \lor \neg Y \lor \neg Z$$

Consider the structure **A** with domain $\{0,1\}$ and with four relations:

	0	0	1			1	0	1		1	1	1		1	1	0
	0	1	0			1	1	0		1	0	0		1	0	1
	0	1	1			1	1	1		1	0	1		1	0	0
$R_0 =$	1	0	1	R ₁	L =	0	0	1	R ₂ =	0	1	1	R ₃ =	0	1	0
-	1	0	1			0	0	1		0	1	1		0	1	0
	1	1	0			0	1	0		0	0	0		0	0	1
	1	1	1		L	0	1	1		0	0	1		0	0	0

SAT to CQ by example:

 $(X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land R_1(x_3, x_1, x_4) \land R_1(x_3, x_3, x_4) \land R_1(x_3, x_3, x_4, x_4) \land R_1(x_4, x_4)$

QBE to FO by example:

 $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land R_1(x_3, x_1, x_4) \land R_1(x_3, x_1, x_4) \land R_1(x_3, x_3, x_4) \land R_1(x_3, x_4, x_4) \land R_1(x_3, x_4) \land R_1(x_3, x_4) \land R_1(x_3, x_4) \land R_1(x_4, x_4, x_4) \land R_1(x_4, x_4) \land R_1(x_4, x_4) \land R_1(x_4, x_4, x_4) \land R_1(x_4, x_4) \land R_1(x_$

In a 3CNF there are 4 kinds of 3-clauses:

$$X \lor Y \lor Z \qquad \neg X \lor Y \lor Z \qquad \neg X \lor \neg Y \lor Z \qquad \neg X \lor \neg Y \lor \neg Z$$

Consider the structure **A** with domain $\{0,1\}$ and with four relations:

	0	0	1		1	0	1		1	1	1		1	1	0
	0	1	0		1	1	0		1	0	0		1	0	1
	0	1	1		1	1	1		1	0	1		1	0	0
$R_0 =$	1	0	1	R ₁ =	0	0	1	R ₂ =	0	1	1	R ₃ =	0	1	0
-	1	0	1		0	0	1		0	1	1		0	1	0
	1	1	0		0	1	0		0	0	0		0	0	1
	1	1	1		0	1	1		0	0	1		0	0	0

SAT to CQ by example:

 $(X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_4) \land R_1(x_3, x_4)$

QBE to FO by example:

 $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0 (x_1, x_2, x_3) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_2) \land R_1 (x_3, x_1, x_2) \land R_1 (x_3, x_1, x_2) \land R_1$

In a 3CNF there are 4 kinds of 3-clauses:

$$X \lor Y \lor Z \qquad \neg X \lor Y \lor Z \qquad \neg X \lor \neg Y \lor Z \qquad \neg X \lor \neg Y \lor \neg Z$$

Consider the structure **A** with domain $\{0,1\}$ and with four relations:

	0	0	1		1	0	1		1	1	1		1	1	0
	0	1	0		1	1	0		1	0	0		1	0	1
	0	1	1		1	1	1		1	0	1		1	0	0
$R_0 =$	1	0	1	R ₁ =	0	0	1	R ₂ =	0	1	1	R ₃ =	0	1	0
-	1	0	1		0	0	1		0	1	1		0	1	0
	1	1	0		0	1	0		0	0	0		0	0	1
	1	1	1		0	1	1		0	0	1		0	0	0

SAT to CQ by example:

 $(X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_4) \land R_1(x_3, x_4)$

QBE to FO by example:

 $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0 (x_1, x_2, x_3) \land R_1 (x_3, x_1, x_4) \land R_0 (x_2, x_3, x_4) \land R_1 (x_3, x_1, x_4) \land R_1 (x_3, x_4) \land R_2 (x_4, x_4) \land R_2$

In a 3CNF there are 4 kinds of 3-clauses:

$$X \lor Y \lor Z \qquad \neg X \lor Y \lor Z \qquad \neg X \lor \neg Y \lor Z \qquad \neg X \lor \neg Y \lor \neg Z$$

Consider the structure **A** with domain $\{0,1\}$ and with four relations:

	0	0	1		1	0	1		1	1	1		1	1	0
	0	1	0		1	1	0		1	0	0		1	0	1
	0	1	1		1	1	1		1	0	1		1	0	0
$R_0 =$	1	0	1	R ₁ =	0	0	1	R ₂ =	0	1	1	R ₃ =	0	1	0
-	1	0	1		0	0	1		0	1	1		0	1	0
	1	1	0		0	1	0		0	0	0		0	0	1
	1	1	1		0	1	1		0	0	1		0	0	0

SAT to CQ by example:

 $(X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \mapsto \exists x_1 \exists x_2 \exists x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_4) \land R_1(x_3, x_4)$

QBE to FO by example:

 $\forall X_1 \exists X_2 \forall X_3 (X_1 \lor X_2 \lor X_3) \land (X_1 \lor \neg X_3 \lor X_4) \land (X_2 \lor X_3 \lor X_4) \mapsto \forall x_1 \exists x_2 \forall x_3 \exists x_4 R_0(x_1, x_2, x_3) \land R_1(x_3, x_1, x_4) \land R_0(x_2, x_3, x_4) \land R_1(x_3, x_1, x_4) \land R_1(x_3, x_1, x_4) \land R_2(x_3, x_3, x_4) \land R_2(x_3, x_4, x_4) \land R_2(x_4, x_4) \land R$

Discussion

- Data complexity of FO is AC⁰ very low!
- For database fans: the expression and combined complexity of CQ (and hence select-from-where SQL queries) is NP-complete.
- Expression complexity and combined complexity of *FO* are *PSPACE*-complete very high!
- We omit the expression complexity of extensions of *FO* (hint: they get even higher).

Representing Strings

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$. A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle, P_a(\cdot), P_b(\cdot), P_c(\cdot))$. In class represent *aabaca*.

A sentence φ defines a language $\{w \mid w \models \varphi\}$. E.g. $\forall x \forall y (x < y \land P_a(x) \land P_a(y) \rightarrow \exists z (x < y < z \land P_b(z)))$ Assuming alphabet $\{a, b\}$ it says "between any two *a*'s there is a *b*": $b^* . (a.b^+)^* . (a|\varepsilon)$

• What languages can be define in FO?

• What languages can be define in MSO?

Representing Strings

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$. A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle, P_a(\cdot), P_b(\cdot), P_c(\cdot))$. In class represent *aabaca*.

A sentence φ defines a language $\{w \mid w \models \varphi\}$. E.g. $\forall x \forall y (x < y \land P_a(x) \land P_a(y) \rightarrow \exists z (x < y < z \land P_b(z)))$ Assuming alphabet $\{a, b\}$ it says "between any two *a*'s there is a *b*": $b^* . (a.b^+)^* . (a|\varepsilon)$

• What languages can be define in FO?

• What languages can be define in MSO?

Representing Strings

Fix an alphabet Σ , e.g. $\Sigma = \{a, b, c\}$. A word $w \in \Sigma^*$ can be encoded as a structure over the alphabet $\sigma = (\langle, P_a(\cdot), P_b(\cdot), P_c(\cdot))$. In class represent *aabaca*.

A sentence φ defines a language $\{w \mid w \models \varphi\}$. E.g. $\forall x \forall y (x < y \land P_a(x) \land P_a(y) \rightarrow \exists z (x < y < z \land P_b(z)))$ Assuming alphabet $\{a, b\}$ it says "between any two *a*'s there is a *b*": $b^* . (a.b^+)^* . (a|\varepsilon)$

- What languages can be define in FO?
- What languages can be define in MSO?

Regular Expressions

Fix an alphabet Σ . Regular expressions are:

$$E ::= \emptyset | \varepsilon | a \in \Sigma$$

$$E \cup E | E.E$$

$$C(E)$$

$$E^*$$
complement

E is called *star-free* if it is equivalent to an expression without *. In class assuming $\Sigma = \{a, b\}$, which expressions are star-free?

$$C(\emptyset)$$
 $b^*.(a.b^*)^*$ $(a.b)^*$ $(a.a)^*$

FO on Strings

Theorem

A language L is star-free iff it is defined in FO.

MSO on Strings

Theorem

A language L is regular iff it is defined in MSO.

TBD (or, better, in class)

Applications

- There exists a regular language which is not star-free. which one?
- SAT for MSO on strings is decidable. what is the complexity?
- The data complexity for MSO on strings is linear time! what is the data complexity of MSO?
- On strings: $\exists MSO = \forall MSO = MSO$ why?

Courcelle's Theorem

Let C be a class of structures with bounded tree-width. discuss tw in class; we will return to it.

Theorem (Courcelle)

Every formula in $\varphi \in MSO$ can be evaluated in linear time over structures of bounded tree-width.

This is an amazing result! Caveats:

- The expression complexity is horrible (non-elementary).
- We need a tree decomposition of the structure (i.e. database) **A**: this is NP-complete in general.
- If we have a promise that the treewidth is $\leq k$, then we can compute a TD in time $O(n^k)$; but "real" databases rarely have bounded tw.

Discussion

- MSO is very powerful in general: Monadic NP.
- But over strings it can only express regular languages: linear time.
- Even over trees, or "tree-like" structures MSO is still in linear time.
- Problem: data in real life is not "tree-like"!