
Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Finite Model Theory
Unit 2

Dan Suciu

Spring 2018

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 1 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

599c: Finite Model Theory

Unit 2: Expressive Power of Logics on Finite Models

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 2 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Resources

Libkin, Finite Model Theory, Chapt. 3, 4, 11.

Grädel, Kolaitis, Libkin, Marx, Spencer, Vardi, Venema, Weinstein:
Finite Model Theory and Its Applications, Capt. 2 (Expressive Power
of Logics on Finite Models).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 3 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Where Are We

Classical model theory is concerned with truth, D ⊧ ϕ, and its
implications.

Finite model theory is concerned with:

▸ Expressibility: which classes of finite structures can be expressed in a
given logic.

▸ Computability: connection between computational complexity and
expressibility in that logic.

▸ (Asymptotic) probabilities: study the probability (asymptotic or not) of
a sentence.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 4 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Unit 2: Expressibility

Ehrenfeuched-Fraisse Games

Infinitary logics and Pebble Games

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 5 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The Expressibility Problem

Given a property P, can it be expressed in a logic L?

Example properties: CONNECTIVITY, EVEN, PLANARITY.

Example logics: FO, SO, FO+fixpoint, Datalog.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 6 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 1: EVEN

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of nodes. In class

Impossible! µn(ϕ) = 0 when n = odd, µn(ϕ) = 1 when n = even, violates
0/1-law.

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of edges.
The 0/1 law no longer helps.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 7 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 1: EVEN

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of nodes. In class
Impossible! µn(ϕ) = 0 when n = odd, µn(ϕ) = 1 when n = even, violates
0/1-law.

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of edges.
The 0/1 law no longer helps.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 7 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 1: EVEN

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of nodes. In class
Impossible! µn(ϕ) = 0 when n = odd, µn(ϕ) = 1 when n = even, violates
0/1-law.

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of edges.

The 0/1 law no longer helps.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 7 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 1: EVEN

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of nodes. In class
Impossible! µn(ϕ) = 0 when n = odd, µn(ϕ) = 1 when n = even, violates
0/1-law.

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of edges.
The 0/1 law no longer helps.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 7 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

G = (V ,E) is connected1 if forall a,b ∈ V there exists a path a →∗ b.

Find an FO sentence ψ s.t. G ⊧ ψ iff G is connected.

∀x∀yE(x , y)?
∀x∀y∃z(E(x , z) ∧ E(z , y))?
. . .
Impossible! Let’s prove that.

1The correct term is strongly connected.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 8 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

G = (V ,E) is connected1 if forall a,b ∈ V there exists a path a →∗ b.

Find an FO sentence ψ s.t. G ⊧ ψ iff G is connected.
∀x∀yE(x , y)?

∀x∀y∃z(E(x , z) ∧ E(z , y))?
. . .
Impossible! Let’s prove that.

1The correct term is strongly connected.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 8 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

G = (V ,E) is connected1 if forall a,b ∈ V there exists a path a →∗ b.

Find an FO sentence ψ s.t. G ⊧ ψ iff G is connected.
∀x∀yE(x , y)?
∀x∀y∃z(E(x , z) ∧ E(z , y))?
. . .

Impossible! Let’s prove that.

1The correct term is strongly connected.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 8 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

G = (V ,E) is connected1 if forall a,b ∈ V there exists a path a →∗ b.

Find an FO sentence ψ s.t. G ⊧ ψ iff G is connected.
∀x∀yE(x , y)?
∀x∀y∃z(E(x , z) ∧ E(z , y))?
. . .
Impossible! Let’s prove that.

1The correct term is strongly connected.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 8 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 9 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Isomorphism

Assume a relational vocabulary σ = (R1, . . . ,Rk , c1, . . . , cm) (no functions).
Fix A = (A,RA

1 , . . . ,R
A
k , c

A
1 , . . . , c

A
m), B = (B,RB

1 , . . . ,R
B
k , c

B
1 , . . . , c

B
m).

Definition

An isomorphism f ∶ A→ B is a bijection A→ B such that:

Forall R ∈ σ, (a1, . . . , ak) ∈ RA iff (f (a1), . . . , f (ak)) ∈ RB .

Forall c ∈ σ, f (cA) = cB .

We write A ≃ B if there exists an isomorphism A→ B.

Remark: if A ≃ B then for any sentence ϕ in a “reasonable” logics (like
FO, or extensions), A ⊧ ϕ iff B ⊧ ϕ.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 10 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Elementary Equivalence

Definition

A and B are elementary equivalent if forall ϕ, A ⊧ ϕ iff B ⊧ ϕ.

We write A ≡ B.

Isomorphisms implies elementary equivalence: if A ≃ B then A ≡ B.

Over the finite structures, the converse holds too: if A ≡ B, then A ≃ B.

We cannot find two finite graphs, one connected and one disconnected,
that are elementary equivalent!

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 11 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Partial Isomorphism
Fix a relational vocabulary σ: relations Ri , constants cj .
Let A,B be two σ-structures.

Definition

A partial isomorphism is a pair a,b, where a = (a1, , . . . , ak) ∈ Ak ,
b = (b1, . . . ,bk) ∈ Bk s.t. the substructuresa A∣a, B ∣b are isomorphic via:

∀i , ai ↦bi ∀j , cAj ↦ cBj

aA∣a consists of the universe {a1, . . . , ak , c
A
1 , . . . , c

A
m}.

We write a ≃ b.
In other words:

Forall i , j , ai = aj iff bi = bj . (Equality is preserved.)
Forall i , j , ai = cAj iff bi = cBj . (Constants are preserved.)

(t1, . . . , tn) ∈ RA where each ti is either some aj or cAj , iff

(t ′1, . . . , t ′n) ∈ RB where t ′i is bj or cBj respectively.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 12 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 13 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 13 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 13 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 13 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 13 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games: Main Result

The quantifier rank of a formula ϕ is defined inductively2:

qr(F) =qr(t1 = t2) = qr(R(t1, . . . , tm)) = 0

qr(ϕ→ ψ) =max(qr(ϕ),qr(ψ))
qr(∀x(ϕ)) =1 + qr(ϕ)

FO[k] def= FO restricted to formulas with qr ≤ k.

Theorem (Ehrenfeucht-Fraisse)

A ≡k B (meaning: they agree on FO[k]) iff A ∼k B.

We will prove it later. First, let’s see examples.

2The number of quantifiers can be exponentially larger than qr(ϕ) why?
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 14 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse Games: Main Result

The quantifier rank of a formula ϕ is defined inductively2:

qr(F) =qr(t1 = t2) = qr(R(t1, . . . , tm)) = 0

qr(ϕ→ ψ) =max(qr(ϕ),qr(ψ))
qr(∀x(ϕ)) =1 + qr(ϕ)

FO[k] def= FO restricted to formulas with qr ≤ k.

Theorem (Ehrenfeucht-Fraisse)

A ≡k B (meaning: they agree on FO[k]) iff A ∼k B.

We will prove it later. First, let’s see examples.

2The number of quantifiers can be exponentially larger than qr(ϕ) why?
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 14 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles:

L6

L7

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

L6

L7

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7
a1

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7
a1

b1

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7
a1

b1

a2

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7
a1

b1

a2

b2

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles:

L6

L7
a1

b1

a2

b2

a3

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles: L6 /∼3 L7

L6

L7
a1

b1

a2

b2

a3

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).
Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles: L6 /∼3 L7

Find ϕ ∈ FO[3] s.t. L6 ⊧ ϕ,L7 /⊧ ϕ

L6

L7
a1

b1

a2

b2

a3

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders
Let Lk = ({1,2, . . . , k},<).
Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles: L6 ∼2 L7

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 3 pebbles: L6 /∼3 L7

Find ϕ ∈ FO[3] s.t. L6 ⊧ ϕ,L7 /⊧ ϕ

L6

L7
a1

b1

a2

b2

a3

∀x1∀x2(x2 < x1 → //L<x1
6 is small

(∀x3¬(x3 < x2)
∨ ∀x3¬(x2 < x3 < x1)))

∨∀x2(x2 > x1 → //L>x1
6 is small

(∀x3¬(x3 > x2)
∨ ∀x3¬(x1 < x3 < x2)))

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 15 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 16 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 16 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 16 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 16 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 16 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)

Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?)

, L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?)

, Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).

Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).

Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)

Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;

L<am ∼k−1 L<bn ,L
>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;

Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 17 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 18 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 18 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 18 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 18 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 18 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Prove the converse at home: if m < 2k − 1 ≤ n then duplicator has a
winning strategy.

According to the EF theorem, if m < 2k − 1 ≤ n then there exists a
sentence ϕ ∈ FO[k] s.t. Lm ⊧ ϕ and Ln /⊧ ϕ. What is ϕ?

The Ehrenfeucht-Fraisse method for showing inexpressibility in FO is
this. For each k > 0 construct two structures Ak ,Bk then:

▸ Prove: Ak ∼k Bk .
▸ Prove: Ak has the property, Bk does not.

Proving ∼k : difficult in general. A sufficient condition: Hanf’s lemma.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 19 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY
Prove that duplicator has winning strategy with k = 3 pebbles (in class).

C12 C6 ∪ C6

Homework: spoiler has a winning strategy with k = 4 pebbles.
Describing and proving a winning strategy in general seems difficult.
Hanf’s lemma gives a sufficient condition for a winning strategy.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 20 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY
Prove that duplicator has winning strategy with k = 3 pebbles (in class).

C12 C6 ∪ C6

Homework: spoiler has a winning strategy with k = 4 pebbles.
Describing and proving a winning strategy in general seems difficult.
Hanf’s lemma gives a sufficient condition for a winning strategy.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 20 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY
Prove that duplicator has winning strategy with k = 3 pebbles (in class).

C12 C6 ∪ C6

Homework: spoiler has a winning strategy with k = 4 pebbles.
Describing and proving a winning strategy in general seems difficult.
Hanf’s lemma gives a sufficient condition for a winning strategy.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 20 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The Gaifman Graph
Let A = (A,RA

1 ,R
A
2 , . . . ,R

A
m, c

A
1 , . . . , c

A
s ) be a structure.

Definition

The Gaifman graph is G(A) = (A,EA) where the edges are pairs (c ,d) s.t.
there exists a tuple (. . . , c , . . . ,d , . . .) ∈ RA

i or (. . . ,d , . . . , c, . . .) ∈ RA
i .

The Gaifman graph of a graph is obtained by forgetting the directions.

Definition

For a ∈ A and d ≥ 0, the d-neighborhood is

N(a,d) def= {b ∈ A ∣ d(a,b) ≤ d} ∪ {cA1 , . . . , cAs }.
The d-type of a is the isomorphism type of the substructure generated by
N(a,d) plus the constant a.

Definition

A,B are called d-equivalent if for each d-type they have the same number
of elements of that type.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 21 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Hanf’s Lemma

Fagin, Stockmeyer, Vardi proved the following, building on earlier work by
Hanf:

Theorem

Let d ≥ 3k−1 − 1. If A,B are d-equivalent, then A ∼k B.

Note 1: Kolaitis requires d ≥ 3k−1 but defines “distance” s.t. d(a, a) = 1.
Note 2: this is only a sufficient condition, not necessary.
The proof exhibits a winning strategy for the duplicator. We omit the
proof.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 22 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)?

C12 C6 ∪ C6

a

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)?

C12 C6 ∪ C6

a

N(a,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?

C12 C6 ∪ C6

a

N(a,2)
b

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type?

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x
How many elements of this type are there in each structure?

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x
How many elements of this type are there in each structure? 12 in each

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x
How many elements of this type are there in each structure? 12 in each
Therefore duplicator has winning strategy with k = 2 pebbles.

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x
How many elements of this type are there in each structure? 12 in each
Therefore duplicator has winning strategy with k = 2 pebbles.

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Prove: for every k
there exists n s.t. du-
plicator has a win-
ning strategy on C2n

and Cn ∪ Cn

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
A much simpler proof using an FO-reduction.
Assume ϕ expresses connectivity of a graph G = (V ,E). Then we write a
sentence ψ s.t. (Ln,<) ⊧ ψ iff (Ln+1,<) /⊧ ψ.

In (Lm,<) define: E
def= {(i , i + 2) ∣ 1 ≤ i ≤ m − 2} ∪ {(m − 1,1), (m,2)}

how?.

L6

L7

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 24 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
A much simpler proof using an FO-reduction.
Assume ϕ expresses connectivity of a graph G = (V ,E). Then we write a
sentence ψ s.t. (Ln,<) ⊧ ψ iff (Ln+1,<) /⊧ ψ.

In (Lm,<) define: E
def= {(i , i + 2) ∣ 1 ≤ i ≤ m − 2} ∪ {(m − 1,1), (m,2)}

how?.

L6

L7

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 24 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
A much simpler proof using an FO-reduction.
Assume ϕ expresses connectivity of a graph G = (V ,E). Then we write a
sentence ψ s.t. (Ln,<) ⊧ ψ iff (Ln+1,<) /⊧ ψ.

In (Lm,<) define: E
def= {(i , i + 2) ∣ 1 ≤ i ≤ m − 2} ∪ {(m − 1,1), (m,2)}

how?.

L6

L7

If m is even then G is disconnected.

If m is odd, then G is connected.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 24 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

The total oders (Lm,<) are an isolated case when we can completely
characterize when the duplicator has a winning strategy. Useful to
reduce other problems to total orders, when possible.

What happends if we replace (m − 1,1), (m,2) with only (m − 1,2)?
(Useful in the homework).

Hanf’s lemma is only a sufficient condition; still useful in many cases.

Next: prove the Ehrenfeucht-Fraisse theorem.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 25 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 26 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Describing Winning Strategies

Fix A,B.
What is a “strategy” of the duplicator?
It is precisely a set I of partial isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if:

((), ()) ∈ I (it contains the empty partial isomorphism).

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 27 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Describing Winning Strategies

Fix A,B.
What is a “strategy” of the duplicator?
It is precisely a set I of partial isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if:

((), ()) ∈ I (it contains the empty partial isomorphism).

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 27 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Describing Winning Strategies

Fix A,B.
What is a “strategy” of the duplicator?
It is precisely a set I of partial isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if:

((), ()) ∈ I (it contains the empty partial isomorphism).

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 27 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Let A be a structure, a def= (a1, . . . , am) ∈ Am. The rank k m-type of a is:

tpk,m(A,a) ={ϕ(x1, . . . , xm) ∈ FO[k] ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

tpk,m(A,a) is complete:
forall ϕ ∈ FO[k] either ϕ ∈ tpk,m(A,a) or ¬ϕ ∈ tpk,m(A,a) why?

For all k ,m there are only finitely many k,m-types why?

There exists a single formula ϕA,a
k,m (the “type” of a) s.t. forall B,b,

tpk,m(A,a) = tpk,m(B,b) iff B ⊧ ϕA,a
k,m(b). why?

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 28 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Let A be a structure, a def= (a1, . . . , am) ∈ Am. The rank k m-type of a is:

tpk,m(A,a) ={ϕ(x1, . . . , xm) ∈ FO[k] ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

tpk,m(A,a) is complete:
forall ϕ ∈ FO[k] either ϕ ∈ tpk,m(A,a) or ¬ϕ ∈ tpk,m(A,a) why?

For all k ,m there are only finitely many k,m-types why?

There exists a single formula ϕA,a
k,m (the “type” of a) s.t. forall B,b,

tpk,m(A,a) = tpk,m(B,b) iff B ⊧ ϕA,a
k,m(b). why?

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 28 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Let A be a structure, a def= (a1, . . . , am) ∈ Am. The rank k m-type of a is:

tpk,m(A,a) ={ϕ(x1, . . . , xm) ∈ FO[k] ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

tpk,m(A,a) is complete:
forall ϕ ∈ FO[k] either ϕ ∈ tpk,m(A,a) or ¬ϕ ∈ tpk,m(A,a) why?

For all k ,m there are only finitely many k,m-types why?

There exists a single formula ϕA,a
k,m (the “type” of a) s.t. forall B,b,

tpk,m(A,a) = tpk,m(B,b) iff B ⊧ ϕA,a
k,m(b). why?

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 28 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Let A be a structure, a def= (a1, . . . , am) ∈ Am. The rank k m-type of a is:

tpk,m(A,a) ={ϕ(x1, . . . , xm) ∈ FO[k] ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

tpk,m(A,a) is complete:
forall ϕ ∈ FO[k] either ϕ ∈ tpk,m(A,a) or ¬ϕ ∈ tpk,m(A,a) why?

For all k ,m there are only finitely many k,m-types why?

There exists a single formula ϕA,a
k,m (the “type” of a) s.t. forall B,b,

tpk,m(A,a) = tpk,m(B,b) iff B ⊧ ϕA,a
k,m(b). why?

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 28 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 29 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Ehrenfeucht-Fraisse games can be applied to infinite structures as
well! If A ≡k B forall k ≥ 0, then A ≡ B.

EF games generalize to other logics to prove inexpressibility results.
We will discuss two:

▸ Inexpressibility for ∃MSO

▸ Inexpressibility for logics with recursion.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 30 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Second Order Logic

Second Order Logic, SO, extends FO with 2nd order variables, which
range over relations.

Example4:

EVEN ≡∃U(∀x∃!y(x ≠ y) ∧U(x , y) ∧U(y , x))

Note: can always assume that 2nd order quantifiers come before 1st order
quantifiers why?

4
∃! means “exists and is unique”. write it in FO.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 31 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Second Order Logic

Second Order Logic, SO, extends FO with 2nd order variables, which
range over relations.

Example4:

EVEN ≡∃U(∀x∃!y(x ≠ y) ∧U(x , y) ∧U(y , x))

Note: can always assume that 2nd order quantifiers come before 1st order
quantifiers why?

4
∃! means “exists and is unique”. write it in FO.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 31 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Second Order Logic

Second Order Logic, SO, extends FO with 2nd order variables, which
range over relations.

Example4:

EVEN ≡∃U(∀x∃!y(x ≠ y) ∧U(x , y) ∧U(y , x))

Note: can always assume that 2nd order quantifiers come before 1st order
quantifiers why?

4
∃! means “exists and is unique”. write it in FO.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 31 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be
unary relations.

∃MSO and ∀MSO further restrict the 2-nd order quantifiers to ∃ or to ∀
respectively.

Example:

3-COLORABILITY ≡ ∃R∃B∃G∀x(R(x) ∨B(x) ∨G(x))
∧∀x∀y(E(x , y) → ¬(R(x) ∧ R(y)))
∧∀x∀y(E(x , y) → ¬(G(x) ∧G(y)))
∧∀x∀y(E(x , y) → ¬(B(x) ∧B(y)))

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 32 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be
unary relations.

∃MSO and ∀MSO further restrict the 2-nd order quantifiers to ∃ or to ∀
respectively.

Example:

3-COLORABILITY ≡ ∃R∃B∃G∀x(R(x) ∨B(x) ∨G(x))
∧∀x∀y(E(x , y) → ¬(R(x) ∧ R(y)))
∧∀x∀y(E(x , y) → ¬(G(x) ∧G(y)))
∧∀x∀y(E(x , y) → ¬(B(x) ∧B(y)))

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 32 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be
unary relations.

∃MSO and ∀MSO further restrict the 2-nd order quantifiers to ∃ or to ∀
respectively.

Example:

3-COLORABILITY ≡ ∃R∃B∃G∀x(R(x) ∨B(x) ∨G(x))
∧∀x∀y(E(x , y) → ¬(R(x) ∧ R(y)))
∧∀x∀y(E(x , y) → ¬(G(x) ∧G(y)))
∧∀x∀y(E(x , y) → ¬(B(x) ∧B(y)))

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 32 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

MSO

Theorem

CONNECTIVITY is expressible in ∀MSO.

how??
∀U∀x∀y ((U(x) ∧ ¬U(y)) → ∃u∃vE(u, v) ∧U(u) ∧ ¬U(v))

Theorem (Fagin)

CONNECTIVITY is not expressible in ∃MSO.

We will prove it next, using games.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 33 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

MSO

Theorem

CONNECTIVITY is expressible in ∀MSO.

how??
∀U∀x∀y ((U(x) ∧ ¬U(y)) → ∃u∃vE(u, v) ∧U(u) ∧ ¬U(v))

Theorem (Fagin)

CONNECTIVITY is not expressible in ∃MSO.

We will prove it next, using games.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 33 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

MSO

Theorem

CONNECTIVITY is expressible in ∀MSO.

how??
∀U∀x∀y ((U(x) ∧ ¬U(y)) → ∃u∃vE(u, v) ∧U(u) ∧ ¬U(v))

Theorem (Fagin)

CONNECTIVITY is not expressible in ∃MSO.

We will prove it next, using games.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 33 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Games for ∃MSO

The (r , k)-Ajtai-Fagin game for ∃MSO and a problem P is the following:

Duplicator picks a structure A that satisfies P.

Spoiler picks r unary relations UA
1 , . . . ,U

A
r on A.

Duplicator picks a structure B that does not satisfy P.

Duplicator picks UB
1 , . . . ,U

B
r in B.

Spoiler and Duplicator play an EF game with k pebbles on the
structures (A,UA

1 , . . . ,U
A
r ) and (B,UB

1 , . . . ,U
B
r ).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 34 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Games for ∃MSO

Lemma

If Duplicator wins the (r , k) game, then no EMSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof: Suppose ϕ = ∃U1⋯∃Urψ is such a sentence. Then:

A ⊧∃U1⋯∃Urψ

exists sets UA
1 , . . . ,U

A
r (A,UA

1 , . . . ,U
A
r ) ⊧ψ

(B,UB
1 , . . . ,U

B
r ) ⊧ψ

B ⊧ ∃U1⋯∃Urψ

where (B,UB
1 , . . . ,U

B
r ) is the structure chosen by the duplicator. This is a

contradiction, since B does not satisfy P.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 35 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Games for ∃MSO

Lemma

If Duplicator wins the (r , k) game, then no EMSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof: Suppose ϕ = ∃U1⋯∃Urψ is such a sentence. Then:

A ⊧∃U1⋯∃Urψ

exists sets UA
1 , . . . ,U

A
r (A,UA

1 , . . . ,U
A
r ) ⊧ψ

(B,UB
1 , . . . ,U

B
r ) ⊧ψ

B ⊧ ∃U1⋯∃Urψ

where (B,UB
1 , . . . ,U

B
r ) is the structure chosen by the duplicator. This is a

contradiction, since B does not satisfy P.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 35 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 36 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Recursion

Several logics add recursion to FO, in order to express
CONNECTIVITY and similar queries.

The nicest way to describe these logics is using datalog.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 37 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Datalog

The vocabulary consists of two kinds of relation names:

EDB predicates = input relations R1,R2, . . .

IDB predicates = computed relations P1,P2, . . .

A datalog program is a set of rules of the form:

P(x , y , z , . . .) ←Body

where the Body is a conjunction of literals.
The rule is safe if every variable in the head occurs in some positive
relational literal.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 38 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Datalog by Example
Transitive closure:

T (x , y) ←R(x , y)
T (x , y) ←R(x , z),T (z , y)

Equivalent formulation in FO:

∀x∀yT (x , y) ←R(x , y)
∀x∀y∀zT (x , y) ←R(x , z) ∧T (z , y)

Also:

∀x∀yT (x , y) ←R(x , y)
∀x∀yT (x , y) ←∃z(R(x , z) ∧T (z , y))

A non-head variable is called an existential variable; e.g. z
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 39 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Datalog by Example
Transitive closure:

T (x , y) ←R(x , y)
T (x , y) ←R(x , z),T (z , y)

Equivalent formulation in FO:

∀x∀yT (x , y) ←R(x , y)
∀x∀y∀zT (x , y) ←R(x , z) ∧T (z , y)

Also:

∀x∀yT (x , y) ←R(x , y)
∀x∀yT (x , y) ←∃z(R(x , z) ∧T (z , y))

A non-head variable is called an existential variable; e.g. z
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 39 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Datalog by Example
Transitive closure:

T (x , y) ←R(x , y)
T (x , y) ←R(x , z),T (z , y)

Equivalent formulation in FO:

∀x∀yT (x , y) ←R(x , y)
∀x∀y∀zT (x , y) ←R(x , z) ∧T (z , y)

Also:

∀x∀yT (x , y) ←R(x , y)
∀x∀yT (x , y) ←∃z(R(x , z) ∧T (z , y))

A non-head variable is called an existential variable; e.g. z
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 39 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Datalog by Example
Transitive closure:

T (x , y) ←R(x , y)
T (x , y) ←R(x , z),T (z , y)

Equivalent formulation in FO:

∀x∀yT (x , y) ←R(x , y)
∀x∀y∀zT (x , y) ←R(x , z) ∧T (z , y)

Also:

∀x∀yT (x , y) ←R(x , y)
∀x∀yT (x , y) ←∃z(R(x , z) ∧T (z , y))

A non-head variable is called an existential variable; e.g. z
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 39 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = ∅, compute
iteratively until fixpoint.

E.g. Transitive closure:T0 =∅
Ti+1 ={(x , y) ∣ R(x , y) ∨ (∃z(R(x , z) ∧Ti(z , y)))}

i Ti

0 ∅
1 (1,2), (2,3), (2,4), (4,2), (3,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
3 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 40 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = ∅, compute
iteratively until fixpoint.
E.g. Transitive closure:

T0 =∅
Ti+1 ={(x , y) ∣ R(x , y) ∨ (∃z(R(x , z) ∧Ti(z , y)))}

1 2 3

4 5

i Ti

0 ∅
1 (1,2), (2,3), (2,4), (4,2), (3,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
3 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 40 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = ∅, compute
iteratively until fixpoint.
E.g. Transitive closure:

T0 =∅
Ti+1 ={(x , y) ∣ R(x , y) ∨ (∃z(R(x , z) ∧Ti(z , y)))}

1 2 3

4 5

i Ti

0 ∅
1 (1,2), (2,3), (2,4), (4,2), (3,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
3 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 40 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Datalog can express some cool queries (try at home; may need ¬):
▸ Same generation: if G = (V ,E) is a tree, find pairs of nodes x , y in the

same generation (same distance to the root)
▸ Given G find tuples (x , y ,u, v) s.t. d(x , y) = d(u, v) (same distance).
▸ Check if G is a totally balanced tree.

But it cannot express some trivial queries:
▸ Is ∣E ∣ even?
▸ Is ∣A∣ ≤ ∣B ∣ ? (Homework)

To prove inexpressibility results for datalog we will show that it is a
subset of a much more powerful logic, Lω∞ω, then describe pebble
games for it.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 41 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 42 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 42 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 42 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 42 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 42 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 43 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 44 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 45 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 45 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 45 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 45 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 45 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games: Discussion

An equivalent formulation is that the spoiler never removes, but
instead “moves” a pebble from one position to another (possibly on
the other structure).

It suffices to check partial isomorphism only when all k pebbles are
placed on the structures why?

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 46 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Main Theorem of Pebble Games

1 A ≈k∞ω B denotes: duplicator wins the k-pebble game.

2 A ≡k∞ω B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ Lk∞ω
3 A ≡kFO B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ FOk .

Theorem

1 and 2 are equivalent. When A,B are finite, then 1, 2, 3 are equivalent.

We will prove shortly, but first some examples.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 47 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: Total Order Ln = ([n],<)
We cannot distinguish Lm,Ln in FO[r] (quantifier rank r), when
m,n ≥ 2r − 1. But we can in FO2 (two variables).

Proposition

If m ≠ n then Lm /≡2
FO Ln.

Proof. Define6 ϕ0(x) def= T , ϕp+1(x) def= ∃y((x < y) ∧ ϕp(y)).

ϕ1(x) =∃y(x < y) ϕ2(x) = ∃y(x < y ∧ (∃x(y < x)))
ϕ3(x) =∃y(x < y ∧ (∃x(y < x ∧ ∃y(x < y)))) . . .

what does ϕp(x) say?

Let ψp
def= ∃xϕp(x) ∧ ¬∃xϕp+1(x). Then Lm ⊧ ψm, Ln /⊧ ψm, ψm ∈ FO2.

6Switching x and y is a bit informal. Formally, we could set

ϕp+1(x)
def
= ∃y(x < y ∧ ∃x(x = y ∧ ϕp(x))). Others ways are possible (without using =).
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 48 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: Total Order Ln = ([n],<)
We cannot distinguish Lm,Ln in FO[r] (quantifier rank r), when
m,n ≥ 2r − 1. But we can in FO2 (two variables).

Proposition

If m ≠ n then Lm /≡2
FO Ln.

Proof. Define6 ϕ0(x) def= T , ϕp+1(x) def= ∃y((x < y) ∧ ϕp(y)).

ϕ1(x) =∃y(x < y) ϕ2(x) = ∃y(x < y ∧ (∃x(y < x)))
ϕ3(x) =∃y(x < y ∧ (∃x(y < x ∧ ∃y(x < y)))) . . .

what does ϕp(x) say?

Let ψp
def= ∃xϕp(x) ∧ ¬∃xϕp+1(x). Then Lm ⊧ ψm, Ln /⊧ ψm, ψm ∈ FO2.

6Switching x and y is a bit informal. Formally, we could set

ϕp+1(x)
def
= ∃y(x < y ∧ ∃x(x = y ∧ ϕp(x))). Others ways are possible (without using =).
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 48 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: Total Order Ln = ([n],<)
We cannot distinguish Lm,Ln in FO[r] (quantifier rank r), when
m,n ≥ 2r − 1. But we can in FO2 (two variables).

Proposition

If m ≠ n then Lm /≡2
FO Ln.

Proof. Define6 ϕ0(x) def= T , ϕp+1(x) def= ∃y((x < y) ∧ ϕp(y)).

ϕ1(x) =∃y(x < y) ϕ2(x) = ∃y(x < y ∧ (∃x(y < x)))
ϕ3(x) =∃y(x < y ∧ (∃x(y < x ∧ ∃y(x < y)))) . . .

what does ϕp(x) say?

Let ψp
def= ∃xϕp(x) ∧ ¬∃xϕp+1(x). Then Lm ⊧ ψm, Ln /⊧ ψm, ψm ∈ FO2.

6Switching x and y is a bit informal. Formally, we could set

ϕp+1(x)
def
= ∃y(x < y ∧ ∃x(x = y ∧ ϕp(x))). Others ways are possible (without using =).
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 48 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: Total Order Ln = ([n],<)
We cannot distinguish Lm,Ln in FO[r] (quantifier rank r), when
m,n ≥ 2r − 1. But we can in FO2 (two variables).

Proposition

If m ≠ n then Lm /≡2
FO Ln.

Proof. Define6 ϕ0(x) def= T , ϕp+1(x) def= ∃y((x < y) ∧ ϕp(y)).

ϕ1(x) =∃y(x < y) ϕ2(x) = ∃y(x < y ∧ (∃x(y < x)))
ϕ3(x) =∃y(x < y ∧ (∃x(y < x ∧ ∃y(x < y)))) . . .

what does ϕp(x) say?

Let ψp
def= ∃xϕp(x) ∧ ¬∃xϕp+1(x). Then Lm ⊧ ψm, Ln /⊧ ψm, ψm ∈ FO2.

6Switching x and y is a bit informal. Formally, we could set

ϕp+1(x)
def
= ∃y(x < y ∧ ∃x(x = y ∧ ϕp(x))). Others ways are possible (without using =).
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 48 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: EVEN

“Graph G has an EVEN number of nodes” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let7 Gn
def= ([n],∅).

Prove (in class): if n ≥ k then Gn ∼k∞ω Gn+1.

“Graph G has an EVEN number of edges” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let8 Kn
def= ([n], [n] × [n]).

Prove in class: if n ≥ k then Kn ∼k∞ω Kn+1.

7Empty graph.
8Complete graph.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 49 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: EVEN

“Graph G has an EVEN number of nodes” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let7 Gn
def= ([n],∅).

Prove (in class): if n ≥ k then Gn ∼k∞ω Gn+1.

“Graph G has an EVEN number of edges” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let8 Kn
def= ([n], [n] × [n]).

Prove in class: if n ≥ k then Kn ∼k∞ω Kn+1.

7Empty graph.
8Complete graph.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 49 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: EVEN

“Graph G has an EVEN number of nodes” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let7 Gn
def= ([n],∅).

Prove (in class): if n ≥ k then Gn ∼k∞ω Gn+1.

“Graph G has an EVEN number of edges” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let8 Kn
def= ([n], [n] × [n]).

Prove in class: if n ≥ k then Kn ∼k∞ω Kn+1.

7Empty graph.
8Complete graph.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 49 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: EVEN

“Graph G has an EVEN number of nodes” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let7 Gn
def= ([n],∅).

Prove (in class): if n ≥ k then Gn ∼k∞ω Gn+1.

“Graph G has an EVEN number of edges” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let8 Kn
def= ([n], [n] × [n]).

Prove in class: if n ≥ k then Kn ∼k∞ω Kn+1.

7Empty graph.
8Complete graph.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 49 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Main Theorem of Pebble Games

1 A ≈k∞ω B denotes: duplicator wins the k-pebble game.

2 A ≡k∞ω B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ Lk∞ω
3 A ≡kFO B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ FOk .

Theorem

1 and 2 are equivalent. When A,B are finite, then all are equivalent.

We will prove:

1 A ≈k∞ω B implies A ≡k∞ω B.

2 A ≡k∞ω B implies A ≡kFO B (this is obvious!).

3 A ≡kFO B implies A ≈k∞ω B.

The proof is almost identical to the EF-games! (Good that we covered
that.)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 50 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 51 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡k∞ω B implies A ≡kFO B

(obvious)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 52 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Describing Winning Strategies
A winning strategy for the duplicator is precisely a set I of partial
isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if I ≠ ∅ and:

(Stronger than in EF games!) If ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
removing any pebble j still leaves them in I:

((a1, . . . , aj−1, aj+1, . . . , ai), (b1, . . . ,bj−1,bj+1, . . . ,bi)) ∈ I

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 53 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Describing Winning Strategies
A winning strategy for the duplicator is precisely a set I of partial
isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if I ≠ ∅ and:

(Stronger than in EF games!) If ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
removing any pebble j still leaves them in I:

((a1, . . . , aj−1, aj+1, . . . , ai), (b1, . . . ,bj−1,bj+1, . . . ,bi)) ∈ I

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 53 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Fix A and a = (a1, . . . , am) ∈ Am. The Lk∞ω and the FOk types are:

tpk
∞ω(A,a) ={ϕ(x1, . . . , xm) ∈ Lk∞ω ∣ A ⊧ ϕ(a1, . . . , am)}

tpk
FO(A,a) ={ϕ(x1, . . . , xm) ∈ FOk ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

Both sets are complete same as for EF

There are infinitely many types of both kinds different from EF

The pebble-games theorem implies: on finite structures,
tpk
∞ω(A,a) = tpk

∞ω(B,b) iff tpk
FO(A,a) = tpk

FO(B,b) surprising!

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 54 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Types

Fix k and m.

Definition

Fix A and a = (a1, . . . , am) ∈ Am. The Lk∞ω and the FOk types are:

tpk
∞ω(A,a) ={ϕ(x1, . . . , xm) ∈ Lk∞ω ∣ A ⊧ ϕ(a1, . . . , am)}

tpk
FO(A,a) ={ϕ(x1, . . . , xm) ∈ FOk ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

Both sets are complete same as for EF

There are infinitely many types of both kinds different from EF

The pebble-games theorem implies: on finite structures,
tpk
∞ω(A,a) = tpk

∞ω(B,b) iff tpk
FO(A,a) = tpk

FO(B,b) surprising!

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 54 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 55 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

If two finite structures can be distinguished by Lk∞ω, then they can
already be distinguished by FOk .

Positions in the pebble game are captured by FOk -types, which are
the same as Lk∞ω types.

Don’t confuse FOk m-types tpk
FO with rank r m-types tpr ,m, which

refer to FO[r]. (Notation sucks.)

Every type tpr ,m contains a finite number of formulas: hence their
conjunction is a formula that fully characterizes the type.

Every type tpk
FO has infinitely many formulas. Still, we will prove

(next) that each type is fully described by one formula in FOk .

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 56 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk-Type Formula

Recall: an FOk m-type is:

tpk
FO(A,a) def= {ϕ(x1, . . . , xm) ∈ FOk ∣ A ⊧ ϕ(a1, . . . , am)}.

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

If τ were finite, then could take ψτ = ⋀ϕ∈τ ϕ
But τ is finite, and the proof is much more subtle.

Before the proof, an application.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 57 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 58 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Theorem says: every FOk type τ , is described (on finite structures)
by one formula ψτ ∈ FOk .

If we restricted the quantifier rank, then τ is finite and we take
ψτ = ⋀ϕ∈τ ϕ.

But quantifier rank of formulas in τ is unbounded (and τ is infinite).

Yet τ is described by one formula, with some fixed quantifier rank.
What is qr(ψτ)?
(How do we get from the infinite τ a finite bound for qr(ψτ)?)

Answer: we assume τ is satisfied by some finite structure (B,b); this
will give us the desired finite rank.

If τ is not satisfiable in the finite, then simply take ψτ = F .
We assume F is an FOk type.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 59 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Theorem says: every FOk type τ , is described (on finite structures)
by one formula ψτ ∈ FOk .

If we restricted the quantifier rank, then τ is finite and we take
ψτ = ⋀ϕ∈τ ϕ.

But quantifier rank of formulas in τ is unbounded (and τ is infinite).

Yet τ is described by one formula, with some fixed quantifier rank.
What is qr(ψτ)?
(How do we get from the infinite τ a finite bound for qr(ψτ)?)

Answer: we assume τ is satisfied by some finite structure (B,b); this
will give us the desired finite rank.

If τ is not satisfiable in the finite, then simply take ψτ = F .
We assume F is an FOk type.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 59 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk-Type Formula

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Proof plan. Fix a structure (B,b) s.t. τ = tpk
FO(B,b).

Types of quantifier-rank r = 1,2,3, . . . reach a fixpoint on B for r = R.

Then ψτ(x) will says two things:
1 TYPER(x): “x has the R,m-type of (B,b)” and,
2 DONER : “every R + 1,m-type is some R,m type”

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 60 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)

Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.

The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.

The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.

Bm

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.

The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.

Bm

!1,r

!2,r

!3,r
!4,r

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .

Since B is finite, the refinement stops at some R.

Bm

!1,r

!2,r

!3,r
!4,r

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .

Since B is finite, the refinement stops at some R.

Bm

!1,r

!2,r

!3,r
!4,r

!1,r+1

!2,r+1

!3,r+1

!4,r+1

!5,r+1

!6,r+1
!7,r+1 !8,r+1

!9,r+1

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.
Bm

!1,r

!2,r

!3,r
!4,r

!1,r+1

!2,r+1

!3,r+1

!4,r+1

!5,r+1

!6,r+1
!7,r+1 !8,r+1

!9,r+1

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)
Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.
Bm

!1,r

!2,r

!3,r
!4,r

!1,r+1

!2,r+1

!3,r+1

!4,r+1

!5,r+1

!6,r+1
!7,r+1 !8,r+1

!9,r+1

b

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 61 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining DONER

Every rank r + 1 type refines some rank r type: ∀j∃ij ,
⊧ ∀x(ϕj ,r+1(x) → ϕij ,r(x))

In B, this becomes an equivalence at rank R:
B ⊧ ∀x(ϕj ,R+1(x) ↔ ϕij ,R(x))

Define: DONER
def= ⋀j=1,nR+1

∀x(ϕj ,R+1(x) ↔ ϕij ,R(x)) .

Assuming DONER , every rank r > R is equivalent to some rank R:

Lemma

If r > R, then ∀j∃ij s.t. DONER ⊧ ⋀j=1,nr ∀x(ϕj ,r(x) ↔ ϕij ,R(x))

proof in class (also on next slide)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 62 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining DONER

Every rank r + 1 type refines some rank r type: ∀j∃ij ,
⊧ ∀x(ϕj ,r+1(x) → ϕij ,r(x))

In B, this becomes an equivalence at rank R:
B ⊧ ∀x(ϕj ,R+1(x) ↔ ϕij ,R(x))

Define: DONER
def= ⋀j=1,nR+1

∀x(ϕj ,R+1(x) ↔ ϕij ,R(x)) .

Assuming DONER , every rank r > R is equivalent to some rank R:

Lemma

If r > R, then ∀j∃ij s.t. DONER ⊧ ⋀j=1,nr ∀x(ϕj ,r(x) ↔ ϕij ,R(x))

proof in class (also on next slide)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 62 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining DONER

Every rank r + 1 type refines some rank r type: ∀j∃ij ,
⊧ ∀x(ϕj ,r+1(x) → ϕij ,r(x))

In B, this becomes an equivalence at rank R:
B ⊧ ∀x(ϕj ,R+1(x) ↔ ϕij ,R(x))

Define: DONER
def= ⋀j=1,nR+1

∀x(ϕj ,R+1(x) ↔ ϕij ,R(x)) .

Assuming DONER , every rank r > R is equivalent to some rank R:

Lemma

If r > R, then ∀j∃ij s.t. DONER ⊧ ⋀j=1,nr ∀x(ϕj ,r(x) ↔ ϕij ,R(x))

proof in class (also on next slide)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 62 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Defining DONER

Every rank r + 1 type refines some rank r type: ∀j∃ij ,
⊧ ∀x(ϕj ,r+1(x) → ϕij ,r(x))

In B, this becomes an equivalence at rank R:
B ⊧ ∀x(ϕj ,R+1(x) ↔ ϕij ,R(x))

Define: DONER
def= ⋀j=1,nR+1

∀x(ϕj ,R+1(x) ↔ ϕij ,R(x)) .

Assuming DONER , every rank r > R is equivalent to some rank R:

Lemma

If r > R, then ∀j∃ij s.t. DONER ⊧ ⋀j=1,nr ∀x(ϕj ,r(x) ↔ ϕij ,R(x))

proof in class (also on next slide)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 62 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Will show: every R +2 type is equivalent to some R type; induction follows.

ϕj ,R+2 ≡ϕj0,R+1 ∧ F (⋯∃x`ϕj ,R+1,⋯)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Boolean combination F
of all R + 1 types ϕj,R+1

plus one extra ∃x`

DONER asserts that each ϕj ,R+1 is equivalent to some ϕij ,R :

ϕj ,R+2 ≡ϕj0,R+1 ∧ F (⋯∃x`ϕij ,R ,⋯)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

quantifier rank R + 1

ϕj ,R+2 ≡ϕj0,R+1 or ϕj ,R+2 ≡F why?

Assuming DONER , we have ϕj0,R+1 ≡ ϕij0 ,R
.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 63 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x) ←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 64 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Recap

Recap: a “type” τ is a maximally consistent set of formulas with m
free variables, from some language (e.g. FO[r] or FOk or FOk[r]).

Equivalently, a “type” τ is the set of formulas that satisfy some
(A,a) (where ∣a∣ = m).

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 65 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Can we describe a type τ using a single formula?

FO[r] has finitely many formulas. Hence, a type is uniquely described
by their conjunction, ϕr ,m.

FOk has infinitely many formulas. The theorem says that,
surprisingly(!), we can still describe it by a single formula ψτ , but only
on finite structures.

What is the quantifier rank of ψτ? Since τ is satisfied by some finite
structure, its rank r is the smallest needed to express it in that
structure.

ψτ is ϕr ,m AND the assertion that this rank is sufficient.

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 66 / 66


	Introduction
	Games for FO
	Games for MSO
	Games for Recursion
	FOk Types

