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Libkin, Finite Model Theory, Chapt. 3, 4, 11.
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Where Are We

Classical model theory is concerned with truth, D ⊧ ϕ, and its
implications.

Finite model theory is concerned with:

▸ Expressibility: which classes of finite structures can be expressed in a
given logic.

▸ Computability: connection between computational complexity and
expressibility in that logic.

▸ (Asymptotic) probabilities: study the probability (asymptotic or not) of
a sentence.
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Unit 2: Expressibility

Ehrenfeuched-Fraisse Games

Infinitary logics and Pebble Games
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The Expressibility Problem

Given a property P, can it be expressed in a logic L?

Example properties: CONNECTIVITY, EVEN, PLANARITY.

Example logics: FO, SO, FO+fixpoint, Datalog.
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Example 1: EVEN

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of nodes. In class

Impossible! µn(ϕ) = 0 when n = odd, µn(ϕ) = 1 when n = even, violates
0/1-law.

Find a sentence ϕ s.t. G ⊧ ϕ iff G has an even number of edges.
The 0/1 law no longer helps.
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Example 2: CONNECTED

G = (V ,E) is connected1 if forall a,b ∈ V there exists a path a →∗ b.

Find an FO sentence ψ s.t. G ⊧ ψ iff G is connected.

∀x∀yE(x , y)?
∀x∀y∃z(E(x , z) ∧ E(z , y))?
. . .
Impossible! Let’s prove that.

1The correct term is strongly connected.
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Example 2: CONNECTED

Suppose G ⊧ ψ iff G is connected.

Fix two fresh constants c ,d , and, forall n ≥ 1, define:

ϕn =(¬(∃z1⋯∃zn(E(c , z1) ∧ E(z1, z2) ∧⋯ ∧ E(zn,d))))

It says “c ,d are not connected by any path of length n”.

Σ
def= {ψ} ∪ {ϕn ∣ n ≥ 1} is finitely satisfiable why?

By Compactness, Σ has a model G

On one hand G ⊧ ψ hence it is connected, on the other hand c ,d are not
connected in G , contradiction.

But is Connectivity expressible over finite graphs? This proof does not
answer it.
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Isomorphism

Assume a relational vocabulary σ = (R1, . . . ,Rk , c1, . . . , cm) (no functions).
Fix A = (A,RA

1 , . . . ,R
A
k , c

A
1 , . . . , c

A
m), B = (B,RB

1 , . . . ,R
B
k , c

B
1 , . . . , c

B
m).

Definition

An isomorphism f ∶ A→ B is a bijection A→ B such that:

Forall R ∈ σ, (a1, . . . , ak) ∈ RA iff (f (a1), . . . , f (ak)) ∈ RB .

Forall c ∈ σ, f (cA) = cB .

We write A ≃ B if there exists an isomorphism A→ B.

Remark: if A ≃ B then for any sentence ϕ in a “reasonable” logics (like
FO, or extensions), A ⊧ ϕ iff B ⊧ ϕ.
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Elementary Equivalence

Definition

A and B are elementary equivalent if forall ϕ, A ⊧ ϕ iff B ⊧ ϕ.

We write A ≡ B.

Isomorphisms implies elementary equivalence: if A ≃ B then A ≡ B.

Over the finite structures, the converse holds too: if A ≡ B, then A ≃ B.

We cannot find two finite graphs, one connected and one disconnected,
that are elementary equivalent!
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Partial Isomorphism
Fix a relational vocabulary σ: relations Ri , constants cj .
Let A,B be two σ-structures.

Definition

A partial isomorphism is a pair a,b, where a = (a1, , . . . , ak) ∈ Ak ,
b = (b1, . . . ,bk) ∈ Bk s.t. the substructuresa A∣a, B ∣b are isomorphic via:

∀i , ai ↦bi ∀j , cAj ↦ cBj

aA∣a consists of the universe {a1, . . . , ak , c
A
1 , . . . , c

A
m}.

We write a ≃ b.
In other words:

Forall i , j , ai = aj iff bi = bj . (Equality is preserved.)
Forall i , j , ai = cAj iff bi = cBj . (Constants are preserved.)

(t1, . . . , tn) ∈ RA where each ti is either some aj or cAj , iff

(t ′1, . . . , t ′n) ∈ RB where t ′i is bj or cBj respectively.
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Ehrenfeucht-Fraisse Games

There are two players, spoiler and duplicator.
They play on two structures A,B in k rounds, i = 1, . . . , k .

Round i :

Spoiler places his pebble i on an element ai ∈ A or bi ∈ B.

Duplicator places her pebble i on an element bi ∈ B or ai ∈ A.

Let a = (a1, . . . , ak), b = (b1, . . . ,bk) be the pebbles at the end of the
game.
Duplicator wins if a,b forms a partial isomorphism; otherwise Spoiler wins.

Definition

We write A ∼k B if the duplicator has a winning strategy for k rounds.
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Ehrenfeucht-Fraisse Games: Main Result

The quantifier rank of a formula ϕ is defined inductively2:

qr(F) =qr(t1 = t2) = qr(R(t1, . . . , tm)) = 0

qr(ϕ→ ψ) =max(qr(ϕ),qr(ψ))
qr(∀x(ϕ)) =1 + qr(ϕ)

FO[k] def= FO restricted to formulas with qr ≤ k.

Theorem (Ehrenfeucht-Fraisse)

A ≡k B (meaning: they agree on FO[k]) iff A ∼k B.

We will prove it later. First, let’s see examples.

2The number of quantifiers can be exponentially larger than qr(ϕ) why?
Dan Suciu Finite Model Theory – Unit 2 Spring 2018 14 / 66
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Ehrenfeucht-Fraisse on Total Orders

Let Lk = ({1,2, . . . , k},<).

Play the Ehrenfeucht-Fraisse game on L6,L7 using k = 2 pebbles:

L6

L7
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L6
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a1
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∀x1∀x2(x2 < x1 → //L<x1
6 is small

(∀x3¬(x3 < x2)
∨ ∀x3¬(x2 < x3 < x1)))

∨∀x2(x2 > x1 → //L>x1
6 is small

(∀x3¬(x3 > x2)
∨ ∀x3¬(x1 < x3 < x2)))
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Ehrenfeucht-Fraisse on Total Orders

Let Lm = ({1,2, . . . ,m},<).

L<am
def= {x ∈ Lm ∣ x < a} L>am

def= {x ∈ Lm ∣ x < a}

Lemma

If L<am ∼k L<bn and L>am ∼k L>bn (duplicator wins), then Lm ∼k Ln.

Proof.

If spoiler places pebble in L<am then duplicator answers in L<bn .

If spoiler places pebble in L>am then duplicator answers in L>bn .

If spoiler places pebble on a then duplicator places pebble on b.

If spoiler plays in the other structure, duplicator answers similarly.

If L<am ∣c ≃ L<bn ∣d and L>am ∣c ≃ L>bn ∣d (partial isomorphisms), then c ≃ d
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Theorem

Let m,n, k be positive integers. The following are equivalent:

Lm ∼k Ln

m = n or both m ≥ 2k − 1 and n ≥ 2k − 1

Proof. If m,n ≥ 2k − 1, duplicator has winning strategy. Spoiler plays
a ∈ Lm.

Case 1: ∣L<am ∣ < 2k−1 − 1 (What do we do?)
Duplicator chooses b s.t. L<am ≃ L<bn (i.e. isomorphic). Then:
∣L>am ∣, ∣L>bn ∣ > 2k−1 − 1 (why?), L>am ∼k−1 L>bn (why?), Lm ∼k Ln (lemma).
Case 2: ∣L>am ∣ < 2k−1 − 1 Symmetric:
Duplicator chooses b s.t. L>am ≃ L>bn (i.e. isomorphic). Then:
∣L<am ∣, ∣L<bn ∣ > 2k−1 − 1, L<am ∼k−1 L<bn , hence Lm ∼k Ln (lemma).
Case 3: both ∣L<am ∣, ∣L>am ∣ ≥ 2k−1 − 1 (Is this possible?)
Duplicator chooses any b s.t. ∣L<bn ∣, ∣L>bn ∣ ≥ 2k−1 − 1. Then:
∣L<am ∣, ∣L<bn ∣, ∣L>am ∣, ∣L>bn ∣ ≥ 2k−1 − 1;L<am ∼k−1 L<bn ,L

>a
m ∼k−1 L>bn ;Lm ∼k Ln.
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Ehrenfeucht-Fraisse on Total Orders

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence ϕ s.t. (Ln,<) ⊧ ϕ iff n is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let ϕ be such a sentence, k
def= qr(ϕ). Choose n ≥ 2k − 1.

Then Ln ∼k Ln+1 hence Ln ⊧ ϕ iff Ln+1 ⊧ ϕ. Contradiction.
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Prove the converse at home: if m < 2k − 1 ≤ n then duplicator has a
winning strategy.

According to the EF theorem, if m < 2k − 1 ≤ n then there exists a
sentence ϕ ∈ FO[k] s.t. Lm ⊧ ϕ and Ln /⊧ ϕ. What is ϕ?

The Ehrenfeucht-Fraisse method for showing inexpressibility in FO is
this. For each k > 0 construct two structures Ak ,Bk then:

▸ Prove: Ak ∼k Bk .
▸ Prove: Ak has the property, Bk does not.

Proving ∼k : difficult in general. A sufficient condition: Hanf’s lemma.
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Example: CONNECTIVITY
Prove that duplicator has winning strategy with k = 3 pebbles (in class).

C12 C6 ∪ C6

Homework: spoiler has a winning strategy with k = 4 pebbles.
Describing and proving a winning strategy in general seems difficult.
Hanf’s lemma gives a sufficient condition for a winning strategy.
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The Gaifman Graph
Let A = (A,RA

1 ,R
A
2 , . . . ,R

A
m, c

A
1 , . . . , c

A
s ) be a structure.

Definition

The Gaifman graph is G(A) = (A,EA) where the edges are pairs (c ,d) s.t.
there exists a tuple (. . . , c , . . . ,d , . . .) ∈ RA

i or (. . . ,d , . . . , c, . . .) ∈ RA
i .

The Gaifman graph of a graph is obtained by forgetting the directions.

Definition

For a ∈ A and d ≥ 0, the d-neighborhood is

N(a,d) def= {b ∈ A ∣ d(a,b) ≤ d} ∪ {cA1 , . . . , cAs }.
The d-type of a is the isomorphism type of the substructure generated by
N(a,d) plus the constant a.

Definition

A,B are called d-equivalent if for each d-type they have the same number
of elements of that type.
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Hanf’s Lemma

Fagin, Stockmeyer, Vardi proved the following, building on earlier work by
Hanf:

Theorem

Let d ≥ 3k−1 − 1. If A,B are d-equivalent, then A ∼k B.

Note 1: Kolaitis requires d ≥ 3k−1 but defines “distance” s.t. d(a, a) = 1.
Note 2: this is only a sufficient condition, not necessary.
The proof exhibits a winning strategy for the duplicator. We omit the
proof.
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Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)?

C12 C6 ∪ C6

a
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Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 23 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Example: CONNECTIVITY (continued)
Fix k = 2 and d = 2(= 3k−1 − 1).
What is N(a,d)? What is N(b,d)?
What is their type? Structures of the form x − x − ∗ − x − x
How many elements of this type are there in each structure?

C12 C6 ∪ C6

a

N(a,2)
b

N(b,2)
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Prove: for every k
there exists n s.t. du-
plicator has a win-
ning strategy on C2n

and Cn ∪ Cn
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Example: CONNECTIVITY (continued)
A much simpler proof using an FO-reduction.
Assume ϕ expresses connectivity of a graph G = (V ,E). Then we write a
sentence ψ s.t. (Ln,<) ⊧ ψ iff (Ln+1,<) /⊧ ψ.

In (Lm,<) define: E
def= {(i , i + 2) ∣ 1 ≤ i ≤ m − 2} ∪ {(m − 1,1), (m,2)}

how?.

L6

L7
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def= {(i , i + 2) ∣ 1 ≤ i ≤ m − 2} ∪ {(m − 1,1), (m,2)}

how?.

L6

L7

If m is even then G is disconnected.

If m is odd, then G is connected.
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Discussion

The total oders (Lm,<) are an isolated case when we can completely
characterize when the duplicator has a winning strategy. Useful to
reduce other problems to total orders, when possible.

What happends if we replace (m − 1,1), (m,2) with only (m − 1,2)?
(Useful in the homework).

Hanf’s lemma is only a sufficient condition; still useful in many cases.

Next: prove the Ehrenfeucht-Fraisse theorem.
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Proof of EF Theorem: Part 1

If A ∼k B then A ≡k B. Induction on k .

k = 0. A ϕ ∈ FO[0] is a Boolean combination of atoms R(c1, . . . , ck).
A ≡0 B implies RA(cA1 , . . . , cAk ) iff RB(cB1 , . . . , cBk ).
Hence A ⊧ ϕ iff B ⊧ ϕ.

k > 0. Prove by induction on ϕ ∈ FO[k] that A ⊧ ϕ iff B ⊧ ϕ.

▸ Assume A ⊧ ∃xψ(x), then there exists a ∈ A s.t. A ⊧ ψ(a).
When spoiler plays a, duplicator replies with b ∈ B.
Thus3, (A, a) ∼k−1 (B,b), thus, (A, a) ≡k−1 (B,b) (induction on k).
This implies B ⊧ ψ(b), and B ⊧ ∃xψ(x).

▸ Assume A ⊧ ϕ1 ∧ ϕ2. Then A ⊧ ϕ1 and A ⊧ ϕ2,
hence B ⊧ ϕ1 and B ⊧ ϕ2 (induction on ϕ).
This implies B ⊧ ϕ1 ∧ ϕ2.

▸ Etc

3Structures extended with one more constant
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Describing Winning Strategies

Fix A,B.
What is a “strategy” of the duplicator?
It is precisely a set I of partial isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if:

((), ()) ∈ I (it contains the empty partial isomorphism).

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.
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Types

Fix k and m.

Definition

Let A be a structure, a def= (a1, . . . , am) ∈ Am. The rank k m-type of a is:

tpk,m(A,a) ={ϕ(x1, . . . , xm) ∈ FO[k] ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

tpk,m(A,a) is complete:
forall ϕ ∈ FO[k] either ϕ ∈ tpk,m(A,a) or ¬ϕ ∈ tpk,m(A,a) why?

For all k ,m there are only finitely many k,m-types why?

There exists a single formula ϕA,a
k,m (the “type” of a) s.t. forall B,b,

tpk,m(A,a) = tpk,m(B,b) iff B ⊧ ϕA,a
k,m(b). why?
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Proof of EF Theorem: Part 2
If A ≡k B then A ∼k B.

Define I = {(a,b) ∣ tpk−i ,i(A,a) = tpk−i ,i(B,b), where i
def= ∣a∣ = ∣b∣}

Then ((), ()) ∈ I why? Because A ≡k B, hence tpk,0(A, ()) = tpk,0(B, ()).
Let i < k and suppose a = (a1, . . . , ai), b = (b1, . . . ,bi) are s.t. (a,b) ∈ I.

Forth property. Let a ∈ A and a′ def= (a1, . . . , ai , a).

For any b ∈ B, define b′ def= (b1, . . . ,bi ,b).
Suppose tpk−i−1,i+1(A,a′) ≠ tpk−i−1,i+1(B,b′).
Let ϕb(x1, . . . , xi , y) ∈ FO[k − i − 1] be s.t.

A ⊧ϕb(a1, . . . , ai , a) B /⊧ϕb(b1, . . . ,bi ,b)

Then A ⊧ ψ(a) and B /⊧ ψ(b) for ψ
def= ∃y ⋀b ϕb(x1, . . . , xi , y).

Since ψ ∈ FO[k − i], it contradicts tpk−i ,i(A,a) = tpk−i ,i(B,b).

Back property. Similar.
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Discussion

Ehrenfeucht-Fraisse games can be applied to infinite structures as
well! If A ≡k B forall k ≥ 0, then A ≡ B.

EF games generalize to other logics to prove inexpressibility results.
We will discuss two:

▸ Inexpressibility for ∃MSO

▸ Inexpressibility for logics with recursion.
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Second Order Logic

Second Order Logic, SO, extends FO with 2nd order variables, which
range over relations.

Example4:

EVEN ≡∃U(∀x∃!y(x ≠ y) ∧U(x , y) ∧U(y , x))

Note: can always assume that 2nd order quantifiers come before 1st order
quantifiers why?

4
∃! means “exists and is unique”. write it in FO.
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Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be
unary relations.

∃MSO and ∀MSO further restrict the 2-nd order quantifiers to ∃ or to ∀
respectively.

Example:

3-COLORABILITY ≡ ∃R∃B∃G∀x(R(x) ∨B(x) ∨G(x))
∧∀x∀y(E(x , y)→ ¬(R(x) ∧ R(y)))
∧∀x∀y(E(x , y)→ ¬(G(x) ∧G(y)))
∧∀x∀y(E(x , y)→ ¬(B(x) ∧B(y)))
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MSO

Theorem

CONNECTIVITY is expressible in ∀MSO.

how??
∀U∀x∀y ((U(x) ∧ ¬U(y))→ ∃u∃vE(u, v) ∧U(u) ∧ ¬U(v))

Theorem (Fagin)

CONNECTIVITY is not expressible in ∃MSO.

We will prove it next, using games.
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Games for ∃MSO

The (r , k)-Ajtai-Fagin game for ∃MSO and a problem P is the following:

Duplicator picks a structure A that satisfies P.

Spoiler picks r unary relations UA
1 , . . . ,U

A
r on A.

Duplicator picks a structure B that does not satisfy P.

Duplicator picks UB
1 , . . . ,U

B
r in B.

Spoiler and Duplicator play an EF game with k pebbles on the
structures (A,UA

1 , . . . ,U
A
r ) and (B,UB

1 , . . . ,U
B
r ).
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Games for ∃MSO

Lemma

If Duplicator wins the (r , k) game, then no EMSO sentence with r 2-nd
order quantifiers and k 1-st order quantifiers can express P.

Proof: Suppose ϕ = ∃U1⋯∃Urψ is such a sentence. Then:

A ⊧∃U1⋯∃Urψ

exists sets UA
1 , . . . ,U

A
r (A,UA

1 , . . . ,U
A
r ) ⊧ψ

(B,UB
1 , . . . ,U

B
r ) ⊧ψ

B ⊧ ∃U1⋯∃Urψ

where (B,UB
1 , . . . ,U

B
r ) is the structure chosen by the duplicator. This is a

contradiction, since B does not satisfy P.
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Proof of Fagin’s Theorem

CONNECTIVITY is not expressible in ∃MSO.

Fix r , k . Let A be a cycle Cn; will choose n later “big enough”.

There are r unary relations, hence each v ∈ Cn has one of 2r colors.

For d = 3k−1 − 1, there are “a small number” of isomorphism types N(a,d)
Details: the number of types t is t ≤ (2r)2d+1 = 2r(2d+1).

If n is big, then we can find two elements u, v of the same type, at
distance d(u, v) ≥ 2d + 2.
Details: at least one type must occur ≥ n/t times; the first and the middle
one are at distance d(u, v) ≥ n/(2t). Simply choose n ≥ 2t(2d + 2)
“Cut” Cn at u,v and construct two cycles Cn1 (containing u) and Cn2

(containing v). Both n1,n2 > 2d + 1.

Finally: Cn is d-equivalent with Cn1 ∪ Cn2 , hence use Hanf’s lemma to
derive Cn ∼k (Cn1 ∪ Cn2).
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Recursion

Several logics add recursion to FO, in order to express
CONNECTIVITY and similar queries.

The nicest way to describe these logics is using datalog.
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Datalog

The vocabulary consists of two kinds of relation names:

EDB predicates = input relations R1,R2, . . .

IDB predicates = computed relations P1,P2, . . .

A datalog program is a set of rules of the form:

P(x , y , z , . . .)←Body

where the Body is a conjunction of literals.
The rule is safe if every variable in the head occurs in some positive
relational literal.
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Datalog by Example
Transitive closure:

T (x , y)←R(x , y)
T (x , y)←R(x , z),T (z , y)

Equivalent formulation in FO:

∀x∀yT (x , y)←R(x , y)
∀x∀y∀zT (x , y)←R(x , z) ∧T (z , y)

Also:

∀x∀yT (x , y)←R(x , y)
∀x∀yT (x , y)←∃z(R(x , z) ∧T (z , y))

A non-head variable is called an existential variable; e.g. z
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = ∅, compute
iteratively until fixpoint.

E.g. Transitive closure:T0 =∅
Ti+1 ={(x , y) ∣ R(x , y) ∨ (∃z(R(x , z) ∧Ti(z , y)))}

i Ti

0 ∅
1 (1,2), (2,3), (2,4), (4,2), (3,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5)
2 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
3 (1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
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Discussion

Datalog can express some cool queries (try at home; may need ¬):
▸ Same generation: if G = (V ,E) is a tree, find pairs of nodes x , y in the

same generation (same distance to the root)
▸ Given G find tuples (x , y ,u, v) s.t. d(x , y) = d(u, v) (same distance).
▸ Check if G is a totally balanced tree.

But it cannot express some trivial queries:
▸ Is ∣E ∣ even?
▸ Is ∣A∣ ≤ ∣B ∣ ? (Homework)

To prove inexpressibility results for datalog we will show that it is a
subset of a much more powerful logic, Lω∞ω, then describe pebble
games for it.
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

FOk

FOk is FO restricted to k variables x1, x2, . . . , xk .

Example “there exists two nodes connected by 10 edges” in FO3

∃x∃z(∃yE(x , y) ∧ ∃x(E(y , x) ∧ ∃y(E(x , y) ∧ . . .∃x(E(y , x) ∧ E(x , z)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reuse x

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse y

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
reuse x

)

Proposition

Consider a datalog program using k variables. Let Tn be an IDB relation
after n iterations. Then Tn ∈ FOk . why?

The datatlog program is equivalent to T0 ∨T1 ∨T2 ∨⋯
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Lω∞ω

Let α,β be ordinals5. The infinitary logic Lαβ is:

Atoms: xi = xj , R(⋯); ⋁
i∈I

ϕi ; (. . .∃xj . . .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j∈J

)ϕ; ¬ϕ

where ∣I ∣ < α, ∣J ∣ < β.

Lωω = FO; finite disjunctions, finite quantifier sequence.

L∞ω = infinite disjunction (no bound!), finite quantifier sequence.
Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class

Lk∞ω = the restriction to k variables.

Lω∞ω = ⋃k≥0 L
k
∞ω. What is ⋃k≥0 FO

k?

5An ordinal= isomorphism type of a well order. E.g. ω = {1,2,3, . . .}.
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Discussion

Any property P on finite structures can be expressed by in L∞ω why?
Let ϕA fully describes A. Then P is expressed by ⋁A⊧P ϕA.

Thus, L∞ω is too powerful to prove inexpressibility.

Lω∞ω is much weaker. We will show it cannot express EVEN.

Datalog ⊆ Lω∞ω why? Hence it cannot express EVEN.

Lk∞ω admits a normal form on finite structures: ϕ′ = ⋁i∈Nψi where
▸ ψi ∈ FOk , for i = 1,2, . . .
▸ For any finite structure, A ⊧ ϕ iff A ⊧ ϕ′.
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The k-Pebble Games

There are two structures A,B and 2k pebbles, labeled 1,1,2,2, . . . , k, k.

Initially both spoiler and duplicator have k pebbles in their hands; one of
each label. At each round, spoiler chooses one of these moves:

Place pebble i from his hand on A (or B); the duplicator must reply
by placing her pebble i on B (or A).

Remove pebble i from A (or B); duplicator must reply by removing
pebble i from B (or A).

There are infinitely many rounds. Duplicator wins if at each round the set
of pebbles on A and on B forms a partial isomorphism.
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

The k-Pebble Games: Discussion

An equivalent formulation is that the spoiler never removes, but
instead “moves” a pebble from one position to another (possibly on
the other structure).

It suffices to check partial isomorphism only when all k pebbles are
placed on the structures why?
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Main Theorem of Pebble Games

1 A ≈k∞ω B denotes: duplicator wins the k-pebble game.

2 A ≡k∞ω B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ Lk∞ω
3 A ≡kFO B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ FOk .

Theorem

1 and 2 are equivalent. When A,B are finite, then 1, 2, 3 are equivalent.

We will prove shortly, but first some examples.
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Example: Total Order Ln = ([n],<)
We cannot distinguish Lm,Ln in FO[r] (quantifier rank r), when
m,n ≥ 2r − 1. But we can in FO2 (two variables).

Proposition

If m ≠ n then Lm /≡2
FO Ln.

Proof. Define6 ϕ0(x) def= T , ϕp+1(x) def= ∃y((x < y) ∧ ϕp(y)).

ϕ1(x) =∃y(x < y) ϕ2(x) = ∃y(x < y ∧ (∃x(y < x)))
ϕ3(x) =∃y(x < y ∧ (∃x(y < x ∧ ∃y(x < y)))) . . .

what does ϕp(x) say?

Let ψp
def= ∃xϕp(x) ∧ ¬∃xϕp+1(x). Then Lm ⊧ ψm, Ln /⊧ ψm, ψm ∈ FO2.

6Switching x and y is a bit informal. Formally, we could set

ϕp+1(x)
def
= ∃y(x < y ∧ ∃x(x = y ∧ ϕp(x))). Others ways are possible (without using =).
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Example: EVEN

“Graph G has an EVEN number of nodes” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let7 Gn
def= ([n],∅).

Prove (in class): if n ≥ k then Gn ∼k∞ω Gn+1.

“Graph G has an EVEN number of edges” is not expressible in Lω∞ω.

Proof. Suppose ϕ ∈ Lk∞ω expresses it; let8 Kn
def= ([n], [n] × [n]).

Prove in class: if n ≥ k then Kn ∼k∞ω Kn+1.

7Empty graph.
8Complete graph.
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Main Theorem of Pebble Games

1 A ≈k∞ω B denotes: duplicator wins the k-pebble game.

2 A ≡k∞ω B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ Lk∞ω
3 A ≡kFO B denotes: A ⊧ ϕ iff B ⊧ ϕ, forall ϕ ∈ FOk .

Theorem

1 and 2 are equivalent. When A,B are finite, then all are equivalent.

We will prove:

1 A ≈k∞ω B implies A ≡k∞ω B.

2 A ≡k∞ω B implies A ≡kFO B (this is obvious!).

3 A ≡kFO B implies A ≈k∞ω B.

The proof is almost identical to the EF-games! (Good that we covered
that.)

Dan Suciu Finite Model Theory – Unit 2 Spring 2018 50 / 66



Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

A ≈k∞ω B implies A ≡k∞ω B
Induction on k .

k = 0: same as for EF.

k > 0: same as for EF. We prove A ⊧ ϕ iff B ⊧ ϕ by induction9 on ϕ.

ϕ = ∃xψ. If A ⊧ ϕ, there is a ∈ A s.t. A ⊧ ψ(a).
We ask duplicator “what do you answer to a?”. She says b
Then (A, cA) ≈k−1

∞ω (B, cB) (structures with a new constant c) WHY?
(A, cA) ⊧ ψ(c)(∈ Lk−1

∞ω) implies (B, cB) ⊧ ψ(c) by induction on k .
Thus, B ⊧ ψ(b) and B ⊧ ∃x(ψ(x)).

If ϕ = ⋁i∈I ψi , then A ⊧ ϕ implies exists i ∈ I s.t. A ⊧ ψi .
By induction on ϕ, B ⊧ ψi , hence B ⊧ ϕ.

Etc.

9Transfinite induction! since ϕ ∈ Lk
∞ω
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A ≡k∞ω B implies A ≡kFO B

(obvious)
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Describing Winning Strategies
A winning strategy for the duplicator is precisely a set I of partial
isomorphisms (a,b) satisfying:

Definition

I has the back-and-forth property up to k if I ≠ ∅ and:

(Stronger than in EF games!) If ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
removing any pebble j still leaves them in I:

((a1, . . . , aj−1, aj+1, . . . , ai), (b1, . . . ,bj−1,bj+1, . . . ,bi)) ∈ I

Forth: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀a ∈ A,∃b ∈ B s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I
Back: forall i < k if ((a1, . . . , ai), (b1, . . . ,bi)) ∈ I then
∀b ∈ B,∃a ∈ A s.t. ((a1, . . . , ai , a), (b1, . . . ,bi ,b)) ∈ I

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms
with the back-and-forth property. Proof in class.
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Types

Fix k and m.

Definition

Fix A and a = (a1, . . . , am) ∈ Am. The Lk∞ω and the FOk types are:

tpk
∞ω(A,a) ={ϕ(x1, . . . , xm) ∈ Lk∞ω ∣ A ⊧ ϕ(a1, . . . , am)}

tpk
FO(A,a) ={ϕ(x1, . . . , xm) ∈ FOk ∣ A ⊧ ϕ(a1, . . . , am)}

Facts:

Both sets are complete same as for EF

There are infinitely many types of both kinds different from EF

The pebble-games theorem implies: on finite structures,
tpk
∞ω(A,a) = tpk

∞ω(B,b) iff tpk
FO(A,a) = tpk

FO(B,b) surprising!
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A ≡kFO B implies A ≈k∞ω B
Define I = {(a,b) ∣ ∣a∣ = ∣b∣ ≤ k , tpk

FO(A,a) = tpk
FO(B,b)}

Then ((), ()) ∈ I same as for EF hence I ≠ ∅.

Removing pebbles: Suppose tpk
FO(A,a) = tpk

FO(B,b).
Let a′,b′ be a,b witout position j : then tpk

FO(A,a′) = tpk
FO(B,b′)

why? Because a formula ϕ(x1, . . . , xi) does not need to use xj .

Forth: Suppose tpk
FO(A,a) = tpk

FO(B,b), ∣a∣ = ∣b∣ < k . Let a ∈ A.
Claim: ∃b ∈ B s.t. tpk

FO(A, (a, a)) = tpk
FO(B, (b,b)). Otherwise:

∀b ∈ B,∃ϕb(x1, . . . , xi , y) ∈ FOk s.t. A ⊧ϕb(a, a) B /⊧ϕb(b,b)
∀b ∈ B, A ⊧ ⋀

b′∈B

ϕb′(a, a) B /⊧ ⋀
b′∈B

ϕb′(b,b)

ψ
def= ∃y ⋀

b′∈B

ϕb′(x1, . . . , xi , y) then A ⊧ψ(a) B /⊧ψ(b)

ψ ∈ Lk∞ω or ∈ FOk when B is finite. Contradicts tpk
FO(A,a) = tpk

FO(B,b).

Back property: Similar.
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Discussion

If two finite structures can be distinguished by Lk∞ω, then they can
already be distinguished by FOk .

Positions in the pebble game are captured by FOk -types, which are
the same as Lk∞ω types.

Don’t confuse FOk m-types tpk
FO with rank r m-types tpr ,m, which

refer to FO[r]. (Notation sucks.)

Every type tpr ,m contains a finite number of formulas: hence their
conjunction is a formula that fully characterizes the type.

Every type tpk
FO has infinitely many formulas. Still, we will prove

(next) that each type is fully described by one formula in FOk .
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FOk-Type Formula

Recall: an FOk m-type is:

tpk
FO(A,a) def= {ϕ(x1, . . . , xm) ∈ FOk ∣ A ⊧ ϕ(a1, . . . , am)}.

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

If τ were finite, then could take ψτ = ⋀ϕ∈τ ϕ
But τ is finite, and the proof is much more subtle.

Before the proof, an application.
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Application: Normal Form for Lk∞ω

Corollary

Let ϕ ∈ Lk∞ω. Then there exists a sequence of formulas ψi ∈ FOk ,
i = 1,2, . . . s.t. ϕ ≡fin ψ1 ∨ ψ2 ∨ ψ3 ∨⋯

In other words, only one single countable ⋁ suffices to capture Lk∞ω.
Proof Let (Ai ,ai), i = 1,2,3, . . . be all finite structures s.t. Ai ⊧ ϕ(ai)
why only countably many?

Let τi = tpk
FO(Ai ,ai). Notice: ϕ ∈ τi forall i .

Claim: ϕ ≡fin ⋁i ψ
τi .

(1) if B ⊧ ϕ(b) then ∃i s.t. (B,b) = (Ai ,ai), hence B ⊧ ψτi (b).
(2) if B ⊧ ⋁i ψ

τi (b) then ∃i s.t. B ⊧ ψτi (b),
hence, by the Theorem, tpk

FO(B,b) = tpk
FO(Ai ,ai),

hence ϕ ∈ tpk
FO(B,b), hence B ⊧ ϕ(b).
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Introduction Games for FO Games for ∃MSO Games for Recursion FOk Types

Discussion

Theorem says: every FOk type τ , is described (on finite structures)
by one formula ψτ ∈ FOk .

If we restricted the quantifier rank, then τ is finite and we take
ψτ = ⋀ϕ∈τ ϕ.

But quantifier rank of formulas in τ is unbounded (and τ is infinite).

Yet τ is described by one formula, with some fixed quantifier rank.
What is qr(ψτ)?
(How do we get from the infinite τ a finite bound for qr(ψτ)?)

Answer: we assume τ is satisfied by some finite structure (B,b); this
will give us the desired finite rank.

If τ is not satisfiable in the finite, then simply take ψτ = F .
We assume F is an FOk type.
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FOk-Type Formula

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Proof plan. Fix a structure (B,b) s.t. τ = tpk
FO(B,b).

Types of quantifier-rank r = 1,2,3, . . . reach a fixpoint on B for r = R.

Then ψτ(x) will says two things:
1 TYPER(x): “x has the R,m-type of (B,b)” and,
2 DONER : “every R + 1,m-type is some R,m type”
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Defining TYPER(x)
For each quantifier rank r , there are finitely many, say nr , types.
Each is described by one formula: ϕ1,r , ϕ2,r , . . . , . . . , ϕnr ,r ∈ FOk[r].

(Note: every ϕ ∈ FOk[r] is a union of types ϕ = ⋁i ϕi ,r .)

Each ϕi ,r defines the equivalence class10 {c ∈ Bm ∣ B ⊧ ϕi ,r(c)}.
The equivalence classes for r + 1 are a refinement of those for r .
Since B is finite, the refinement stops at some R.

Define: TYPER(x) def= ϕi ,R(x)
where i = “the R-type of b”

Note: all types reach a fixpoint
at rank R, not just b

10Some equivalence classes are empty.
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Defining DONER

Every rank r + 1 type refines some rank r type: ∀j∃ij ,
⊧ ∀x(ϕj ,r+1(x)→ ϕij ,r(x))

In B, this becomes an equivalence at rank R:
B ⊧ ∀x(ϕj ,R+1(x)↔ ϕij ,R(x))

Define: DONER
def= ⋀j=1,nR+1

∀x(ϕj ,R+1(x)↔ ϕij ,R(x)) .

Assuming DONER , every rank r > R is equivalent to some rank R:

Lemma

If r > R, then ∀j∃ij s.t. DONER ⊧ ⋀j=1,nr ∀x(ϕj ,r(x)↔ ϕij ,R(x))

proof in class (also on next slide)
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Will show: every R +2 type is equivalent to some R type; induction follows.

ϕj ,R+2 ≡ϕj0,R+1 ∧ F (⋯∃x`ϕj ,R+1,⋯)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Boolean combination F
of all R + 1 types ϕj,R+1

plus one extra ∃x`

DONER asserts that each ϕj ,R+1 is equivalent to some ϕij ,R :

ϕj ,R+2 ≡ϕj0,R+1 ∧ F (⋯∃x`ϕij ,R ,⋯)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

quantifier rank R + 1

ϕj ,R+2 ≡ϕj0,R+1 or ϕj ,R+2 ≡F why?

Assuming DONER , we have ϕj0,R+1 ≡ ϕij0 ,R
.
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Proof of the Theorem

Theorem

For every FOk type m-type τ , there exist a formula ψτ ∈ FOk s.t., for any
finite structure A, (A,a) ⊧ ψτ iff tpk

FO(A,a) = τ .

Recall: τ =tpk
FO(B,b)

ψτ(x) =TYPER(x) ∧DONER

Assume tpk
FO(A,a) = τ ; by construction ψτ ∈ τ , hence (A,a) ⊧ ψτ .

Assume (A,a) ⊧ ψτ . Let ϕ ∈ tpk
FO(A,a) and r = max(qr(ϕ),R):

ϕ(x) =⋁
j

ϕj ,r(x) disjunction of some r -types

ϕ(x) =⋁
i

ϕi ,R(x) disjunction of some R-types (because A ⊧ DONEr )

ϕ(x)←TYPER(x) TYPER is an R-type

B ⊧ϕ(b) because the type of (B,b) is TYPER
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Recap

Recap: a “type” τ is a maximally consistent set of formulas with m
free variables, from some language (e.g. FO[r] or FOk or FOk[r]).

Equivalently, a “type” τ is the set of formulas that satisfy some
(A,a) (where ∣a∣ = m).
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Discussion

Can we describe a type τ using a single formula?

FO[r] has finitely many formulas. Hence, a type is uniquely described
by their conjunction, ϕr ,m.

FOk has infinitely many formulas. The theorem says that,
surprisingly(!), we can still describe it by a single formula ψτ , but only
on finite structures.

What is the quantifier rank of ψτ? Since τ is satisfied by some finite
structure, its rank r is the smallest needed to express it in that
structure.

ψτ is ϕr ,m AND the assertion that this rank is sufficient.
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