Finite Model Theory Unit 2

Dan Suciu

Spring 2018

599c: Finite Model Theory

Unit 2: Expressive Power of Logics on Finite Models

Resources

- Libkin, Finite Model Theory, Chapt. 3, 4, 11.
- Grädel, Kolaitis, Libkin, Marx, Spencer, Vardi, Venema, Weinstein: *Finite Model Theory and Its Applications*, Capt. 2 (Expressive Power of Logics on Finite Models).

Where Are We

- Classical model theory is concerned with *truth*, $D \models \varphi$, and its implications.
- Finite model theory is concerned with:
 - Expressibility: which classes of finite structures can be expressed in a given logic.
 - Computability: connection between computational complexity and expressibility in that logic.
 - (Asymptotic) probabilities: study the probability (asymptotic or not) of a sentence.

Unit 2: Expressibility

• Ehrenfeuched-Fraisse Games

• Infinitary logics and Pebble Games

The Expressibility Problem

Given a property P, can it be expressed in a logic L?

• Example properties: CONNECTIVITY, EVEN, PLANARITY.

• Example logics: FO, SO, FO+fixpoint, Datalog.

Find a sentence φ s.t. $G \vDash \varphi$ iff G has an even number of nodes. In class

Find a sentence φ s.t. $G \models \varphi$ iff G has an even number of nodes. In class Impossible! $\mu_n(\varphi) = 0$ when n = odd, $\mu_n(\varphi) = 1$ when n = even, violates 0/1-law.

Find a sentence φ s.t. $G \models \varphi$ iff G has an even number of nodes. In class Impossible! $\mu_n(\varphi) = 0$ when n = odd, $\mu_n(\varphi) = 1$ when n = even, violates 0/1-law.

Find a sentence φ s.t. $G \vDash \varphi$ iff G has an even number of edges.

Find a sentence φ s.t. $G \models \varphi$ iff G has an even number of nodes. In class Impossible! $\mu_n(\varphi) = 0$ when n = odd, $\mu_n(\varphi) = 1$ when n = even, violates 0/1-law.

Find a sentence φ s.t. $G \vDash \varphi$ iff G has an even number of edges. The 0/1 law no longer helps.

G = (V, E) is connected¹ if forall $a, b \in V$ there exists a path $a \rightarrow^* b$.

Find an FO sentence ψ s.t. $G \vDash \psi$ iff G is connected.

¹The correct term is *strongly connected*.

G = (V, E) is connected¹ if forall $a, b \in V$ there exists a path $a \rightarrow^* b$.

Find an FO sentence ψ s.t. $G \vDash \psi$ iff G is connected. $\forall x \forall y E(x, y)$?

¹The correct term is *strongly connected*.

. . .

Example 2: CONNECTED

G = (V, E) is connected¹ if forall $a, b \in V$ there exists a path $a \rightarrow^* b$.

Find an FO sentence ψ s.t. $G \vDash \psi$ iff G is connected. $\forall x \forall y E(x, y)$? $\forall x \forall y \exists z (E(x, z) \land E(z, y))$?

¹The correct term is *strongly connected*.

. . .

Example 2: CONNECTED

G = (V, E) is connected¹ if forall $a, b \in V$ there exists a path $a \rightarrow^* b$.

Find an FO sentence ψ s.t. $G \vDash \psi$ iff G is connected. $\forall x \forall y E(x, y)$? $\forall x \forall y \exists z (E(x, z) \land E(z, y))$?

Impossible! Let's prove that.

¹The correct term is *strongly connected*.

Suppose $\boldsymbol{G} \models \psi$ iff \boldsymbol{G} is connected.

Suppose $\boldsymbol{G} \models \psi$ iff \boldsymbol{G} is connected.

Fix two fresh constants c, d, and, forall $n \ge 1$, define:

$$\varphi_n = (\neg (\exists z_1 \cdots \exists z_n (E(c, z_1) \land E(z_1, z_2) \land \cdots \land E(z_n, d))))$$

It says "c, d are not connected by any path of length n".

Suppose $\mathbf{G} \models \psi$ iff \mathbf{G} is connected.

Fix two fresh constants c, d, and, forall $n \ge 1$, define:

$$\varphi_n = (\neg (\exists z_1 \cdots \exists z_n (E(c, z_1) \land E(z_1, z_2) \land \cdots \land E(z_n, d))))$$

It says "c, d are not connected by any path of length n".

 $\Sigma \stackrel{\rm def}{=} \{\psi\} \cup \{\varphi_n \mid n \ge 1\} \text{ is finitely satisfiable why?}$

Suppose $\boldsymbol{G} \models \psi$ iff \boldsymbol{G} is connected.

Fix two fresh constants c, d, and, forall $n \ge 1$, define:

$$\varphi_n = (\neg (\exists z_1 \cdots \exists z_n (E(c, z_1) \land E(z_1, z_2) \land \cdots \land E(z_n, d))))$$

It says "c, d are not connected by any path of length n".

 $\Sigma \stackrel{\text{def}}{=} \{\psi\} \cup \{\varphi_n \mid n \ge 1\}$ is finitely satisfiable why?

By Compactness, Σ has a model \boldsymbol{G}

Suppose $\mathbf{G} \models \psi$ iff \mathbf{G} is connected.

Fix two fresh constants c, d, and, forall $n \ge 1$, define:

$$\varphi_n = (\neg (\exists z_1 \cdots \exists z_n (E(c, z_1) \land E(z_1, z_2) \land \cdots \land E(z_n, d))))$$

It says "c, d are not connected by any path of length n".

$$\Sigma \stackrel{\mathsf{def}}{=} \{\psi\} \cup \{\varphi_n \mid n \ge 1\}$$
 is finitely satisfiable why?

By Compactness, Σ has a model \boldsymbol{G}

On one hand $\mathbf{G} \models \psi$ hence it is connected, on the other hand c, d are not connected in \mathbf{G} , contradiction.

Suppose $\mathbf{G} \models \psi$ iff \mathbf{G} is connected.

Fix two fresh constants c, d, and, forall $n \ge 1$, define:

$$\varphi_n = (\neg (\exists z_1 \cdots \exists z_n (E(c, z_1) \land E(z_1, z_2) \land \cdots \land E(z_n, d))))$$

It says "c, d are not connected by any path of length n".

$$\Sigma \stackrel{\mathsf{def}}{=} \{\psi\} \cup \{\varphi_n \mid n \ge 1\}$$
 is finitely satisfiable why?

By Compactness, Σ has a model \boldsymbol{G}

On one hand $\mathbf{G} \models \psi$ hence it is connected, on the other hand c, d are not connected in \mathbf{G} , contradiction.

But is **CONNECTIVITY** expressible over *finite* graphs? This proof does not answer it.

Isomorphism

Assume a relational vocabulary $\sigma = (R_1, \ldots, R_k, c_1, \ldots, c_m)$ (no functions). Fix $\mathbf{A} = (A, R_1^A, \ldots, R_k^A, c_1^A, \ldots, c_m^A)$, $\mathbf{B} = (B, R_1^B, \ldots, R_k^B, c_1^B, \ldots, c_m^B)$.

Definition

An isomorphism $f : \mathbf{A} \rightarrow \mathbf{B}$ is a bijection $A \rightarrow B$ such that:

- Forall $R \in \sigma$, $(a_1, \ldots, a_k) \in R^A$ iff $(f(a_1), \ldots, f(a_k)) \in R^B$.
- Forall $c \in \sigma$, $f(c^A) = c^B$.

We write $\mathbf{A} \simeq \mathbf{B}$ if there exists an isomorphism $\mathbf{A} \rightarrow \mathbf{B}$.

Remark: if $\mathbf{A} \simeq \mathbf{B}$ then for any sentence φ in a "reasonable" logics (like FO, or extensions), $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.

Elementary Equivalence

Definition

A and **B** are elementary equivalent if for all φ , $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.

We write $\boldsymbol{A} \equiv \boldsymbol{B}$.

Isomorphisms implies elementary equivalence: if $\mathbf{A} \simeq \mathbf{B}$ then $\mathbf{A} \equiv \mathbf{B}$.

Over the finite structures, the converse holds too: if $\mathbf{A} \equiv \mathbf{B}$, then $\mathbf{A} \simeq \mathbf{B}$.

We cannot find two finite graphs, one connected and one disconnected, that are elementary equivalent!

Partial Isomorphism

Fix a relational vocabulary σ : relations R_i , constants c_j .

Let $\boldsymbol{A}, \boldsymbol{B}$ be two σ -structures.

Definition

A partial isomorphism is a pair $\boldsymbol{a}, \boldsymbol{b}$, where $\boldsymbol{a} = (a_1, \dots, a_k) \in A^k$,

 $\boldsymbol{b} = (b_1, \dots, b_k) \in B^k$ s.t. the substructures^{*a*} $\boldsymbol{A}|_{\boldsymbol{a}}, \boldsymbol{B}|_{\boldsymbol{b}}$ are isomorphic via:

$$\forall i, a_i \mapsto b_i \qquad \forall j, c_j^A \mapsto c_j^B$$

 ${}^{a}A|_{a}$ consists of the universe $\{a_{1},\ldots,a_{k},c_{1}^{A},\ldots,c_{m}^{A}\}$.

We write $\boldsymbol{a} \simeq \boldsymbol{b}$.

In other words:

- Forall $i, j, a_i = a_j$ iff $b_i = b_j$. (Equality is preserved.)
- Forall *i*, *j*, $a_i = c_i^A$ iff $b_i = c_j^B$. (Constants are preserved.)
- $(t_1, \ldots, t_n) \in R^{\hat{A}}$ where each t_i is either some a_j or c_j^A , iff $(t'_1, \ldots, t'_n) \in R^B$ where t'_i is b_j or c^B_i respectively.

There are two players, spoiler and duplicator. They play on two structures $\boldsymbol{A}, \boldsymbol{B}$ in k rounds, i = 1, ..., k.

Round *i*:

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\mathbf{a} = (a_1, \dots, a_k)$, $\mathbf{b} = (b_1, \dots, b_k)$ be the pebbles at the end of the game.

Duplicator wins if *a*, *b* forms a partial isomorphism; otherwise Spoiler wins.

Definition

There are two players, spoiler and duplicator. They play on two structures $\boldsymbol{A}, \boldsymbol{B}$ in k rounds, i = 1, ..., k.

Round *i*:

• Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.

• Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \dots, a_k)$, $\boldsymbol{b} = (b_1, \dots, b_k)$ be the pebbles at the end of the game.

Duplicator wins if *a*, *b* forms a partial isomorphism; otherwise Spoiler wins.

Definition

There are two players, spoiler and duplicator. They play on two structures $\boldsymbol{A}, \boldsymbol{B}$ in k rounds, i = 1, ..., k.

Round *i*:

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \dots, a_k)$, $\boldsymbol{b} = (b_1, \dots, b_k)$ be the pebbles at the end of the game.

Duplicator wins if **a**, **b** forms a partial isomorphism; otherwise Spoiler wins.

Definition

There are two players, spoiler and duplicator. They play on two structures $\boldsymbol{A}, \boldsymbol{B}$ in k rounds, i = 1, ..., k.

Round *i*:

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \ldots, a_k)$, $\boldsymbol{b} = (b_1, \ldots, b_k)$ be the pebbles at the end of the game.

Duplicator wins if a, b forms a partial isomorphism; otherwise Spoiler wins.

Definition

There are two players, spoiler and duplicator. They play on two structures $\boldsymbol{A}, \boldsymbol{B}$ in k rounds, i = 1, ..., k.

Round *i*:

- Spoiler places his pebble *i* on an element $a_i \in A$ or $b_i \in B$.
- Duplicator places her pebble *i* on an element $b_i \in B$ or $a_i \in A$.

Let $\boldsymbol{a} = (a_1, \ldots, a_k)$, $\boldsymbol{b} = (b_1, \ldots, b_k)$ be the pebbles at the end of the game.

Duplicator wins if a, b forms a partial isomorphism; otherwise Spoiler wins.

Definition

Ehrenfeucht-Fraisse Games: Main Result

The *quantifier rank* of a formula φ is defined inductively²:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \leq k$.

Theorem (Ehrenfeucht-Fraisse)

 $\mathbf{A} \equiv_k \mathbf{B}$ (meaning: they agree on FO[k]) iff $\mathbf{A} \sim_k \mathbf{B}$.

We will prove it later. First, let's see examples.

²The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

l)an	50	CIII
Dan	J u	Ciu

Ehrenfeucht-Fraisse Games: Main Result

The *quantifier rank* of a formula φ is defined inductively²:

$$qr(\mathbf{F}) = qr(t_1 = t_2) = qr(R(t_1, \dots, t_m)) = 0$$
$$qr(\varphi \to \psi) = \max(qr(\varphi), qr(\psi))$$
$$qr(\forall x(\varphi)) = 1 + qr(\varphi)$$

 $FO[k] \stackrel{\text{def}}{=} FO$ restricted to formulas with $qr \leq k$.

Theorem (Ehrenfeucht-Fraisse)

 $\mathbf{A} \equiv_k \mathbf{B}$ (meaning: they agree on FO[k]) iff $\mathbf{A} \sim_k \mathbf{B}$.

We will prove it later. First, let's see examples.

²The *number* of quantifiers can be exponentially larger than $qr(\varphi)$ why?

Let $L_k = (\{1, 2, \dots, k\}, <).$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$ Play the Ehrenfeucht Erzisse game on L_6 , L_7 using k = 2 pebbles:

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 3 pebbles:

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$ Play the Ehrenfeucht Erzisse game on L_6 , L_7 using k = 2 pebbles:

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 3 pebbles:

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$ Play the Ehrenfeucht-Fraisse game on L_6 , L_7 using k = 3 pebbles: $L_6 \neq_3 L_7$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$ Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 3 pebbles: $L_6 \neq_3 L_7$ Find $\varphi \in FO[3]$ s.t. $L_6 \models \varphi, L_7 \notin \varphi$

Let $L_k = (\{1, 2, \dots, k\}, <).$

Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 2 pebbles: $L_6 \sim_2 L_7$ Play the Ehrenfeucht-Fraisse game on L_6, L_7 using k = 3 pebbles: $L_6 \neq_3 L_7$ Find $\varphi \in FO[3]$ s.t. $L_6 \models \varphi, L_7 \notin \varphi$

Let
$$L_m = (\{1, 2, ..., m\}, <).$$

 $L_m^{
 $L_m^{>a} \stackrel{\text{def}}{=} \{x \in L_m \mid x < a\}$$

Lemma

If $L_m^{<a} \sim_k L_n^{<b}$ and $L_m^{>a} \sim_k L_n^{>b}$ (duplicator wins), then $L_m \sim_k L_n$.

Proof.

- If spoiler places pebble in $L_m^{<a}$ then duplicator answers in $L_n^{<b}$
- If spoiler places pebble in $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler places pebble on *a* then duplicator places pebble on *b*.
- If spoiler plays in the other structure, duplicator answers similarly.

Let
$$L_m = (\{1, 2, ..., m\}, <).$$

 $L_m^{
 $L_m^{>a} \stackrel{\text{def}}{=} \{x \in L_m \mid x < a\}$$

Lemma

If $L_m^{<a} \sim_k L_n^{<b}$ and $L_m^{>a} \sim_k L_n^{>b}$ (duplicator wins), then $L_m \sim_k L_n$.

Proof.

• If spoiler places pebble in $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.

- If spoiler places pebble in $L_m^{>a}$ then duplicator answers in $L_n^{>b}$
- If spoiler places pebble on a then duplicator places pebble on b.
- If spoiler plays in the other structure, duplicator answers similarly.

Let
$$L_m = (\{1, 2, ..., m\}, <).$$

 $L_m^{
 $L_m^{>a} \stackrel{\text{def}}{=} \{x \in L_m \mid x < a\}$$

Lemma

If $L_m^{<a} \sim_k L_n^{<b}$ and $L_m^{>a} \sim_k L_n^{>b}$ (duplicator wins), then $L_m \sim_k L_n$.

Proof.

- If spoiler places pebble in $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler places pebble in $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler places pebble on *a* then duplicator places pebble on *b*.
- If spoiler plays in the other structure, duplicator answers similarly.

Let
$$L_m = (\{1, 2, ..., m\}, <).$$

 $L_m^{
 $L_m^{>a} \stackrel{\text{def}}{=} \{x \in L_m \mid x < a\}$$

Lemma

If $L_m^{<a} \sim_k L_n^{<b}$ and $L_m^{>a} \sim_k L_n^{>b}$ (duplicator wins), then $L_m \sim_k L_n$.

Proof.

- If spoiler places pebble in $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler places pebble in $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler places pebble on *a* then duplicator places pebble on *b*.

If spoiler plays in the other structure, duplicator answers similarly.

Let
$$L_m = (\{1, 2, ..., m\}, <).$$

 $L_m^{
 $L_m^{>a} \stackrel{\text{def}}{=} \{x \in L_m \mid x < a\}$$

Lemma

If $L_m^{<a} \sim_k L_n^{<b}$ and $L_m^{>a} \sim_k L_n^{>b}$ (duplicator wins), then $L_m \sim_k L_n$.

Proof.

- If spoiler places pebble in $L_m^{<a}$ then duplicator answers in $L_n^{<b}$.
- If spoiler places pebble in $L_m^{>a}$ then duplicator answers in $L_n^{>b}$.
- If spoiler places pebble on *a* then duplicator places pebble on *b*.
- If spoiler plays in the other structure, duplicator answers similarly.

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?)

Theorem

Let m, n, k be positive integers. The following are equivalent:

- L_m ∼_k L_n
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?)

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?)

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses b s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma).

Theorem

Let m, n, k be positive integers. The following are equivalent:

- L_m ∼_k L_n
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma). • Case 2: $|L_m^{>a}| < 2^{k-1} - 1$ Symmetric: Duplicator chooses *b* s.t. $L_m^{>a} \simeq L_n^{>b}$ (i.e. isomorphic). Then: $|L_m^{<a}|, |L_n^{<b}| > 2^{k-1} - 1, L_m^{<a} \sim_{k-1} L_n^{<b}$, hence $L_m \sim_k L_n$ (lemma).

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma). • Case 2: $|L_m^{>a}| < 2^{k-1} - 1$ Symmetric: Duplicator chooses *b* s.t. $L_m^{>a} \simeq L_n^{>b}$ (i.e. isomorphic). Then: $|L_m^{<a}|, |L_n^{<b}| > 2^{k-1} - 1, L_m^{<a} \sim_{k-1} L_n^{<b}$, hence $L_m \sim_k L_n$ (lemma). • Case 3: both $|L_m^{<a}|, |L_m^{>a}| \ge 2^{k-1} - 1$ (Is this possible?)

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma). • Case 2: $|L_m^{>a}| < 2^{k-1} - 1$ Symmetric: Duplicator chooses *b* s.t. $L_m^{>a} \simeq L_n^{>b}$ (i.e. isomorphic). Then: $|L_m^{<a}|, |L_n^{<b}| > 2^{k-1} - 1, L_m^{<a} \sim_{k-1} L_n^{<b}$, hence $L_m \sim_k L_n$ (lemma). • Case 3: both $|L_m^{<a}|, |L_n^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Duplicator chooses any *b* s.t. $|L_n^{<b}|, |L_n^{>b}| \ge 2^{k-1} - 1$. Then: $|L_m^{<a}|, |L_n^{<b}|, |L_m^{>b}|, |L_n^{>b}| \ge 2^{k-1} - 1$;

Dan Suciu

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma). • Case 2: $|L_m^{>a}| < 2^{k-1} - 1$ Symmetric: Duplicator chooses *b* s.t. $L_m^{>a} \simeq L_n^{>b}$ (i.e. isomorphic). Then: $|L_m^{<a}|, |L_n^{<b}| > 2^{k-1} - 1, L_m^{<a} \sim_{k-1} L_n^{<b}$, hence $L_m \sim_k L_n$ (lemma). • Case 3: both $|L_m^{<a}|, |L_m^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Duplicator chooses any *b* s.t. $|L_n^{<b}|, |L_n^{>b}| \ge 2^{k-1} - 1$. Then: $|L_m^{<a}|, |L_n^{<b}|, |L_m^{>a}|, |L_n^{>b}| \ge 2^{k-1} - 1; L_m^{<a} \sim_{k-1} L_n^{<b}, L_m^{>a} \sim_{k-1} L_n^{>b};$

Dan Suciu

Theorem

Let m, n, k be positive integers. The following are equivalent:

- $L_m \sim_k L_n$
- m = n or both $m \ge 2^k 1$ and $n \ge 2^k 1$

Proof. If $m, n \ge 2^k - 1$, duplicator has winning strategy. Spoiler plays $a \in L_m$.

• Case 1: $|L_m^{<a}| < 2^{k-1} - 1$ (What do we do?) Duplicator chooses *b* s.t. $L_m^{<a} \simeq L_n^{<b}$ (i.e. isomorphic). Then: $|L_m^{>a}|, |L_n^{>b}| > 2^{k-1} - 1$ (why?), $L_m^{>a} \sim_{k-1} L_n^{>b}$ (why?), $L_m \sim_k L_n$ (lemma). • Case 2: $|L_m^{>a}| < 2^{k-1} - 1$ Symmetric: Duplicator chooses *b* s.t. $L_m^{>a} \simeq L_n^{>b}$ (i.e. isomorphic). Then: $|L_m^{<a}|, |L_n^{<b}| > 2^{k-1} - 1$, $L_m^{<a} \sim_{k-1} L_n^{<b}$, hence $L_m \sim_k L_n$ (lemma). • Case 3: both $|L_m^{<a}|, |L_m^{>a}| \ge 2^{k-1} - 1$ (Is this possible?) Duplicator chooses any *b* s.t. $|L_n^{<b}|, |L_n^{>b}| \ge 2^{k-1} - 1$. Then: $|L_m^{<a}|, |L_n^{<b}|, |L_m^{>a}|, |L_n^{>b}| \ge 2^{k-1} - 1$; $L_m^{<a} \sim_{k-1} L_n^{<b}, L_m^{>a} \sim_{k-1} L_n^{>b}; L_m \sim_k L_n$.

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence φ s.t. $(L_n, <) \models \varphi$ iff *n* is even.

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence φ s.t. $(L_n, <) \vDash \varphi$ iff *n* is even.

0/1 Law is not useful here why not?

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence φ s.t. $(L_n, <) \vDash \varphi$ iff *n* is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence φ s.t. $(L_n, <) \vDash \varphi$ iff *n* is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let φ be such a sentence, $k \stackrel{\text{def}}{=} qr(\varphi)$. Choose $n \ge 2^k - 1$.

Corollary

EVEN is not expressible in FO over total orders.

More precisely, there is no sentence φ s.t. $(L_n, <) \vDash \varphi$ iff *n* is even.

0/1 Law is not useful here why not?

Instead we prove it using EF-games on total orders. how?

Let φ be such a sentence, $k \stackrel{\text{def}}{=} qr(\varphi)$. Choose $n \ge 2^k - 1$.

Then $L_n \sim_k L_{n+1}$ hence $L_n \vDash \varphi$ iff $L_{n+1} \vDash \varphi$. Contradiction.

 Introduction
 Games for FO
 Games for EMSO
 Games for Recursion
 FO^k Types

 Discussion

- Prove the converse at home: if m < 2^k − 1 ≤ n then duplicator has a winning strategy.
- According to the EF theorem, if m < 2^k − 1 ≤ n then there exists a sentence φ ∈ FO[k] s.t. L_m ⊨ φ and L_n ∉ φ. What is φ?
- The *Ehrenfeucht-Fraisse method* for showing inexpressibility in FO is this. For each k > 0 construct two structures A_k, B_k then:
 - Prove: $\boldsymbol{A}_k \sim_k \boldsymbol{B}_k$.
 - Prove: \boldsymbol{A}_k has the property, \boldsymbol{B}_k does not.

• Proving \sim_k : difficult in general. A sufficient condition: Hanf's lemma.

Example: CONNECTIVITY

Prove that duplicator has winning strategy with k = 3 pebbles (in class).

 $C_6 \cup C_6$

Example: CONNECTIVITY

Prove that duplicator has winning strategy with k = 3 pebbles (in class).

Homework: spoiler has a winning strategy with k = 4 pebbles.

Describing and proving a winning strategy in general seems difficult. Hanf's lemma gives a sufficient condition for a winning strategy.

Finite Model Theory - Unit 2

Example: CONNECTIVITY

Prove that duplicator has winning strategy with k = 3 pebbles (in class).

Homework: spoiler has a winning strategy with k = 4 pebbles. Describing and proving a winning strategy in general seems difficult. Hanf's lemma gives a sufficient condition for a winning strategy.

1 lan	<u></u>	CILL	
Dan	<u> </u>	Ciu	

Finite Model Theory - Unit 2

The Gaifman Graph Let $\mathbf{A} = (A, R_1^A, R_2^A, \dots, R_m^A, c_1^A, \dots, c_s^A)$ be a structure.

Definition

The Gaifman graph is $G(\mathbf{A}) = (A, E_A)$ where the edges are pairs (c, d) s.t. there exists a tuple $(\ldots, c, \ldots, d, \ldots) \in R_i^A$ or $(\ldots, d, \ldots, c, \ldots) \in R_i^A$.

The Gaifman graph of a graph is obtained by forgetting the directions.

Definition

For $a \in A$ and $d \ge 0$, the *d*-neighborhood is $N(a,d) \stackrel{\text{def}}{=} \{b \in A \mid d(a,b) \le d\} \cup \{c_1^A, \dots, c_s^A\}.$ The *d*-type of *a* is the isomorphism type of the substructure generated by N(a,d) plus the constant *a*.

Definition

A, B are called *d*-equivalent if for each *d*-type they have the same number of elements of that type.

Dan Suciu

Hanf's Lemma

Fagin, Stockmeyer, Vardi proved the following, building on earlier work by Hanf:

Theorem

Let $d \ge 3^{k-1} - 1$. If **A**, **B** are d-equivalent, then $\mathbf{A} \sim_k \mathbf{B}$.

Note 1: Kolaitis requires $d \ge 3^{k-1}$ but defines "distance" s.t. d(a, a) = 1. Note 2: this is only a sufficient condition, not necessary. The proof exhibits a winning strategy for the duplicator. We omit the proof.

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)?

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)?

C ₁₂	C ₆ ∪ C ₆		
Dan Suciu	Finite Model Theory – Unit 2	Spring 2018	23 / 66

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)? What is N(b, d)?

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)? What is N(b, d)?

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)? What is N(b, d)? What is their *type*?

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(= 3^{k-1} - 1)$. What is N(a, d)? What is N(b, d)? What is their *type*? Structures of the form x - x - * - x - x

Example: CONNECTIVITY (continued) Fix k = 2 and $d = 2(=3^{k-1} - 1)$.

FIX K = 2 and U = 2(= 5 - 1).

Dan Suciu

What is N(a, d)? What is N(b, d)?

What is their *type*? Structures of the form x - x - * - x - x

How many elements of this type are there in each structure?

 12
 C 6 0 C 6

 Finite Model Theory – Unit 2
 Spring 2018
 23 / 66

Fix k = 2 and $d = 2(= 3^{k-1} - 1)$.

Dan Suciu

What is N(a, d)? What is N(b, d)?

What is their *type*? Structures of the form x - x - * - x - x

How many elements of this type are there in each structure? 12 in each

Finite Model Theory - Unit 2

Fix k = 2 and $d = 2(= 3^{k-1} - 1)$.

What is N(a, d)? What is N(b, d)?

What is their *type*? Structures of the form x - x - * - x - x

How many elements of this type are there in each structure? 12 in each Therefore duplicator has winning strategy with k = 2 pebbles.

Fix k = 2 and $d = 2(= 3^{k-1} - 1)$.

What is N(a, d)? What is N(b, d)?

What is their *type*? Structures of the form x - x - * - x - x

How many elements of this type are there in each structure? 12 in each Therefore duplicator has winning strategy with k = 2 pebbles.

Prove: for every kthere exists n s.t. duplicator has a winning strategy on C_{2n} and $C_n \cup C_n$

A much simpler proof using an FO-reduction. Assume φ expresses connectivity of a graph G = (V, E). Then we write a sentence ψ s.t. $(L_n, <) \models \psi$ iff $(L_{n+1}, <) \notin \psi$. In $(L_m, <)$ define: $E \stackrel{\text{def}}{=} \{(i, i+2) \mid 1 \le i \le m-2\} \cup \{(m-1, 1), (m, 2)\}$ how?

A much simpler proof using an FO-reduction. Assume φ expresses connectivity of a graph G = (V, E). Then we write a sentence ψ s.t. $(L_n, <) \models \psi$ iff $(L_{n+1}, <) \notin \psi$. In $(L_m, <)$ define: $E \stackrel{\text{def}}{=} \{(i, i+2) \mid 1 \le i \le m-2\} \cup \{(m-1, 1), (m, 2)\}$ how?

24 / 66

Example: CONNECTIVITY (continued)

A much simpler proof using an FO-reduction. Assume φ expresses connectivity of a graph G = (V, E). Then we write a sentence ψ s.t. $(L_n, <) \models \psi$ iff $(L_{n+1}, <) \notin \psi$. In $(L_m, <)$ define: $E \stackrel{\text{def}}{=} \{(i, i+2) \mid 1 \le i \le m-2\} \cup \{(m-1, 1), (m, 2)\}$ how?

 Introduction
 Games for FO
 Games for EMSO
 Games for Recursion
 FO^k Types

 Discussion

- The total oders $(L_m, <)$ are an isolated case when we can completely characterize when the duplicator has a winning strategy. Useful to reduce other problems to total orders, when possible.
- What happends if we replace (m-1,1), (m,2) with only (m-1,2)? (Useful in the homework).
- Hanf's lemma is only a sufficient condition; still useful in many cases.
- Next: prove the Ehrenfeucht-Fraisse theorem.

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $A \equiv_0 B$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $A \models \varphi$ iff $B \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $A \models \varphi$ iff $B \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume A ⊨ φ₁ ∧ φ₂. Then A ⊨ φ₁ and A ⊨ φ₂, hence B ⊨ φ₁ and B ⊨ φ₂ (induction on φ). This implies B ⊨ φ₁ ∧ φ₂.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A φ ∈ FO[0] is a Boolean combination of atoms R(c₁,..., c_k).
 A ≡₀ B implies R^A(c₁^A,..., c_k^A) iff R^B(c₁^B,..., c_k^B).
 Hence A ⊨ φ iff B ⊨ φ.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $A \models \varphi$ iff $B \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume A ⊨ φ₁ ∧ φ₂. Then A ⊨ φ₁ and A ⊨ φ₂, hence B ⊨ φ₁ and B ⊨ φ₂ (induction on φ). This implies B ⊨ φ₁ ∧ φ₂.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

 k = 0. A φ ∈ FO[0] is a Boolean combination of atoms R(c₁,...,c_k). A ≡₀ B implies R^A(c₁^A,...,c_k^A) iff R^B(c₁^B,...,c_k^B). Hence A ⊨ φ iff B ⊨ φ.

• k > 0. Prove by induction on $\varphi \in FO[k]$ that $A \models \varphi$ iff $B \models \varphi$.

- Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
- Assume $A \vDash \varphi_1 \land \varphi_2$. Then $A \vDash \varphi_1$ and $A \vDash \varphi_2$, hence $B \vDash \varphi_1$ and $B \vDash \varphi_2$ (induction on φ). This implies $B \vDash \varphi_1 \land \varphi_2$.
- Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. **A** $\equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $B \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $A \models \varphi$ iff $B \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $A \vDash \varphi_1 \land \varphi_2$. Then $A \vDash \varphi_1$ and $A \vDash \varphi_2$, hence $B \vDash \varphi_1$ and $B \vDash \varphi_2$ (induction on φ). This implies $B \vDash \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $A \models \varphi$ iff $B \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $A \vDash \varphi_1 \land \varphi_2$. Then $A \vDash \varphi_1$ and $A \vDash \varphi_2$, hence $B \vDash \varphi_1$ and $B \vDash \varphi_2$ (induction on φ). This implies $B \vDash \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $A \models \varphi_1 \land \varphi_2$. Then $A \models \varphi_1$ and $A \models \varphi_2$, hence $B \models \varphi_1$ and $B \models \varphi_2$ (induction on φ). This implies $B \models \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $A \vDash \varphi_1 \land \varphi_2$. Then $A \vDash \varphi_1$ and $A \vDash \varphi_2$, hence $B \vDash \varphi_1$ and $B \vDash \varphi_2$ (induction on φ). This implies $B \vDash \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume A ⊨ φ₁ ∧ φ₂. Then A ⊨ φ₁ and A ⊨ φ₂, hence B ⊨ φ₁ and B ⊨ φ₂ (induction on φ). This implies B ⊨ φ₁ ∧ φ₂.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $A \vDash \varphi_1 \land \varphi_2$. Then $A \vDash \varphi_1$ and $A \vDash \varphi_2$, hence $B \vDash \varphi_1$ and $B \vDash \varphi_2$ (induction on φ). This implies $B \vDash \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

If $\mathbf{A} \sim_k \mathbf{B}$ then $\mathbf{A} \equiv_k \mathbf{B}$. Induction on k.

- k = 0. A $\varphi \in FO[0]$ is a Boolean combination of atoms $R(c_1, \ldots, c_k)$. $\mathbf{A} \equiv_0 \mathbf{B}$ implies $R^A(c_1^A, \ldots, c_k^A)$ iff $R^B(c_1^B, \ldots, c_k^B)$. Hence $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
- k > 0. Prove by induction on $\varphi \in FO[k]$ that $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$.
 - Assume A ⊨ ∃xψ(x), then there exists a ∈ A s.t. A ⊨ ψ(a). When spoiler plays a, duplicator replies with b ∈ B. Thus³, (A, a) ~_{k-1} (B, b), thus, (A, a) ≡_{k-1} (B, b) (induction on k). This implies B ⊨ ψ(b), and B ⊨ ∃xψ(x).
 - Assume $\mathbf{A} \models \varphi_1 \land \varphi_2$. Then $\mathbf{A} \models \varphi_1$ and $\mathbf{A} \models \varphi_2$, hence $\mathbf{B} \models \varphi_1$ and $\mathbf{B} \models \varphi_2$ (induction on φ). This implies $\mathbf{B} \models \varphi_1 \land \varphi_2$.
 - Etc

³Structures extended with one more constant

Describing Winning Strategies

Fix A, B. What is a "strategy" of the duplicator?

It is precisely a set \mathcal{I} of partial isomorphisms (a, b) satisfying:

Definition

 \mathcal{I} has the *back-and-forth* property up to *k* if:

- $((), ()) \in \mathcal{I}$ (it contains the empty partial isomorphism).
- Forth: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall a \in A, \exists b \in B$ s.t. $((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$
- Back: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall b \in B, \exists a \in A \text{ s.t. } ((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms with the back-and-forth property. Proof in class.

Describing Winning Strategies

Fix A, B. What is a "strategy" of the duplicator? It is precisely a set \mathcal{I} of partial isomorphisms (a, b) satisfying:

Definition

 $\mathcal I$ has the *back-and-forth* property up to k if:

- $((), ()) \in \mathcal{I}$ (it contains the empty partial isomorphism).
- Forth: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall a \in A, \exists b \in B \text{ s.t. } ((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$
- Back: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall \mathbf{b} \in B, \exists \mathbf{a} \in A \text{ s.t. } ((a_1, \ldots, a_i, \mathbf{a}), (b_1, \ldots, b_i, \mathbf{b})) \in \mathcal{I}$

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms with the back-and-forth property. **Proof in class**.

Describing Winning Strategies

Fix A, B. What is a "strategy" of the duplicator? It is precisely a set \mathcal{I} of partial isomorphisms (a, b) satisfying:

Definition

 $\mathcal I$ has the *back-and-forth* property up to k if:

- $((), ()) \in \mathcal{I}$ (it contains the empty partial isomorphism).
- Forth: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall a \in A, \exists b \in B \text{ s.t. } ((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$
- Back: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall \mathbf{b} \in B, \exists \mathbf{a} \in A \text{ s.t. } ((a_1, \ldots, a_i, \mathbf{a}), (b_1, \ldots, b_i, \mathbf{b})) \in \mathcal{I}$

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms with the back-and-forth property. Proof in class.

Introduction	Games for FO	Games for ∃MSO	Games for Recursion	<i>FO^k</i> Турез
Types				
Fix <i>k</i> and <i>m</i> .				
Definition				
	ما م ا			

Let **A** be a structure, $\mathbf{a} \stackrel{\text{def}}{=} (a_1, \ldots, a_m) \in A^m$. The rank k m-type of **a** is:

$$\mathsf{tp}_{k,m}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_1,\ldots,x_m) \in FO[k] \mid \boldsymbol{A} \vDash \varphi(a_1,\ldots,a_m)\}$$

Facts:

- tp_{k,m}(A, a) is complete: forall φ ∈ FO[k] either φ ∈ tp_{k,m}(A, a) or ¬φ ∈ tp_{k,m}(A, a) why?
- For all k, m there are only finitely many k, m-types why?
- There exists a single formula $\varphi_{k,m}^{A,a}$ (the "type" of a) s.t. forall B, b, tp_{k,m}(A, a) = tp_{k,m}(B, b) iff $B \models \varphi_{k,m}^{A,a}(b)$. why?

	Games for FO		ISO		O ^k Types
Types					
Fix <i>k</i> and <i>m</i> .					
Definition					
		lef ,			

Let **A** be a structure, $\mathbf{a} \stackrel{\text{def}}{=} (a_1, \ldots, a_m) \in A^m$. The rank k m-type of **a** is:

$$\mathsf{tp}_{k,m}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_1,\ldots,x_m) \in FO[k] \mid \boldsymbol{A} \vDash \varphi(a_1,\ldots,a_m)\}$$

Facts:

• $tp_{k,m}(\boldsymbol{A}, \boldsymbol{a})$ is complete: forall $\varphi \in FO[k]$ either $\varphi \in tp_{k,m}(\boldsymbol{A}, \boldsymbol{a})$ or $\neg \varphi \in tp_{k,m}(\boldsymbol{A}, \boldsymbol{a})$ why?

For all k, m there are only finitely many k, m-types why?

• There exists a single formula $\varphi_{k,m}^{\mathbf{A},\mathbf{a}}$ (the "type" of \mathbf{a}) s.t. forall \mathbf{B}, \mathbf{b} , tp_{k,m}(\mathbf{A}, \mathbf{a}) = tp_{k,m}(\mathbf{B}, \mathbf{b}) iff $\mathbf{B} \models \varphi_{k,m}^{\mathbf{A},\mathbf{a}}(\mathbf{b})$. why?

	Games for FO		s for ∃MSO			FO ^k Types
Types						
Fix <i>k</i> and <i>m</i> .						
Definition						
		def /		·		

Let **A** be a structure, $\mathbf{a} \stackrel{\text{der}}{=} (a_1, \ldots, a_m) \in A^m$. The rank k m-type of **a** is:

$$\mathsf{tp}_{k,m}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_1,\ldots,x_m) \in FO[k] \mid \boldsymbol{A} \vDash \varphi(a_1,\ldots,a_m)\}$$

Facts:

- $tp_{k,m}(\mathbf{A}, \mathbf{a})$ is complete: forall $\varphi \in FO[k]$ either $\varphi \in tp_{k,m}(\mathbf{A}, \mathbf{a})$ or $\neg \varphi \in tp_{k,m}(\mathbf{A}, \mathbf{a})$ why?
- For all k, m there are only finitely many k, m-types why?
- There exists a single formula $\varphi_{k,m}^{\mathbf{A},\mathbf{a}}$ (the "type" of \mathbf{a}) s.t. forall \mathbf{B},\mathbf{b} , tp_{k,m}(\mathbf{A},\mathbf{a}) = tp_{k,m}(\mathbf{B},\mathbf{b}) iff $\mathbf{B} \models \varphi_{k,m}^{\mathbf{A},\mathbf{a}}(\mathbf{b})$. why?

	Games for FO	Games for ∃MSO		FO ^k Types
Types				
Fix k and n	n.			
Definition				
Let A be a	structure, a^{def}	$(a_1,\ldots,a_m)\in A^m$. The <i>rank k m-type</i>	e of a is:

$$tp_{k,m}(\boldsymbol{A},\boldsymbol{a}) = \{\varphi(x_1,\ldots,x_m) \in FO[k] \mid \boldsymbol{A} \vDash \varphi(a_1,\ldots,a_m)\}$$

Facts:

- tp_{k,m}(A, a) is complete:
 forall φ ∈ FO[k] either φ ∈ tp_{k,m}(A, a) or ¬φ ∈ tp_{k,m}(A, a) why?
- For all k, m there are only finitely many k, m-types why?
- There exists a single formula $\varphi_{k,m}^{\mathbf{A},\mathbf{a}}$ (the "type" of \mathbf{a}) s.t. forall \mathbf{B}, \mathbf{b} , $\operatorname{tp}_{k,m}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k,m}(\mathbf{B}, \mathbf{b})$ iff $\mathbf{B} \models \varphi_{k,m}^{\mathbf{A},\mathbf{a}}(\mathbf{b})$. why?

If $\boldsymbol{A} \equiv_k \boldsymbol{B}$ then $\boldsymbol{A} \sim_k \boldsymbol{B}$.

Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid \text{tp}_{k-i,i}(\boldsymbol{A}, \boldsymbol{a}) = \text{tp}_{k-i,i}(\boldsymbol{B}, \boldsymbol{b}), \text{ where } i \stackrel{\text{def}}{=} |\boldsymbol{a}| = |\boldsymbol{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\boldsymbol{A} \equiv_k \boldsymbol{B}$, hence $\text{tp}_{k,0}(\boldsymbol{A}, ()) = \text{tp}_{k,0}(\boldsymbol{B}, ())$. Let i < k and suppose $\boldsymbol{a} = (a_1, \dots, a_i), \boldsymbol{b} = (b_1, \dots, b_i)$ are s.t. $(\boldsymbol{a}, \boldsymbol{b}) \in \mathcal{I}$.

• Forth property. Let $a \in A$ and $a' \stackrel{\text{def}}{=} (a_1, \dots, a_i, a)$. For any $b \in B$, define $b' \stackrel{\text{def}}{=} (b_1, \dots, b_i, b)$. Suppose $\operatorname{tp}_{k-i-1,i+1}(A, a') \neq \operatorname{tp}_{k-i-1,i+1}(B, b')$. Let $\varphi_b(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

 $\boldsymbol{A} \vDash \varphi_b(a_1, \ldots, a_i, a) \qquad \boldsymbol{B} \notin \varphi_b(b_1, \ldots, b_i, b)$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \notin \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\boldsymbol{A} \equiv_k \boldsymbol{B}$ then $\boldsymbol{A} \sim_k \boldsymbol{B}$.

Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid tp_{k-i,i}(\boldsymbol{A}, \boldsymbol{a}) = tp_{k-i,i}(\boldsymbol{B}, \boldsymbol{b}), \text{ where } i \stackrel{\text{def}}{=} |\boldsymbol{a}| = |\boldsymbol{b}|\}$

Then ((),()) $\in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \ldots, a_i)$, $\mathbf{b} = (b_1, \ldots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $a \in A$ and $a' \stackrel{\text{def}}{=} (a_1, \dots, a_i, a)$. For any $b \in B$, define $b' \stackrel{\text{def}}{=} (b_1, \dots, b_i, b)$. Suppose $\operatorname{tp}_{k-i-1,i+1}(A, a') \neq \operatorname{tp}_{k-i-1,i+1}(B, b')$. Let $\varphi_b(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

 $\boldsymbol{A} \vDash \varphi_b(a_1,\ldots,a_i,a) \qquad \boldsymbol{B} \not\models \varphi_b(b_1,\ldots,b_i,b)$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \notin \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b}), \text{ where } i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \ldots, a_i), \mathbf{b} = (b_1, \ldots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $a \in A$ and $a' \stackrel{\text{der}}{=} (a_1, \dots, a_i, a)$. For any $b \in B$, define $b' \stackrel{\text{def}}{=} (b_1, \dots, b_i, b)$. Suppose $\text{tp}_{k-i-1,i+1}(A, a') \neq \text{tp}_{k-i-1,i+1}(B, b')$. Let $\varphi_b(x_1, \dots, x_i, y) \in FO[k - i - 1]$ be s.t.

 $\boldsymbol{A} \vDash \varphi_b(a_1, \ldots, a_i, a) \qquad \boldsymbol{B} \notin \varphi_b(b_1, \ldots, b_i, b)$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \notin \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k - i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b}), \text{ where } i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i), \mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

Forth property. Let a ∈ A and a' ^{def} = (a₁,..., a_i, a). For any b ∈ B, define b' ^{def} = (b₁,..., b_i, b). Suppose tp_{k-i-1,i+1}(A, a') ≠ tp_{k-i-1,i+1}(B, b'). Let φ_b(x₁,...,x_i, y) ∈ FO[k - i - 1] be s.t.

 $\boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(a_1, \ldots, a_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(b_1, \ldots, b_i, \boldsymbol{b})$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \not\models \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k - i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b}), \text{ where } i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i), \mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $\mathbf{a} \in A$ and $\mathbf{a}' \stackrel{\text{def}}{=} (a_1, \dots, a_i, \mathbf{a})$. For any $\mathbf{b} \in B$, define $\mathbf{b}' \stackrel{\text{def}}{=} (b_1, \dots, b_i, \mathbf{b})$. Suppose $\operatorname{tp}_{k-i-1,i+1}(\mathbf{A}, \mathbf{a}') \neq \operatorname{tp}_{k-i-1,i+1}(\mathbf{B}, \mathbf{b}')$. Let $\varphi_b(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

 $\boldsymbol{A} \models \varphi_{\boldsymbol{b}}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}_1, \dots, \boldsymbol{b}_i, \boldsymbol{b})$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \not\models \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b}), \text{ where } i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i), \mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $\mathbf{a} \in A$ and $\mathbf{a'} \stackrel{\text{def}}{=} (a_1, \dots, a_i, \mathbf{a})$. For any $\mathbf{b} \in B$, define $\mathbf{b'} \stackrel{\text{def}}{=} (b_1, \dots, b_i, \mathbf{b})$. Suppose $\operatorname{tp}_{k-i-1,i+1}(\mathbf{A}, \mathbf{a'}) \neq \operatorname{tp}_{k-i-1,i+1}(\mathbf{B}, \mathbf{b'})$. Let $\varphi_{\mathbf{b}}(x_1, \dots, x_i, y) \in FO[k - i - 1]$ be s.t.

$$\boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_i, \boldsymbol{b})$$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \not\models \psi(\mathbf{b})$ for $\psi \stackrel{\text{der}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $tp_{k-i,i}(\mathbf{A}, \mathbf{a}) = tp_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$, where $i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i)$, $\mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $\mathbf{a} \in A$ and $\mathbf{a'} \stackrel{\text{def}}{=} (a_1, \dots, a_i, \mathbf{a})$. For any $\mathbf{b} \in B$, define $\mathbf{b'} \stackrel{\text{def}}{=} (b_1, \dots, b_i, \mathbf{b})$. Suppose $\operatorname{tp}_{k-i-1,i+1}(\mathbf{A}, \mathbf{a'}) \neq \operatorname{tp}_{k-i-1,i+1}(\mathbf{B}, \mathbf{b'})$. Let $\varphi_{\mathbf{b}}(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

$$\boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_i, \boldsymbol{b})$$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \notin \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $tp_{k-i,i}(\mathbf{A}, \mathbf{a}) = tp_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$, where $i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i)$, $\mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $\mathbf{a} \in A$ and $\mathbf{a}' \stackrel{\text{def}}{=} (a_1, \dots, a_i, \mathbf{a})$. For any $\mathbf{b} \in B$, define $\mathbf{b}' \stackrel{\text{def}}{=} (b_1, \dots, b_i, \mathbf{b})$. Suppose $\operatorname{tp}_{k-i-1,i+1}(\mathbf{A}, \mathbf{a}') \neq \operatorname{tp}_{k-i-1,i+1}(\mathbf{B}, \mathbf{b}')$. Let $\varphi_{\mathbf{b}}(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

$$\boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_i, \boldsymbol{b})$$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \not\models \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

If $\mathbf{A} \equiv_k \mathbf{B}$ then $\mathbf{A} \sim_k \mathbf{B}$. Define $\mathcal{I} = \{(\mathbf{a}, \mathbf{b}) \mid \operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$, where $i \stackrel{\text{def}}{=} |\mathbf{a}| = |\mathbf{b}|\}$ Then $((), ()) \in \mathcal{I}$ why? Because $\mathbf{A} \equiv_k \mathbf{B}$, hence $\operatorname{tp}_{k,0}(\mathbf{A}, ()) = \operatorname{tp}_{k,0}(\mathbf{B}, ())$. Let i < k and suppose $\mathbf{a} = (a_1, \dots, a_i)$, $\mathbf{b} = (b_1, \dots, b_i)$ are s.t. $(\mathbf{a}, \mathbf{b}) \in \mathcal{I}$.

• Forth property. Let $\mathbf{a} \in A$ and $\mathbf{a}' \stackrel{\text{def}}{=} (a_1, \dots, a_i, \mathbf{a})$. For any $\mathbf{b} \in B$, define $\mathbf{b}' \stackrel{\text{def}}{=} (b_1, \dots, b_i, \mathbf{b})$. Suppose $\operatorname{tp}_{k-i-1,i+1}(\mathbf{A}, \mathbf{a}') \neq \operatorname{tp}_{k-i-1,i+1}(\mathbf{B}, \mathbf{b}')$. Let $\varphi_{\mathbf{b}}(x_1, \dots, x_i, y) \in FO[k-i-1]$ be s.t.

$$\boldsymbol{A} \vDash \varphi_{\boldsymbol{b}}(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_i, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_{\boldsymbol{b}}(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_i, \boldsymbol{b})$$

Then $\mathbf{A} \models \psi(\mathbf{a})$ and $\mathbf{B} \notin \psi(\mathbf{b})$ for $\psi \stackrel{\text{def}}{=} \exists y \wedge_b \varphi_b(x_1, \dots, x_i, y)$. Since $\psi \in FO[k-i]$, it contradicts $\operatorname{tp}_{k-i,i}(\mathbf{A}, \mathbf{a}) = \operatorname{tp}_{k-i,i}(\mathbf{B}, \mathbf{b})$.

- Ehrenfeucht-Fraisse games can be applied to infinite structures as well! If A ≡_k B forall k ≥ 0, then A ≡ B.
- EF games generalize to other logics to prove inexpressibility results. We will discuss two:
 - ► Inexpressibility for ∃MSO
 - Inexpressibility for logics with recursion.
Second Order Logic

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

Example⁴:

$\text{EVEN} \equiv \exists U(\forall x \exists ! y(x \neq y) \land U(x, y) \land U(y, x))$

Note: can always assume that 2nd order quantifiers come *before* 1st order quantifiers why?

 \exists ! means "exists and is unique". write it in FO.

Dan Suciu

Finite Model Theory - Unit 2

Second Order Logic

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

Example⁴:

$\text{EVEN} \equiv \exists U(\forall x \exists ! y(x \neq y) \land U(x,y) \land U(y,x))$

Note: can always assume that 2nd order quantifiers come *before* 1st order quantifiers why?

⁴ \exists ! means "exists and is unique". write it in FO.

Dan Suciu

Second Order Logic

Second Order Logic, SO, extends FO with *2nd order variables*, which range over relations.

Example⁴:

$\text{EVEN} \equiv \exists U(\forall x \exists ! y(x \neq y) \land U(x,y) \land U(y,x))$

Note: can always assume that 2nd order quantifiers come *before* 1st order quantifiers why?

⁴ \exists ! means "exists and is unique". write it in FO.

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be unary relations.

∃MSO and \forall MSO further restrict the 2-nd order quantifiers to ∃ or to \forall respectively.

Example:

 $\begin{aligned} 3\text{-}\text{COLORABILITY} &\equiv \exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x)) \\ & \land \forall x \forall y (E(x,y) \Rightarrow \neg (R(x) \land R(y))) \\ & \land \forall x \forall y (E(x,y) \Rightarrow \neg (G(x) \land G(y))) \\ & \land \forall x \forall y (E(x,y) \Rightarrow \neg (B(x) \land B(y))) \end{aligned}$

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be unary relations.

 $\exists MSO$ and $\forall MSO$ further restrict the 2-nd order quantifiers to \exists or to \forall respectively.

Example:

 $\begin{aligned} 3\text{-COLORABILITY} &\equiv \exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x)) \\ & \land \forall x \forall y (E(x,y) \to \neg (R(x) \land R(y))) \\ & \land \forall x \forall y (E(x,y) \to \neg (G(x) \land G(y))) \\ & \land \forall x \forall y (E(x,y) \to \neg (B(x) \land B(y))) \end{aligned}$

Fragments of SO

Monadic Second Order Logic, MSO, restricts the 2nd order variables to be unary relations.

 $\exists MSO$ and $\forall MSO$ further restrict the 2-nd order quantifiers to \exists or to \forall respectively.

Example:

$$\begin{aligned} 3\text{-COLORABILITY} &\equiv \exists R \exists B \exists G \forall x (R(x) \lor B(x) \lor G(x)) \\ & \land \forall x \forall y (E(x,y) \to \neg (R(x) \land R(y))) \\ & \land \forall x \forall y (E(x,y) \to \neg (G(x) \land G(y))) \\ & \land \forall x \forall y (E(x,y) \to \neg (B(x) \land B(y))) \end{aligned}$$

	Games for ∃MSO	<i>FO^k</i> Types
MSO		

Theorem

CONNECTIVITY is expressible in $\forall MSO$.

how??

 $\forall U \forall x \forall y \left((U(x) \land \neg U(y)) \rightarrow \exists u \exists v E(u, v) \land U(u) \land \neg U(v) \right)$

Theorem (Fagin)

CONNECTIVITY is not expressible in *BMSO*.

We will prove it next, using games.

	Games for ∃MSO	FO ^k Types
MSO		

Theorem CONNECTIVITY is expressible in $\forall MSO$.

how?? $\forall U \forall x \forall y ((U(x) \land \neg U(y)) \rightarrow \exists u \exists v E(u, v) \land U(u) \land \neg U(v))$

Theorem (Fagin) CONNECTIVITY *is not expressible in* 3*MSO*

We will prove it next, using games.

	Games for ∃MSO	FO ^k Types
MSO		

10130

Theorem CONNECTIVITY is expressible in $\forall MSO$.

how?? $\forall U \forall x \forall y ((U(x) \land \neg U(y)) \rightarrow \exists u \exists v E(u, v) \land U(u) \land \neg U(v))$

Theorem (Fagin)

CONNECTIVITY is not expressible in $\exists MSO$.

We will prove it next, using games.

Games for **BMSO**

The (r, k)-Aitai-Fagin game for \exists MSO and a problem P is the following:

- Duplicator picks a structure **A** that satisfies P.
- Spoiler picks r unary relations U_1^A, \ldots, U_r^A on **A**.
- Duplicator picks a structure **B** that does not satisfy P.
- Duplicator picks U_1^B, \ldots, U_r^B in **B**.
- Spoiler and Duplicator play an EF game with k pebbles on the structures $(\boldsymbol{A}, U_1^A, \dots, U_r^A)$ and $(\boldsymbol{B}, U_1^B, \dots, U_r^B)$.

Lemma

If Duplicator wins the (r, k) game, then no EMSO sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof: Suppose $\varphi = \exists U_1 \cdots \exists U_r \psi$ is such a sentence. Then:

 $\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$ exists sets U_1^A, \dots, U_r^A $(\mathbf{A}, U_1^A, \dots, U_r^A) \models \psi$ $(\mathbf{B}, U_1^B, \dots, U_r^B) \models \psi$ $\mathbf{B} \models \exists U_1 \cdots \exists U_r \psi$

where $(\boldsymbol{B}, U_1^B, \dots, U_r^B)$ is the structure chosen by the duplicator. This is a contradiction, since \boldsymbol{B} does not satisfy P.

Lemma

If Duplicator wins the (r, k) game, then no EMSO sentence with r 2-nd order quantifiers and k 1-st order quantifiers can express P.

Proof: Suppose $\varphi = \exists U_1 \cdots \exists U_r \psi$ is such a sentence. Then:

$$\mathbf{A} \models \exists U_1 \cdots \exists U_r \psi$$

exists sets U_1^A, \dots, U_r^A
$$(\mathbf{A}, U_1^A, \dots, U_r^A) \models \psi$$

$$(\mathbf{B}, U_1^B, \dots, U_r^B) \models \psi$$

$$\mathbf{B} \models \exists U_1 \cdots \exists U_r \psi$$

where $(\boldsymbol{B}, U_1^B, \dots, U_r^B)$ is the structure chosen by the duplicator. This is a contradiction, since \boldsymbol{B} does not satisfy P.

$\operatorname{CONNECTIVITY}$ is not expressible in <code>∃MSO</code>.

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d + 2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

$\label{eq:connectivity} CONNECTIVITY \text{ is not expressible in } \exists MSO.$

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d + 2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

 $\label{eq:connectivity} CONNECTIVITY \text{ is not expressible in } \exists MSO.$

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d + 2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

 $\label{eq:connectivity} CONNECTIVITY \text{ is not expressible in } \exists MSO.$

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d+2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

 $\label{eq:connectivity} CONNECTIVITY \text{ is not expressible in } \exists MSO.$

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d+2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

 $\label{eq:connectivity} CONNECTIVITY \text{ is not expressible in } \exists MSO.$

Fix r, k. Let **A** be a cycle C_n ; will choose n later "big enough".

There are r unary relations, hence each $v \in C_n$ has one of 2^r colors.

For $d = 3^{k-1} - 1$, there are "a small number" of isomorphism types N(a, d)Details: the number of types t is $t \le (2^r)^{2d+1} = 2^{r(2d+1)}$.

If *n* is big, then we can find two elements u, v of the same type, at distance $d(u, v) \ge 2d + 2$.

Details: at least one type must occur $\ge n/t$ times; the first and the middle one are at distance $d(u, v) \ge n/(2t)$. Simply choose $n \ge 2t(2d+2)$

"Cut" C_n at u, v and construct two cycles C_{n_1} (containing u) and C_{n_2} (containing v). Both $n_1, n_2 > 2d + 1$.

Recursion

Several logics add recursion to FO, in order to express ${\rm CONNECTIVITY}$ and similar queries.

The nicest way to describe these logics is using datalog.

Datalog

The vocabulary consists of two kinds of relation names:

- EDB predicates = input relations $R_1, R_2, ...$
- IDB predicates = computed relations P_1, P_2, \ldots

A datalog program is a set of rules of the form:

$$P(x, y, z, \ldots) \leftarrow Body$$

where the Body is a conjunction of literals. The rule is safe if every variable in the head occurs in some positive relational literal.

$$T(x,y) \leftarrow R(x,y)$$
$$T(x,y) \leftarrow R(x,z), T(z,y)$$

Equivalent formulation in FO:

 $\forall x \forall y T(x,y) \leftarrow R(x,y)$ $\forall x \forall y \forall z T(x,y) \leftarrow R(x,z) \land T(z,y)$

Also:

$$\forall x \forall y T(x, y) \leftarrow R(x, y) \forall x \forall y T(x, y) \leftarrow \exists z (R(x, z) \land T(z, y))$$

A non-head variable is called an existential variable; e.g. z

Dan Suciu

$$T(x,y) \leftarrow R(x,y)$$
$$T(x,y) \leftarrow R(x,z), T(z,y)$$

Equivalent formulation in FO:

$$\forall x \forall y T(x, y) \leftarrow R(x, y)$$

$$\forall x \forall y \forall z T(x, y) \leftarrow R(x, z) \land T(z, y)$$

Also:

$$\begin{aligned} \forall x \forall y T(x, y) \leftarrow R(x, y) \\ \forall x \forall y T(x, y) \leftarrow \exists z (R(x, z) \land T(z, y)) \end{aligned}$$

A non-head variable is called an existential variable; e.g. z

Dan Suciu

$$T(x,y) \leftarrow R(x,y)$$
$$T(x,y) \leftarrow R(x,z), T(z,y)$$

Equivalent formulation in FO:

$$\forall x \forall y T(x,y) \leftarrow R(x,y)$$
$$\forall x \forall y \forall z T(x,y) \leftarrow R(x,z) \land T(z,y)$$

Also:

$$\forall x \forall y T(x, y) \leftarrow R(x, y) \forall x \forall y T(x, y) \leftarrow \exists z (R(x, z) \land T(z, y))$$

A non-head variable is called an existential variable; e.g. z

Dan Suciu

Finite Model Theory – Unit 2

$$T(x,y) \leftarrow R(x,y)$$
$$T(x,y) \leftarrow R(x,z), T(z,y)$$

Equivalent formulation in FO:

$$\forall x \forall y T(x,y) \leftarrow R(x,y)$$
$$\forall x \forall y \forall z T(x,y) \leftarrow R(x,z) \land T(z,y)$$

Also:

$$\forall x \forall y T(x, y) \leftarrow R(x, y) \forall x \forall y T(x, y) \leftarrow \exists z (R(x, z) \land T(z, y))$$

A non-head variable is called an existential variable; e.g. z

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = \emptyset , compute iteratively until fixpoint.

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = \emptyset , compute iteratively until fixpoint.

E.g. Transitive closure:

$$T_0 = \emptyset$$

$$T_{i+1} = \{(x, y) \mid R(x, y) \lor (\exists z (R(x, z) \land T_i(z, y)))\}$$

Fixpoint Semantics of Datalog

Informally, the fixpoint semantics is this. Start with the IDB = \emptyset , compute iteratively until fixpoint.

E.g. Transitive closure:

$$T_0 = \emptyset$$

$$T_{i+1} = \{(x, y) \mid R(x, y) \lor (\exists z (R(x, z) \land T_i(z, y)))\}$$

1	2	3
	(4)	5

i	T_i
0	Ø
1	(1,2), (2,3), (2,4), (4,2), (3,5)
2	(1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5)
2	(1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)
3	(1,2), (2,3), (2,4), (4,2), (3,5), (1,3), (1,4), (4,3), (2,5), (1,5), (4,5)

- Datalog can express some cool queries (try at home; may need ¬):
 - Same generation: if G = (V, E) is a tree, find pairs of nodes x, y in the same generation (same distance to the root)
 - Given G find tuples (x, y, u, v) s.t. d(x, y) = d(u, v) (same distance).
 - Check if G is a totally balanced tree.
- But it cannot express some trivial queries:
 - ► Is |E| even?
 - Is $|A| \leq |B|$? (Homework)
- To prove inexpressibility results for datalog we will show that it is a subset of a much more powerful logic, $L^{\omega}_{\infty\omega}$, then describe pebble games for it.

FO^k

• FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .

• Example "there exists two nodes connected by 10 edges" in FO³

Proposition

Consider a datalog program using k variables. Let T_n be an IDB relation after n iterations. Then $T_n \in FO^k$. why?

- FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .
- Example "there exists two nodes connected by 10 edges" in FO³

Proposition

Consider a datalog program using k variables. Let T_n be an IDB relation after n iterations. Then $T_n \in FO^k$. why?

FO^k

- FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .
- Example "there exists two nodes connected by 10 edges" in FO^3

$$\exists x \exists z (\exists y E(x, y) \land \exists x (E(y, x) \land \exists y (E(x, y) \land \dots \exists x (E(y, x) \land E(x, z))))$$
reuse x
reuse y
reuse x

Proposition

Consider a datalog program using k variables. Let T_n be an IDB relation after n iterations. Then $T_n \in FO^k$. why?

- FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .
- Example "there exists two nodes connected by 10 edges" in FO³

$$\exists x \exists z (\exists y E(x, y) \land \exists x (E(y, x) \land \exists y (E(x, y) \land \dots \exists x (E(y, x) \land E(x, z))))$$
reuse x
reuse y
reuse x

Proposition

Consider a datalog program using k variables. Let T_n be an IDB relation after n iterations. Then $T_n \in FO^k$. why?

- FO^k
 - FO^k is FO restricted to k variables x_1, x_2, \ldots, x_k .
 - Example "there exists two nodes connected by 10 edges" in FO³

$$\exists x \exists z (\exists y E(x, y) \land \exists x (E(y, x) \land \exists y (E(x, y) \land \dots \exists x (E(y, x) \land E(x, z))))$$
reuse x
reuse y
reuse x

Proposition

Consider a datalog program using k variables. Let T_n be an IDB relation after n iterations. Then $T_n \in FO^k$. why?

The datatlog program is equivalent to $T_0 \vee T_1 \vee T_2 \vee \cdots$

 $L^{\omega}_{\infty\omega}$

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi$
 $j \in J$

where $|I| < \alpha$, $|J| < \beta$.

• $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.

- L_{∞ω} = infinite disjunction (no bound!), finite quantifier sequence.
 Note: the quantifier rank may be any ordinal, e.g. ω + 1 in class
- $L_{\infty\omega}^k$ = the restriction to k variables.
- $L^{\omega}_{\infty\omega} = \bigcup_{k\geq 0} L^k_{\infty\omega}$.

What is $\bigcup_{k\geq 0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

D		
Dan	-50	CILL

 $L^{\omega}_{\infty\omega}$

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi_{j \in J}$

where $|I| < \alpha$, $|J| < \beta$.

• $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.

- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence. Note: the quantifier rank may be any ordinal, e.g. $\omega + 1$ in class
- $L_{\infty\omega}^k$ = the restriction to k variables.
- $L^{\omega}_{\infty\omega} = \bigcup_{k\geq 0} L^k_{\infty\omega}$.

What is $\bigcup_{k\geq 0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

-		
l)an	51	CILL
		i Ci u

 $L^{\omega}_{\infty\omega}$

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi_{j \in J}$

where $|I| < \alpha$, $|J| < \beta$.

- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence. Note: the quantifier rank may be any ordinal, e.g. $\omega + 1$ in class

•
$$L_{\infty\omega}^k$$
 = the restriction to k variables

•
$$L^{\omega}_{\infty\omega} = \bigcup_{k\geq 0} L^k_{\infty\omega}$$
.

What is $\bigcup_{k\geq 0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

D		
Dan.	SII	CIII
Dun	0.0	
$L^{\omega}_{\infty\omega}$

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi_{j \in J}$

where $|I| < \alpha$, $|J| < \beta$.

- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence. Note: the quantifier rank may be any ordinal, e.g. $\omega + 1$ in class

•
$$L_{\infty\omega}^k$$
 = the restriction to k variables

•
$$L^{\omega}_{\infty\omega} = \bigcup_{k\geq 0} L^k_{\infty\omega}$$
.

What is $\bigcup_{k\geq 0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

 $L^{\omega}_{\infty\omega}$

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi_{j \in J}$

where $|I| < \alpha$, $|J| < \beta$.

- $L_{\omega\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence. Note: the quantifier rank may be any ordinal, e.g. $\omega + 1$ in class

•
$$L_{\infty\omega}^k$$
 = the restriction to k variables.

What is $\bigcup_{k\geq 0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

• Let α, β be ordinals⁵. The infinitary logic $L_{\alpha\beta}$ is:

Atoms:
$$x_i = x_j, R(\dots);$$
 $\bigvee_{i \in I} \varphi_i;$ $(\dots \exists x_j \dots) \varphi; \neg \varphi_{j \in J}$

where $|I| < \alpha$, $|J| < \beta$.

- $L_{\alpha\nu\omega} = FO$; finite disjunctions, finite quantifier sequence.
- $L_{\infty\omega}$ = infinite disjunction (no bound!), finite quantifier sequence. Note: the quantifier rank may be any ordinal, e.g. $\omega + 1$ in class

•
$$L_{\infty\omega}^k$$
 = the restriction to k variables.

• $L_{\infty}^{\omega} = \bigcup_{k \ge 0} L_{\infty}^{k}$ What is $\bigcup_{k>0} FO^k$?

⁵An *ordinal*= isomorphism type of a well order. E.g. $\omega = \{1, 2, 3, ...\}$.

- Any property P on finite structures can be expressed by in L_{∞ω} why?
 Let φ_A fully describes A. Then P is expressed by V_{A∈P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for $i = 1, 2, \ldots$
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why? Let φ_A fully describes A. Then P is expressed by V_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for $i = 1, 2, \ldots$
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why? Let φ_A fully describes A. Then P is expressed by ∨_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for $i = 1, 2, \ldots$
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why?
 Let φ_A fully describes A. Then P is expressed by ∨_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for i = 1, 2, ...
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why?
 Let φ_A fully describes A. Then P is expressed by ∨_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $arphi' = igvee_{i\in\mathbb{N}}\psi_i$ where
 - $\psi_i \in FO^k$, for $i = 1, 2, \ldots$
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why?
 Let φ_A fully describes A. Then P is expressed by ∨_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L_{\infty\omega}^{\omega}$ why? Hence it cannot express EVEN.
- $L^k_{\infty\omega}$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for i = 1, 2, ...
 - For any finite structure, $\mathbf{A} \models \varphi$ iff $\mathbf{A} \models \varphi'$.

- Any property P on finite structures can be expressed by in L_{∞ω} why? Let φ_A fully describes A. Then P is expressed by V_{A⊨P} φ_A.
- Thus, $L_{\infty\omega}$ is too powerful to prove inexpressibility.
- $L^{\omega}_{\infty\omega}$ is much weaker. We will show it cannot express EVEN.
- Datalog $\subseteq L^{\omega}_{\infty\omega}$ why? Hence it cannot express EVEN.
- $L_{\infty\omega}^k$ admits a normal form on finite structures: $\varphi' = \bigvee_{i \in \mathbb{N}} \psi_i$ where
 - $\psi_i \in FO^k$, for $i = 1, 2, \ldots$
 - For any finite structure, $\mathbf{A} \vDash \varphi$ iff $\mathbf{A} \vDash \varphi'$.

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hands; one of each label. At each round, spoiler chooses one of these moves:

• Place pebble *i* from his hand on **A** (or **B**); the duplicator must reply by placing her pebble *i* on **B** (or **A**).

• Remove pebble *i* from **A** (or **B**); duplicator must reply by removing pebble *i* from **B** (or **A**).

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hands; one of each label. At each round, spoiler chooses one of these moves:

• Place pebble *i* from his hand on **A** (or **B**); the duplicator must reply by placing her pebble *i* on **B** (or **A**).

• Remove pebble *i* from **A** (or **B**); duplicator must reply by removing pebble *i* from **B** (or **A**).

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hands; one of each label. At each round, spoiler chooses one of these moves:

• Place pebble *i* from his hand on **A** (or **B**); the duplicator must reply by placing her pebble *i* on **B** (or **A**).

• Remove pebble *i* from **A** (or **B**); duplicator must reply by removing pebble *i* from **B** (or **A**).

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hands; one of each label. At each round, spoiler chooses one of these moves:

- Place pebble *i* from his hand on **A** (or **B**); the duplicator must reply by placing her pebble *i* on **B** (or **A**).
- Remove pebble *i* from **A** (or **B**); duplicator must reply by removing pebble *i* from **B** (or **A**).

There are two structures $\boldsymbol{A}, \boldsymbol{B}$ and 2k pebbles, labeled $1, 1, 2, 2, \dots, k, k$.

Initially both spoiler and duplicator have k pebbles in their hands; one of each label. At each round, spoiler chooses one of these moves:

- Place pebble *i* from his hand on **A** (or **B**); the duplicator must reply by placing her pebble *i* on **B** (or **A**).
- Remove pebble *i* from **A** (or **B**); duplicator must reply by removing pebble *i* from **B** (or **A**).

The *k*-Pebble Games: Discussion

• An equivalent formulation is that the spoiler never removes, but instead "moves" a pebble from one position to another (possibly on the other structure).

• It suffices to check partial isomorphism only when all k pebbles are placed on the structures why?

Main Theorem of Pebble Games

- **()** $\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ denotes: duplicator wins the *k*-pebble game.
- **2** $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in L_{\infty \omega}^{k}$
- **3** $\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Theorem

1 and 2 are equivalent. When **A**, **B** are finite, then 1, 2, 3 are equivalent.

We will prove shortly, but first some examples.

We cannot distinguish L_m , L_n in FO[r] (quantifier rank r), when $m, n \ge 2^r - 1$. But we can in FO^2 (two variables).

Proposition

If $m \neq n$ then $L_m \neq^2_{FO} L_n$.

Proof. Define⁶ $\varphi_0(x) \stackrel{\text{def}}{=} \mathbf{T}, \ \varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y((x < y) \land \varphi_p(y)).$

$$\begin{split} \varphi_1(x) = &\exists y(x < y) \quad \varphi_2(x) = \exists y(x < y \land (\exists x(y < x))) \\ \varphi_3(x) = &\exists y(x < y \land (\exists x(y < x \land \exists y(x < y)))) \quad \dots \\ & \text{what does } \varphi_p(x) \text{ say?} \end{split}$$

Let $\psi_p \stackrel{\text{def}}{=} \exists x \varphi_p(x) \land \neg \exists x \varphi_{p+1}(x)$. Then $L_m \models \psi_m$, $L_n \not\models \psi_m$, $\psi_m \in FO^2$.

⁶Switching x and y is a bit informal. Formally, we could set

 $\varphi_{p+1}(x) \stackrel{\text{der}}{=} \exists y(x < y \land \exists x(x = y \land \varphi_p(x))). \text{ Others ways are possible (without using =)}$

We cannot distinguish L_m , L_n in FO[r] (quantifier rank r), when $m, n \ge 2^r - 1$. But we can in FO^2 (two variables).

Proposition

If $m \neq n$ then $L_m \neq^2_{FO} L_n$.

Proof. Define⁶ $\varphi_0(x) \stackrel{\text{def}}{=} \mathbf{T}, \ \varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y((x < y) \land \varphi_p(y)).$

$$\begin{split} \varphi_1(x) = &\exists y(x < y) \quad \varphi_2(x) = \exists y(x < y \land (\exists x(y < x))) \\ \varphi_3(x) = &\exists y(x < y \land (\exists x(y < x \land \exists y(x < y)))) \quad \dots \\ & \text{what does } \varphi_p(x) \text{ say?} \end{split}$$

Let $\psi_p \stackrel{\text{def}}{=} \exists x \varphi_p(x) \land \neg \exists x \varphi_{p+1}(x)$. Then $L_m \vDash \psi_m$, $L_n \notin \psi_m$, $\psi_m \in FO^2$.

⁶Switching x and y is a bit informal. Formally, we could set $\varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y(x < y \land \exists x(x = y \land \varphi_p(x))).$ Others ways are possible (without using =). Dan Suciu Finite Model Theory - Unit 2 Spring 2018 48 / 66

We cannot distinguish L_m, L_n in FO[r] (quantifier rank r), when $m, n \ge 2^r - 1$. But we can in FO^2 (two variables).

Proposition

If
$$m \neq n$$
 then $L_m \neq^2_{FO} L_n$.

Proof. Define⁶ $\varphi_0(x) \stackrel{\text{def}}{=} \mathbf{T}, \ \varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y((x < y) \land \varphi_p(y)).$

$$\begin{split} \varphi_1(x) = &\exists y(x < y) \quad \varphi_2(x) = \exists y(x < y \land (\exists x(y < x))) \\ \varphi_3(x) = &\exists y(x < y \land (\exists x(y < x \land \exists y(x < y)))) \quad \dots \\ & \text{what does } \varphi_p(x) \text{ say?} \end{split}$$

Let $\psi_p \stackrel{\text{def}}{=} \exists x \varphi_p(x) \land \neg \exists x \varphi_{p+1}(x)$. Then $L_m \vDash \psi_m$, $L_n \notin \psi_m$, $\psi_m \in FO^2$.

⁶Switching x and y is a bit informal. Formally, we could set $\varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y(x < y \land \exists x(x = y \land \varphi_p(x))).$ Others ways are possible (without using =). Dan Suciu Finite Model Theory - Unit 2 Spring 2018 48 / 66

We cannot distinguish L_m , L_n in FO[r] (quantifier rank r), when $m, n \ge 2^r - 1$. But we can in FO^2 (two variables).

Proposition

If
$$m \neq n$$
 then $L_m \neq^2_{FO} L_n$.

Proof. Define⁶ $\varphi_0(x) \stackrel{\text{def}}{=} \mathbf{T}, \ \varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y((x < y) \land \varphi_p(y)).$

$$\begin{split} \varphi_1(x) = &\exists y(x < y) \quad \varphi_2(x) = \exists y(x < y \land (\exists x(y < x))) \\ \varphi_3(x) = &\exists y(x < y \land (\exists x(y < x \land \exists y(x < y)))) \quad \dots \\ & \text{what does } \varphi_p(x) \text{ say?} \end{split}$$

Let
$$\psi_p \stackrel{\text{def}}{=} \exists x \varphi_p(x) \land \neg \exists x \varphi_{p+1}(x)$$
. Then $L_m \vDash \psi_m$, $L_n \notin \psi_m$, $\psi_m \in FO^2$.

⁶Switching x and y is a bit informal. Formally, we could set $\varphi_{p+1}(x) \stackrel{\text{def}}{=} \exists y(x < y \land \exists x(x = y \land \varphi_p(x))). \text{ Others ways are possible (without using =).}$ Dan Suciu Finite Model Theory – Unit 2 Spring 2018 48 / 66 Example: EVEN

- "Graph G has an EVEN number of nodes" is not expressible in L^ω_{∞ω}.
 Proof. Suppose φ ∈ L^k_{∞ω} expresses it; let⁷ G_n def ([n], Ø).
 Prove (in class): if n ≥ k then G_n ~^k_{∞ω} G_{n+1}.
- "Graph G has an EVEN number of edges" is not expressible in L^ω_{∞ω}.
 Proof. Suppose φ ∈ L^k_{∞ω} expresses it; let⁸ K_n ^{def} = ([n], [n] × [n]).
 Prove in class: if n ≥ k then K_n ~^k_{∞ω} K_{n+1}.

- "Graph G has an EVEN number of nodes" is not expressible in L^ω_{∞ω}. Proof. Suppose φ ∈ L^k_{∞ω} expresses it; let⁷ G_n ^{def} = ([n], Ø). Prove (in class): if n ≥ k then G_n ~^k_{∞ω} G_{n+1}.
- "Graph *G* has an EVEN number of edges" is not expressible in $L^{\omega}_{\infty\omega}$. Proof. Suppose $\varphi \in L^{k}_{\infty\omega}$ expresses it; let⁸ $K_{n} \stackrel{\text{def}}{=} ([n], [n] \times [n])$. Prove in class: if $n \ge k$ then $K_{n} \sim^{k}_{\infty\omega} K_{n+1}$.

- "Graph G has an EVEN number of nodes" is not expressible in $L^{\omega}_{\infty \omega}$. Proof. Suppose $\varphi \in L^k_{\infty \omega}$ expresses it; let $G_n \stackrel{\text{def}}{=} ([n], \varphi)$. Prove (in class): if $n \ge k$ then $G_n \sim_{\infty}^k G_{n+1}$.
- "Graph G has an EVEN number of edges" is not expressible in $L^{\omega}_{\infty \omega}$.

- "Graph G has an EVEN number of nodes" is not expressible in $L_{\infty\omega}^{\omega}$. Proof. Suppose $\varphi \in L_{\infty\omega}^{k}$ expresses it; let⁷ $G_n \stackrel{\text{def}}{=} ([n], \emptyset)$. Prove (in class): if $n \ge k$ then $G_n \sim_{\infty\omega}^{k} G_{n+1}$.
- "Graph G has an EVEN number of edges" is not expressible in L^ω_{∞ω}. Proof. Suppose φ ∈ L^k_{∞ω} expresses it; let⁸ K_n ^{def} = ([n], [n] × [n]). Prove in class: if n ≥ k then K_n ~^k_{∞ω} K_{n+1}.

⁷Empty graph. ⁸Complete graph.

Main Theorem of Pebble Games

- **(**) $\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ denotes: duplicator wins the *k*-pebble game.
- **2** $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in L_{\infty \omega}^{k}$
- **3** $\mathbf{A} \equiv_{\mathsf{FO}}^k \mathbf{B}$ denotes: $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$, forall $\varphi \in FO^k$.

Theorem

1 and 2 are equivalent. When A, B are finite, then all are equivalent.

We will prove:

The proof is almost identical to the EF-games! (Good that we covered that.)

$\boldsymbol{A} \approx_{\infty \omega}^{k} \boldsymbol{B}$ implies $\boldsymbol{A} \equiv_{\infty \omega}^{k} \boldsymbol{B}$

Induction on k.

k = 0: same as for EF.

k > 0: same as for EF. We prove $\mathbf{A} \models \varphi$ iff $\mathbf{B} \models \varphi$ by induction⁹ on φ .

• $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $a \in A$ s.t. $\mathbf{A} \models \psi(a)$. We ask duplicator "what do you answer to a?". She says bThen $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.

• If $\varphi = \bigvee_{i \in I} \psi_i$, then $A \models \varphi$ implies exists $i \in I$ s.t. $A \models \psi_i$. By induction on φ , $B \models \psi_i$, hence $B \models \varphi$.

• Etc.

'Transfinite induction! since $\varphi \in L^k_{\infty\omega}$

$\boldsymbol{A} \approx_{\infty\omega}^{k} \boldsymbol{B}$ implies $\boldsymbol{A} \equiv_{\infty\omega}^{k} \boldsymbol{B}$

Induction on k.

- k = 0: same as for EF.
- k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .
 - $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $a \in A$ s.t. $\mathbf{A} \models \psi(a)$. We ask duplicator "what do you answer to a?". She says bThen $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
 - If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

• Etc.

$\mathbf{A} \approx_{\infty \omega}^{k} \mathbf{B}$ implies $\mathbf{A} \equiv_{\infty \omega}^{k} \mathbf{B}$

Induction on k.

- k = 0: same as for EF.
- k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .
 - $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
 - If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

• Etc.

$\boldsymbol{A} \approx_{\infty \omega}^{k} \boldsymbol{B}$ implies $\boldsymbol{A} \equiv_{\infty \omega}^{k} \boldsymbol{B}$

Induction on k.

k = 0: same as for EF.

k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .

- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
- If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

• Etc.

A	$\approx^{k}_{\infty\omega}$	B	impl	ies	A	$\equiv^k_{\infty\omega}$	В
---	------------------------------	---	------	-----	---	---------------------------	---

Induction on k.

k = 0: same as for EF.

k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .

- $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
- If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

• Etc.

Induction on k.

- k = 0: same as for EF.
- k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .
 - $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
 - If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

• Etc.

$\mathbf{A} \approx_{\infty\omega}^{\mathbf{k}} \mathbf{B}$ implies $\mathbf{A} \equiv_{\infty\omega}^{\mathbf{k}}$

Induction on k.

- k = 0: same as for EF.
- k > 0: same as for EF. We prove $\boldsymbol{A} \vDash \varphi$ iff $\boldsymbol{B} \vDash \varphi$ by induction⁹ on φ .
 - $\varphi = \exists x \psi$. If $\mathbf{A} \models \varphi$, there is $\mathbf{a} \in A$ s.t. $\mathbf{A} \models \psi(\mathbf{a})$. We ask duplicator "what do you answer to \mathbf{a} ?". She says \mathbf{b} Then $(\mathbf{A}, c^A) \approx_{\infty \omega}^{k-1} (\mathbf{B}, c^B)$ (structures with a new constant c) WHY? $(\mathbf{A}, c^A) \models \psi(c) (\in L_{\infty \omega}^{k-1})$ implies $(\mathbf{B}, c^B) \models \psi(c)$ by induction on k. Thus, $\mathbf{B} \models \psi(b)$ and $\mathbf{B} \models \exists x(\psi(x))$.
 - If $\varphi = \bigvee_{i \in I} \psi_i$, then $\mathbf{A} \models \varphi$ implies exists $i \in I$ s.t. $\mathbf{A} \models \psi_i$. By induction on φ , $\mathbf{B} \models \psi_i$, hence $\mathbf{B} \models \varphi$.

Etc.

 $\boldsymbol{A} \equiv_{\infty \omega}^{k} \boldsymbol{B}$ implies $\boldsymbol{A} \equiv_{FO}^{k} \boldsymbol{B}$

(obvious)

Describing Winning Strategies

A winning strategy for the duplicator is precisely a set \mathcal{I} of partial isomorphisms (a, b) satisfying:

Definition

 \mathcal{I} has the *back-and-forth* property up to *k* if $\mathcal{I} \neq \emptyset$ and:

• (Stronger than in EF games!) If $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then removing any pebble *j* still leaves them in \mathcal{I} :

$$((a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_i), (b_1, \ldots, b_{j-1}, b_{j+1}, \ldots, b_i)) \in \mathcal{I}$$

• Forth: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall a \in A, \exists b \in B$ s.t. $((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$

• Back: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall \mathbf{b} \in B, \exists a \in A \text{ s.t. } ((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, \mathbf{b})) \in \mathcal{I}$

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms with the back-and-forth property. **Proof in class**.

Describing Winning Strategies

A winning strategy for the duplicator is precisely a set \mathcal{I} of partial isomorphisms (a, b) satisfying:

Definition

 \mathcal{I} has the *back-and-forth* property up to *k* if $\mathcal{I} \neq \emptyset$ and:

(Stronger than in EF games!) If ((a₁,..., a_i), (b₁,..., b_i)) ∈ I then removing any pebble j still leaves them in I:

$$((a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_i), (b_1, \ldots, b_{j-1}, b_{j+1}, \ldots, b_i)) \in \mathcal{I}$$

• Forth: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall a \in A, \exists b \in B$ s.t. $((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, b)) \in \mathcal{I}$

• Back: forall i < k if $((a_1, \ldots, a_i), (b_1, \ldots, b_i)) \in \mathcal{I}$ then $\forall \mathbf{b} \in B, \exists a \in A \text{ s.t. } ((a_1, \ldots, a_i, a), (b_1, \ldots, b_i, \mathbf{b})) \in \mathcal{I}$

Fact: a strategy for the duplicator is precisely a set of partial isomorphisms with the back-and-forth property. Proof in class.

Dan Suciu

Finite Model Theory – Unit 2
		Games for ∃MSO	Games for Recursion	FO ^k Types		
Types						
Fix <i>k</i> and <i>m</i>						
Definition						
Fix A and $\mathbf{a} = (a_1, \ldots, a_m) \in A^m$. The $L_{\infty\omega}^k$ and the FO^k types are:						
tp_{\circ}^k	$_{\scriptscriptstyle ho\omega}({m A},{m a})$ ={ $arphi({m A},{m a})$	$(x_1,\ldots,x_m)\in L^k_{\infty\omega}$	$A \vDash \varphi(a_1, \ldots, a_m)$			
tp	$\frac{1}{2} (\boldsymbol{A}, \boldsymbol{a}) = \{\varphi(\boldsymbol{A}, \boldsymbol{a}) \}$	$(x_1,\ldots,x_m)\in FO^k$	$\boldsymbol{A} \vDash \varphi(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m) \}$			

Facts:

- Both sets are complete same as for EF
- There are infinitely many types of both kinds different from EF
- The pebble-games theorem implies: on finite structures, $tp_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = tp_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$ iff $tp_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = tp_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})$ surprising!

		Games for ∃MSO	Games for Recursion	FO ^k Types		
Types						
Fix <i>k</i> and <i>m</i>						
Definition						
Fix A and $\mathbf{a} = (a_1, \ldots, a_m) \in A^m$. The $L_{\infty\omega}^k$ and the FO^k types are:						
tp_{\circ}^k	$_{\scriptscriptstyle ho\omega}({m A},{m a})$ ={ $arphi({m A},{m a})$	$(x_1,\ldots,x_m)\in L^k_{\infty\omega}$	$A \vDash \varphi(a_1, \ldots, a_m)$			
tp	$\frac{1}{2} (\boldsymbol{A}, \boldsymbol{a}) = \{\varphi(\boldsymbol{A}, \boldsymbol{a}) \}$	$(x_1,\ldots,x_m)\in FO^k$	$\boldsymbol{A} \vDash \varphi(\boldsymbol{a}_1, \ldots, \boldsymbol{a}_m) \}$			

Facts:

- Both sets are complete same as for EF
- There are infinitely many types of both kinds different from EF
- The pebble-games theorem implies: on finite structures, $tp_{\infty\omega}^{k}(\boldsymbol{A}, \boldsymbol{a}) = tp_{\infty\omega}^{k}(\boldsymbol{B}, \boldsymbol{b})$ iff $tp_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = tp_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})$ surprising!

 $\boldsymbol{A} \equiv_{\mathsf{FO}}^k \boldsymbol{B} \text{ implies } \boldsymbol{A} \approx_{\infty \omega}^k \boldsymbol{B}$

Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \le k, \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})\}$

Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Let \mathbf{a}', \mathbf{b}' be \mathbf{a}, \mathbf{b} witout position j: then $tp_{FO}^k(\mathbf{A}, \mathbf{a}') = tp_{FO}^k(\mathbf{B}, \mathbf{b}')$ why? Because a formula $\varphi(x_1, \dots, x_i)$ does not need to use x_j . **Forth:** Suppose $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b}), |\mathbf{a}| = |\mathbf{b}| < k$. Let $\mathbf{a} \in A$. Claim: $\exists \mathbf{b} \in B$ s.t. $tp_{FO}^k(\mathbf{A}, (\mathbf{a}, \mathbf{a})) = tp_{FO}^k(\mathbf{B}, (\mathbf{b}, \mathbf{b}))$. Otherwise:

 $\forall b \in B, \exists \varphi_b(x_1, \dots, x_i, y) \in FO^k \text{ s.t. } \mathbf{A} \vDash \varphi_b(\mathbf{a}, \mathbf{a}) \qquad \mathbf{B} \notin \varphi_b(\mathbf{b}, b)$ $\forall b \in B, \qquad \mathbf{A} \vDash \bigwedge \varphi_{b'}(\mathbf{a}, \mathbf{a}) \qquad \mathbf{B} \notin \bigwedge \varphi_{b'}(\mathbf{b}, b)$

 $\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \mathbf{A} \vDash \psi(\mathbf{a}) \qquad \mathbf{B} \notin \psi(\mathbf{b})$

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar.

Dan Suciu

 $A \equiv_{FO}^{k} B$ implies $A \approx_{\infty \omega}^{k} B$ Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \le k, \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$.

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar.

Dan Suciu

 $A \equiv_{FO}^{k} B$ implies $A \approx_{\infty \omega}^{k} B$ Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \le k, \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $tp_{EQ}^k(\boldsymbol{A}, \boldsymbol{a}) = tp_{EQ}^k(\boldsymbol{B}, \boldsymbol{b})$. Let \mathbf{a}', \mathbf{b}' be \mathbf{a}, \mathbf{b} witout position j: then $\operatorname{tp}_{FO}^k(\mathbf{A}, \mathbf{a}') = \operatorname{tp}_{FO}^k(\mathbf{B}, \mathbf{b}')$ why? Because a formula $\varphi(x_1, \ldots, x_i)$ does not need to use x_i .

 $\psi \stackrel{\text{der}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \qquad \boldsymbol{B} \notin \psi(\boldsymbol{b})$

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar. $A \equiv_{FO}^{k} B$ implies $A \approx_{\infty \omega}^{k} B$ Define $\mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \le k, \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \operatorname{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $tp_{EQ}^k(\boldsymbol{A}, \boldsymbol{a}) = tp_{EQ}^k(\boldsymbol{B}, \boldsymbol{b})$. Let \mathbf{a}', \mathbf{b}' be \mathbf{a}, \mathbf{b} witout position j: then $\operatorname{tp}_{FO}^k(\mathbf{A}, \mathbf{a}') = \operatorname{tp}_{FO}^k(\mathbf{B}, \mathbf{b}')$ why? Because a formula $\varphi(x_1, \ldots, x_i)$ does not need to use x_i .

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar. $\begin{array}{l} \boldsymbol{A} \equiv_{FO}^{k} \boldsymbol{B} \text{ implies } \boldsymbol{A} \approx_{\infty \omega}^{k} \boldsymbol{B} \\ \begin{array}{l} \text{Define } \mathcal{I} = \{(\boldsymbol{a}, \boldsymbol{b}) \mid |\boldsymbol{a}| = |\boldsymbol{b}| \leq k, \text{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \text{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b}) \} \\ \begin{array}{l} \text{Then } ((), ()) \in \mathcal{I} \text{ same as for EF hence } \mathcal{I} \neq \emptyset. \\ \end{array} \\ \textbf{Removing pebbles: Suppose } \text{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \text{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b}). \\ \text{Let } \boldsymbol{a}', \boldsymbol{b}' \text{ be } \boldsymbol{a}, \boldsymbol{b} \text{ witout position } j: \text{ then } \text{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}') = \text{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b}') \\ \text{why? Because a formula } \varphi(x_{1}, \dots, x_{i}) \text{ does not need to use } x_{j}. \\ \textbf{Forth: Suppose } \text{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \text{tp}_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b}), \ |\boldsymbol{a}| = |\boldsymbol{b}| < k. \text{ Let } \boldsymbol{a} \in A. \\ \text{Claim: } \exists \boldsymbol{b} \in B \text{ s.t. } \text{tp}_{FO}^{k}(\boldsymbol{A}, (\boldsymbol{a}, \boldsymbol{a})) = \text{tp}_{FO}^{k}(\boldsymbol{B}, (\boldsymbol{b}, \boldsymbol{b})). \end{array} \\ \end{array}$

 $\forall b \in B, \exists \varphi_b(x_1, \dots, x_i, y) \in FO^k \text{ s.t. } A \vDash \varphi_b(a, a) \qquad B \notin \varphi_b(b, b)$ $\forall b \in B, \qquad A \vDash \bigwedge_{b' \in B} \varphi_{b'}(a, a) \qquad B \notin \bigwedge_{b' \in B} \varphi_{b'}(b, b)$

 $\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \qquad \boldsymbol{B} \notin \psi(\boldsymbol{b})$

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar.

Dan Suciu

Finite Model Theory - Unit 2

 $A \equiv_{FO}^{k} B \text{ implies } A \approx_{\infty\omega}^{k} B$ Define $\mathcal{I} = \{(a, b) \mid |a| = |b| \le k, \operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)$. Let a', b' be a, b witout position j: then $\operatorname{tp}_{FO}^{k}(A, a') = \operatorname{tp}_{FO}^{k}(B, b')$ why? Because a formula $\varphi(x_{1}, \dots, x_{i})$ does not need to use x_{j} . **Forth:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b), |a| = |b| < k$. Let $a \in A$. Claim: $\exists b \in B$ s.t. $\operatorname{tp}_{FO}^{k}(A, (a, a)) = \operatorname{tp}_{FO}^{k}(B, (b, b))$. Otherwise:

$$\forall b \in B, \exists \varphi_b(x_1, \dots, x_i, y) \in FO^k \text{ s.t. } \boldsymbol{A} \vDash \varphi_b(\boldsymbol{a}, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_b(\boldsymbol{b}, b)$$

$$\forall b \in B, \qquad \boldsymbol{A} \vDash \bigwedge_{b' \in B} \varphi_{b'}(\boldsymbol{a}, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \bigwedge_{b' \in B} \varphi_{b'}(\boldsymbol{b}, b)$$

$$\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \qquad \boldsymbol{B} \notin \psi(\boldsymbol{b})$$

 $\psi \in L_{\infty\omega}^k$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar. $A \equiv_{FO}^{k} B \text{ implies } A \approx_{\infty \omega}^{k} B$ Define $\mathcal{I} = \{(a, b) \mid |a| = |b| \le k, \operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)$. Let a', b' be a, b witout position j: then $\operatorname{tp}_{FO}^{k}(A, a') = \operatorname{tp}_{FO}^{k}(B, b')$ why? Because a formula $\varphi(x_{1}, \dots, x_{i})$ does not need to use x_{j} . **Forth:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b), |a| = |b| < k$. Let $a \in A$. Claim: $\exists b \in B$ s.t. $\operatorname{tp}_{FO}^{k}(A, (a, a)) = \operatorname{tp}_{FO}^{k}(B, (b, b))$. Otherwise:

$$\forall b \in B, \exists \varphi_b(x_1, \dots, x_i, y) \in FO^k \text{ s.t. } \mathbf{A} \vDash \varphi_b(\mathbf{a}, \mathbf{a}) \qquad \mathbf{B} \notin \varphi_b(\mathbf{b}, b)$$

$$\forall b \in B, \qquad \mathbf{A} \vDash \bigwedge_{b' \in B} \varphi_{b'}(\mathbf{a}, \mathbf{a}) \qquad \mathbf{B} \notin \bigwedge_{b' \in B} \varphi_{b'}(\mathbf{b}, b)$$

$$\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \qquad \boldsymbol{B} \notin \psi(\boldsymbol{b})$$

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar.

Dan Suciu

Finite Model Theory - Unit 2

 $A \equiv_{FO}^{k} B \text{ implies } A \approx_{\infty\omega}^{k} B$ Define $\mathcal{I} = \{(a, b) \mid |a| = |b| \le k, \operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)\}$ Then $((), ()) \in \mathcal{I}$ same as for EF hence $\mathcal{I} \neq \emptyset$. **Removing pebbles:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b)$. Let a', b' be a, b witout position j: then $\operatorname{tp}_{FO}^{k}(A, a') = \operatorname{tp}_{FO}^{k}(B, b')$ why? Because a formula $\varphi(x_{1}, \dots, x_{i})$ does not need to use x_{j} . **Forth:** Suppose $\operatorname{tp}_{FO}^{k}(A, a) = \operatorname{tp}_{FO}^{k}(B, b), |a| = |b| < k$. Let $a \in A$. Claim: $\exists b \in B$ s.t. $\operatorname{tp}_{FO}^{k}(A, (a, a)) = \operatorname{tp}_{FO}^{k}(B, (b, b))$. Otherwise:

$$\forall b \in B, \exists \varphi_b(x_1, \dots, x_i, y) \in FO^k \text{ s.t. } \boldsymbol{A} \vDash \varphi_b(\boldsymbol{a}, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \varphi_b(\boldsymbol{b}, b)$$

$$\forall b \in B, \qquad \boldsymbol{A} \vDash \bigwedge_{b' \in B} \varphi_{b'}(\boldsymbol{a}, \boldsymbol{a}) \qquad \boldsymbol{B} \notin \bigwedge_{b' \in B} \varphi_{b'}(\boldsymbol{b}, b)$$

$$\psi \stackrel{\text{def}}{=} \exists y \bigwedge_{b' \in B} \varphi_{b'}(x_1, \dots, x_i, y) \text{ then } \boldsymbol{A} \vDash \psi(\boldsymbol{a}) \qquad \boldsymbol{B} \notin \psi(\boldsymbol{b})$$

 $\psi \in L^k_{\infty\omega}$ or $\in FO^k$ when **B** is finite. Contradicts $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = tp_{FO}^k(\mathbf{B}, \mathbf{b})$. Back property: Similar.

Dan Suciu

Introduction Games for FO Games for BMSO Games for Recursion FO^k Types

Discussion

- If two finite structures can be distinguished by $L^k_{\infty\omega}$, then they can already be distinguished by FO^k .
- Positions in the pebble game are captured by FO^k -types, which are the same as $L^k_{\infty\omega}$ types.
- Don't confuse FO^k *m*-types tp_{FO}^k with rank *r m*-types $tp_{r,m}$, which refer to FO[r]. (Notation sucks.)
- Every type tp_{r,m} contains a finite number of formulas: hence their conjunction is a formula that fully characterizes the type.
- Every type tp^k_{FO} has infinitely many formulas. Still, we will prove (next) that each type is fully described by one formula in FO^k.

FO^k-Type Formula

Recall: an
$$FO^k$$
 m-type is:
 $tp_{FO}^k(\boldsymbol{A}, \boldsymbol{a}) \stackrel{\text{def}}{=} \{\varphi(x_1, \dots, x_m) \in FO^k \mid \boldsymbol{A} \vDash \varphi(a_1, \dots, a_m)\}.$

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

If τ were finite, then could take $\psi^{\tau} = \bigwedge_{\varphi \in \tau} \varphi$ But τ is finite, and the proof is much more subtle.

Before the proof, an application.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let (A_i, a_i) , i = 1, 2, 3, ... be all finite structures s.t. $A_i \models \varphi(a_i)$ why only countably many?

Let
$$\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$$
. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{fin} \bigvee_i \psi^{\tau_i}$. (1) if $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \models \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = tp_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \models \varphi(\boldsymbol{b})$.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let $(\mathbf{A}_i, \mathbf{a}_i)$, i = 1, 2, 3, ... be all finite structures s.t. $\mathbf{A}_i \models \varphi(\mathbf{a}_i)$ why only countably many?

Let $\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{\text{fin}} \bigvee_i \psi^{\tau_i}$. (1) if $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \models \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $\operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in \operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \models \varphi(\boldsymbol{b})$.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let $(\mathbf{A}_i, \mathbf{a}_i)$, i = 1, 2, 3, ... be all finite structures s.t. $\mathbf{A}_i \models \varphi(\mathbf{a}_i)$ why only countably many?

Let
$$\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$$
. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{\text{fin}} \bigvee_i \psi^{\tau_i}$. (1) if $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \models \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $\operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in \operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \models \varphi(\boldsymbol{b})$.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let $(\mathbf{A}_i, \mathbf{a}_i)$, i = 1, 2, 3, ... be all finite structures s.t. $\mathbf{A}_i \models \varphi(\mathbf{a}_i)$ why only countably many?

Let
$$\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$$
. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{fin} \bigvee_i \psi^{\tau_i}$.

(1) if $\boldsymbol{B} \vDash \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \vDash \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \vDash \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \vDash \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $\operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in \operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \vDash \varphi(\boldsymbol{b})$.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let $(\mathbf{A}_i, \mathbf{a}_i)$, i = 1, 2, 3, ... be all finite structures s.t. $\mathbf{A}_i \models \varphi(\mathbf{a}_i)$ why only countably many?

Let
$$\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$$
. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{\text{fin}} \bigvee_i \psi^{\tau_i}$. (1) if $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \models \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $\operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in \operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \models \varphi(\boldsymbol{b})$.

Corollary

Let $\varphi \in L_{\infty\omega}^k$. Then there exists a sequence of formulas $\psi_i \in FO^k$, $i = 1, 2, \dots s.t. \ \varphi \equiv_{fin} \psi_1 \lor \psi_2 \lor \psi_3 \lor \cdots$

In other words, only one single countable \lor suffices to capture $L_{\infty\omega}^k$. **Proof** Let $(\mathbf{A}_i, \mathbf{a}_i)$, i = 1, 2, 3, ... be all finite structures s.t. $\mathbf{A}_i \models \varphi(\mathbf{a}_i)$ why only countably many?

Let
$$\tau_i = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$$
. Notice: $\varphi \in \tau_i$ forall *i*.

Claim: $\varphi \equiv_{\text{fin}} \bigvee_i \psi^{\tau_i}$. (1) if $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ then $\exists i \text{ s.t. } (\boldsymbol{B}, \boldsymbol{b}) = (\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$. (2) if $\boldsymbol{B} \models \bigvee_i \psi^{\tau_i}(\boldsymbol{b})$ then $\exists i \text{ s.t. } \boldsymbol{B} \models \psi^{\tau_i}(\boldsymbol{b})$, hence, by the Theorem, $\operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b}) = \operatorname{tp}_{FO}^k(\boldsymbol{A}_i, \boldsymbol{a}_i)$, hence $\varphi \in \operatorname{tp}_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$, hence $\boldsymbol{B} \models \varphi(\boldsymbol{b})$.

Discussion

- Theorem says: every FO^k type τ, is described (on finite structures) by one formula ψ^τ ∈ FO^k.
- If we restricted the quantifier rank, then τ is finite and we take $\psi^{\tau} = \bigwedge_{\varphi \in \tau} \varphi$.
- But quantifier rank of formulas in τ is unbounded (and τ is infinite).
- Yet τ is described by one formula, with some fixed quantifier rank. What is $qr(\psi^{\tau})$?

(How do we get from the infinite τ a finite bound for $qr(\psi^{\tau})$?)

FO^k Types

Discussion

- Theorem says: every FO^k type τ, is described (on finite structures) by one formula ψ^τ ∈ FO^k.
- If we restricted the quantifier rank, then τ is finite and we take $\psi^{\tau} = \bigwedge_{\varphi \in \tau} \varphi$.
- But quantifier rank of formulas in τ is unbounded (and τ is infinite).
- Yet τ is described by one formula, with some fixed quantifier rank. What is $qr(\psi^{\tau})$? (How do we get from the infinite τ a finite bound for $qr(\psi^{\tau})$?)
- Answer: we assume τ is satisfied by some *finite structure* (**B**, **b**); this will give us the desired finite rank.
- If τ is not satisfiable in the finite, then simply take ψ^τ = F.
 We assume F is an FO^k type.

FO^k-Type Formula

Theorem

For every FO^k type *m*-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Proof plan. Fix a structure $(\boldsymbol{B}, \boldsymbol{b})$ s.t. $\tau = tp_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})$.

- Types of quantifier-rank r = 1, 2, 3, ... reach a fixpoint on **B** for r = R.
- Then $\psi^{\tau}(\mathbf{x})$ will says two things:
 - **1** TYPE_R(\mathbf{x}): " \mathbf{x} has the R, m-type of (\mathbf{B}, \mathbf{b})" and,
 - **2** DONE_R: "every R + 1, *m*-type is some R, *m* type"

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \ldots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.)

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \ldots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m | \boldsymbol{B} \vDash \varphi_{i,r}(\boldsymbol{c})$ }.

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \dots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m \mid \boldsymbol{B} \vDash \varphi_{i,r}(\boldsymbol{c})$ }.

Defining $TYPE_R(x)$

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \dots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m \mid \boldsymbol{B} \vDash \varphi_{i,r}(\boldsymbol{c})$ }.

¹⁰Some equivalence classes are empty.

Defining $TYPE_R(x)$

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \dots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m | \boldsymbol{B} \models \varphi_{i,r}(\boldsymbol{c})$ }. The equivalence classes for r + 1 are a refinement of those for r.

Defining $TYPE_R(x)$

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \dots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m | \boldsymbol{B} \models \varphi_{i,r}(\boldsymbol{c})$ }. The equivalence classes for r + 1 are a refinement of those for r.

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \dots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m | \boldsymbol{B} \models \varphi_{i,r}(\boldsymbol{c})$ }. The equivalence classes for r + 1 are a refinement of those for r. Since \boldsymbol{B} is finite, the refinement stops at some R.

For each quantifier rank r, there are finitely many, say n_r , types. Each is described by one formula: $\varphi_{1,r}, \varphi_{2,r}, \ldots, \varphi_{n_r,r} \in FO^k[r]$. (Note: every $\varphi \in FO^k[r]$ is a union of types $\varphi = \bigvee_i \varphi_{i,r}$.) Each $\varphi_{i,r}$ defines the equivalence class¹⁰ { $\boldsymbol{c} \in B^m | \boldsymbol{B} \vDash \varphi_{i,r}(\boldsymbol{c})$ }. The equivalence classes for r + 1 are a refinement of those for r. Since \boldsymbol{B} is finite, the refinement stops at some R.

Define: TYPE_{*R*}(
$$\boldsymbol{x}$$
) $\stackrel{\text{def}}{=} \varphi_{i,R}(\boldsymbol{x})$
where i = "the *R*-type of **b**"

Note: <u>all</u> types reach a fixpoint at rank *R*, not just **b**

Every rank r + 1 type refines some rank r type: $\forall j \exists i_j$, $\models \forall \mathbf{x}(\varphi_{j,r+1}(\mathbf{x}) \rightarrow \varphi_{i_j,r}(\mathbf{x}))$

In **B**, this becomes an equivalence at rank R: $\mathbf{B} \vDash \forall \mathbf{x} (\varphi_{j,R+1}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Define: $\text{DONE}_R \stackrel{\text{def}}{=} \bigwedge_{j=1, n_{R+1}} \forall \mathbf{x} (\varphi_{j, R+1} (\mathbf{x}) \leftrightarrow \varphi_{i_j, R} (\mathbf{x}))$

Assuming DONE_R, every rank r > R is equivalent to some rank R:

Lemma

If r > R, then $\forall j \exists i_j \ s.t. \ DONE_R \vDash \bigwedge_{j=1,n_r} \forall x(\varphi_{j,r}(x) \leftrightarrow \varphi_{i_j,R}(x))$

Every rank r + 1 type refines some rank r type: $\forall j \exists i_j$, $\models \forall \mathbf{x}(\varphi_{j,r+1}(\mathbf{x}) \rightarrow \varphi_{i_j,r}(\mathbf{x}))$

In **B**, this becomes an equivalence at rank R: $\mathbf{B} \vDash \forall \mathbf{x}(\varphi_{j,R+1}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Define: $\text{DONE}_R \stackrel{\text{def}}{=} \bigwedge_{j=1,n_{R+1}} \forall \mathbf{x}(\varphi_{j,R+1}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Assuming DONE_R, every rank r > R is equivalent to some rank R:

Lemma

If r > R, then $\forall j \exists i_j \ s.t. \ DONE_R \vDash \bigwedge_{j=1,n_r} \forall \mathbf{x}(\varphi_{j,r}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Every rank r + 1 type refines some rank r type: $\forall j \exists i_j$, $\models \forall \mathbf{x}(\varphi_{j,r+1}(\mathbf{x}) \rightarrow \varphi_{i_j,r}(\mathbf{x}))$

In **B**, this becomes an equivalence at rank R: $\mathbf{B} \vDash \forall \mathbf{x}(\varphi_{j,R+1}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Define:
$$\text{DONE}_R \stackrel{\text{def}}{=} \bigwedge_{j=1, n_{R+1}} \forall \boldsymbol{x}(\varphi_{j, R+1}(\boldsymbol{x}) \leftrightarrow \varphi_{i_j, R}(\boldsymbol{x}))$$

Assuming DONE_R, every rank r > R is equivalent to some rank R:

Lemma

If r > R, then $\forall j \exists i_j \text{ s.t. } DONE_R \vDash \bigwedge_{j=1,n_r} \forall \mathbf{x}(\varphi_{j,r}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Every rank r + 1 type refines some rank r type: $\forall j \exists i_j$, $\models \forall \mathbf{x}(\varphi_{j,r+1}(\mathbf{x}) \rightarrow \varphi_{i_j,r}(\mathbf{x}))$

In **B**, this becomes an equivalence at rank R: $\mathbf{B} \vDash \forall \mathbf{x}(\varphi_{j,R+1}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Define: $\text{DONE}_R \stackrel{\text{def}}{=} \bigwedge_{j=1, n_{R+1}} \forall \boldsymbol{x} (\varphi_{j, R+1}(\boldsymbol{x}) \leftrightarrow \varphi_{i_j, R}(\boldsymbol{x}))$

Assuming DONE_R, every rank r > R is equivalent to some rank R:

Lemma

If
$$r > R$$
, then $\forall j \exists i_j \text{ s.t. } DONE_R \vDash \bigwedge_{j=1,n_r} \forall \mathbf{x}(\varphi_{j,r}(\mathbf{x}) \leftrightarrow \varphi_{i_j,R}(\mathbf{x}))$

Will show: every R + 2 type is equivalent to some R type; induction follows.

$$\varphi_{j,R+2} \equiv \varphi_{j_0,R+1} \wedge F(\cdots \exists x_{\ell} \varphi_{j,R+1}, \cdots)$$

Boolean combination F of all R + 1 types $\varphi_{j,R+1}$ plus one extra $\exists x_{\ell}$

DONE_R asserts that each $\varphi_{j,R+1}$ is equivalent to some $\varphi_{i_i,R}$:

$$\varphi_{j,R+2} \equiv \underbrace{\varphi_{j_0,R+1} \land F(\cdots \exists x_{\ell} \varphi_{i_j,R}, \cdots)}_{\text{quantifier rank } R+1}$$

 $\varphi_{j,R+2} \equiv \varphi_{j_0,R+1}$ or $\varphi_{j,R+2} \equiv \mathbf{F}$ why?

Assuming DONE_R, we have $\varphi_{j_0,R+1} \equiv \varphi_{i_{j_0},R}$.

Proof of the Theorem

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$\tau = tp_{FO}^{k}(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_{R}(\boldsymbol{x}) \land DONE_{R}$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$:

 $\varphi(\mathbf{x}) = \bigvee \varphi_{j,r}(\mathbf{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_r$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R \text{-type}$

 $B \models \varphi(\mathbf{b})$ Dan Suciu

Finite Model Theory – Unit 2

64 / 66

Proof of the Theorem

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$\tau = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$: $\varphi(\boldsymbol{x}) = \bigvee_{j} \varphi_{j,r}(\boldsymbol{x})$ disjunction of some *r*-types $\varphi(\boldsymbol{x}) = \bigvee_{i} \varphi_{i,R}(\boldsymbol{x})$ disjunction of some *R*-types (because $\boldsymbol{A} \models \text{DONE}_{r}$ $\varphi(\boldsymbol{x}) \leftarrow \text{TYPE}_{R}(\boldsymbol{x})$ TYPE_R is an *R*-type $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE_R Dan Suciu Finite Model Theory – Unit 2 Spring 2018 6
Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$: $\varphi(\boldsymbol{x}) = \bigvee_{j} \varphi_{j,r}(\boldsymbol{x})$ disjunction of some *r*-types $\varphi(\boldsymbol{x}) = \bigvee_{i} \varphi_{i,R}(\boldsymbol{x})$ disjunction of some *R*-types (because $\boldsymbol{A} \models \text{DONE}_{r}$ $\varphi(\boldsymbol{x}) \leftarrow \text{TYPE}_{R}(\boldsymbol{x})$ TYPE_R is an *R*-type $\boldsymbol{B} \models \varphi(\boldsymbol{b})$ because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE_R

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$:

 $= \bigvee \varphi_{j,r}(\mathbf{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_r$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R\text{-type}$

because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$: $\varphi(\boldsymbol{x}) = \bigvee_{i} \varphi_{j,r}(\boldsymbol{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee_{i,R} \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_r$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R\text{-type}$

because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE_R

Finite Model Theory - Unit 2

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{ au}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$:

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{j,r}(\mathbf{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_r$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R \text{-type}$

because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE_R

Dan Suciu

Finite Model Theory – Unit 2

Theorem

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{\tau}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $\operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Assume $(\boldsymbol{A}, \boldsymbol{a}) \models \psi^{\tau}$. Let $\varphi \in \operatorname{tp}_{FO}^{k}(\boldsymbol{A}, \boldsymbol{a})$ and $r = \max(qr(\varphi), R)$:

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{j,r}(\mathbf{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_{r}$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R\text{-type}$

Dan Suciu

Finite Model Theory – Unit 2

Theorem

 $\boldsymbol{B} \models \varphi(\boldsymbol{b})$

Dan Suciu

For every FO^k type m-type τ , there exist a formula $\psi^{\tau} \in FO^k$ s.t., for any finite structure \mathbf{A} , $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$ iff $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$.

Recall:
$$au = tp_{FO}^k(\boldsymbol{B}, \boldsymbol{b})$$

 $\psi^{ au}(\boldsymbol{x}) = TYPE_R(\boldsymbol{x}) \land DONE_R$

Assume $tp_{FO}^k(\mathbf{A}, \mathbf{a}) = \tau$; by construction $\psi^{\tau} \in \tau$, hence $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$. Assume $(\mathbf{A}, \mathbf{a}) \models \psi^{\tau}$. Let $\varphi \in tp_{FO}^k(\mathbf{A}, \mathbf{a})$ and $r = \max(qr(\varphi), R)$:

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{j,r}(\mathbf{x})$ disjunction of some *r*-types

 $\varphi(\mathbf{x}) = \bigvee_{i} \varphi_{i,R}(\mathbf{x})$ disjunction of some *R*-types (because $\mathbf{A} \models \text{DONE}_r$)

 $\varphi(\mathbf{x}) \leftarrow \mathsf{TYPE}_R(\mathbf{x}) \quad \mathsf{TYPE}_R \text{ is an } R\text{-type}$

because the type of $(\boldsymbol{B}, \boldsymbol{b})$ is TYPE_R

Finite Model Theory - Unit 2

Introduction Games for FO Games for 3MSO Games for Recursion FO^k Types
Recap

 Recap: a "type" τ is a maximally consistent set of formulas with m free variables, from some language (e.g. FO[r] or FO^k or FO^k[r]).

Equivalently, a "type" τ is the set of formulas that satisfy some
 (A, a) (where |a| = m).

Discussion

Can we describe a type τ using a single formula?

- FO[r] has finitely many formulas. Hence, a type is uniquely described by their conjunction, $\varphi_{r,m}$.
- FO^k has infinitely many formulas. The theorem says that, surprisingly(!), we can still describe it by a single formula ψ^{τ} , but only on finite structures.
- What is the quantifier rank of ψ^{τ} ? Since τ is satisfied by some finite structure, its rank r is the smallest needed to express it in that structure.
- ψ^{τ} is $\varphi_{r,m}$ AND the assertion that this rank is sufficient.