Finite Model Theory Unit 1

Dan Suciu

Spring 2018

Welcome to 599c: Finite Model Theory

- Logic is the foundation of Mathematics (see Logicomix).
- Logic is the foundation of computing (see Turing Machines).
- Finite Model Theory is Logic restricted to finite models.
- Applications of FMT: Verification, Databases, Complexity
- This course is about:
 - Classic results in Mathematical Logic
 - Classic results in Finite Model Theory
 - New results in Finite Model Theory
 - Most results are negative, but some positive results too.
- This course is not about: systems, implementation, writing programs.

Course Organization

Lectures:

- Regular time: MW 10 11:20, CSE 303
- Canceled: April 9, 11; May 14, 16.
- Makeup (all in CSE 303):
 4/6 (10-11:20), 4/20 (10-11:20), 5/17 (9:30-10:50), 5/18 (10-11:20)

Homework assignment:

- 6 Homework assignments
- Short problems, but some require thinking.
- Email them to me by the due date.
- Ignore points: I will grade all 6 together as Credit/No-credit.
- Discussion on the bboard encouraged!
- Goal: no stress, encourage to participate and think.

Resources

- Required (fun) reading: Logicomix.
- Libkin Finite Model Theory.
- Enderton A Mathematical Introduction to Logic.
- Barnes and Mack An Algebraic Introduction to Logic.
- Abiteboul, Hull, Vianu, Database Theory
- Several papers, talks, etc.
- Course on Friendly Logics from UPenn (by Val Tannen and Scott Weinstein) (older version:
 - http://www.cis.upenn.edu/~val/CIS682/)

Course Outline

- Unit 1 Classical Model Theory and Applications to FMT.
- Unit 2 Games and expressibility.
- Unit 3 Descriptive Complexity.
- Unit 4 Query Containment.
- Unit 5 Algorithmic FMT.
- Unit 6 Tree Decomposition. Guest lecturer: Hung Ngo.
- Unit 7 Provenance semirings. Guest lecturer: Val Tannen.
- Unit 8 Semantics of datalog programs.

Structures

A vocabulary σ is a set of relation symbols R_1, \ldots, R_k and function symbols f_1, \ldots, f_m , each with a fixed arity.

A structure is
$$\mathbf{D} = (D, R_1^D, \dots, R_k^D, f_1^D, \dots, f_m^D)$$
, where $R_i^D \subseteq (D)^{\operatorname{arity}(R_i)}$ and $f_j^D : (D)^{\operatorname{arity}(f_j)} \to D$.

D =the domainor the universe.

 $v \in D$ is called a value or a point.

D called a *structure* or a *model* or *database*.

Examples

A graph is
$$G = (V, E)$$
, $E \subseteq V \times V$.

A field is $\mathbb{F} = (F, 0, 1, +, \cdot)$ where

- F is a set.
- 0 and 1 are constants (i.e. functions $F^0 \to F$).
- + and · are functions $F^2 \rightarrow F$.

An ordered set is $S = (S, \leq)$ where $\leq \subseteq S \times S$.

A database is D = (Domain, Customer, Order, Product).

Discussion

- We don't really need functions, since $f: D^k \to D$ is represented by its graph $\subseteq D^{k+1}$, but we keep them when convenient.
- If f is a 0-ary function $D^0 \to D$, then it is a constant D, and we denote it c rather than f.

• D can be a finite or an infinite structure.

First Order Logic

Fix a vocabulary σ and a set of variables $x_1, x_2, ...$

Terms:

- Every constant c and every variable x is a term.
- If t_1, \ldots, t_k are terms then $f(t_1, \ldots, t_k)$ is a term.

Formulas:

- F is a formula (means false).
- If t_1, \ldots, t_k are terms, then $t_1 = t_2$ and $R(t_1, \ldots, t_k)$ are formulas.
- If φ, ψ are formulas, then so are $\varphi \to \psi$ and $\forall x(\varphi)$.

Discussion

F often denoted: false or \bot or 0.

= is not always part of the language

Derived operations:

- $\neg \varphi$ is a shorthand for $\varphi \rightarrow \mathbf{F}$.
- $\varphi \lor \psi$ is a shorthand for $(\neg \varphi) \to \psi$.
- $\varphi \wedge \psi$ is a shorthand for $\neg(\varphi \vee \psi)$.
- $\exists x(\varphi)$ is a shorthand for $\neg(\forall x(\neg \varphi))$.

Formulas and Sentences

We say that $\forall x(\varphi)$ binds x in φ . Every occurrence of x in φ is bound. Otherwise it is *free*.

A sentence is a formula φ without free variables.

E.g. formula $\exists y (E(x,y) \land E(y,z))$.

E.g. sentence $\exists x \forall z \exists y (E(x,y) \land E(y,z))$.

Truth

Let φ be a formula with free variables $\boldsymbol{x}=(x_1,\ldots,x_k)$. Let \boldsymbol{D} be a structure, and $\boldsymbol{a}=(a_1,\ldots,a_k)\in D^k$. We say that φ is true in \boldsymbol{D} , written:

$$D \vDash \varphi[\mathbf{a}/\mathbf{x}]$$

if:

- φ is $x_i = x_j$ and a_i , a_j are the same value.
- φ is $R(x_{i_1},\ldots,x_{i_n})$ and $(a_{i_1},\ldots,a_{i_n})\in R^D$.
- φ is $\psi_1 \to \psi_2$ and $\mathbf{D} \neq \psi_1[\mathbf{a}/\mathbf{x}]$, or $\mathbf{D} \models \psi_1[\mathbf{a}/\mathbf{x}]$ and $\mathbf{D} \models \psi_2[\mathbf{a}/\mathbf{x}]$.
- φ is $\forall y(\psi)$, and, forall $b \in D$, $\mathbf{D} \models \psi[(a_1, \dots, a_k, b)/(x_1, \dots, x_k, y)]$.

Problems

- Classical model theory:
 - Satisfiability Is φ true in some structure **D**?
 - Validity Is φ true in all structures **D**?
- Finite model theory, databases, verification:
 - Finite satisfiability/validity Is φ true in some/every finite structure **D**?
 - Model checking Given φ , **D**, determine whether **D** $\vDash \varphi$.
 - Query evaluation Given $\varphi(\mathbf{x})$, \mathbf{D} , compute $\{\mathbf{a} \mid \mathbf{D} \models \varphi[\mathbf{a}/\mathbf{x}]\}$.

Dan Suciu

What do these sentences say about D?

$$\exists x \exists y \exists z (x \neq y) \land (x \neq z) \land (y \neq z)$$

"There are at least three elements", i.e. $|D| \ge 3$

$$\exists x \exists y \forall z (z = x) \lor (z = y)$$

"There are at most two elements", i.e. $|D| \le 2$

What do these sentences say about D?

$$\forall x \exists y E(x, y) \lor E(y, x)$$

"There are no isolated nodes"

$$\forall x \forall y \exists z E(x, z) \land E(z, y)$$

"Every two nodes are connected by a path of length 2"

$$\exists x \exists y \exists z (\forall u(u=x) \lor (u=y) \lor (u=z))$$

$$\land \neg E(x,x) \land E(x,y) \land \neg E(x,z)$$

$$\land \neg E(y,z) \land \neg E(y,y) \land E(y,z)$$

$$\land E(z,x) \land \neg E(z,y) \land \neg E(z,z)$$

It completely determines the graph: $D = \{a, b, c\}$ and $a \rightarrow b \rightarrow c \rightarrow a$.

Dan Suciu

Logical Implication

Fix a set of sentences Σ (may be infinite).

 Σ implies φ , $\Sigma \vDash \varphi$, if every model of Σ is also a model of φ : $\mathbf{D} \vDash \Sigma$ implies $\mathbf{D} \vDash \varphi$.

 $Con(\Sigma) \stackrel{\text{def}}{=} {\varphi \mid \Sigma \vDash \varphi}$. Somtimes called the *theory* of Σ , $Th(\Sigma)$.

 Σ finitely implies φ , $\Sigma \vDash_{fin} \varphi$ if every *finite* model of Σ is also a model of φ .

Discussion

- $\mathbf{F} \vDash \varphi$ for any sentence φ why?.
- $\Sigma \models \mathbf{F}$ iff Σ is unsatisfiable why?.
- If $\Sigma \vDash \varphi$ and $\Sigma, \varphi \vDash \psi$ then $\Sigma \vDash \psi$ why?.
- If $\Sigma \vDash \varphi$ then $\Sigma \vDash_{\text{fin}} \varphi$, but the converse fails in general why?. Let λ_n say "there are at least n elements, and $\Sigma = \{\lambda_n \mid n \ge 1\}$. Then $\Sigma \vDash_{\text{fin}} \mathbf{F}$ but $\Sigma \not\models \mathbf{F}$ why?.
- If $\vDash \varphi$ then we call φ a tautology.

Theory

A theory is a set of sentences Σ closed under implication, i.e. $\Sigma = \mathsf{Con}(\Sigma)$.

A theory Σ is complete if, for every sentence φ , either $\varphi \in \Sigma$ or $\neg \varphi \in \Sigma$.

The theory of a set of structures \mathcal{D} is

 $\mathsf{Th}(\mathcal{D}) \stackrel{\mathsf{def}}{=} \{ \varphi \mid \varphi \text{ is true in every } \mathbf{D} \in \mathcal{D} \} \qquad \mathsf{closed under implication?}$

For a single structure D, Th(D) is complete why?

Discussion

Which of the following theories are complete?

- The theory of fields $\mathbb{F} = (F, 0, 1, +, \cdot)$. No: $\exists x(x^2 + 1 = 0)$
- The theory $\mathsf{Th}(\mathbb{R})$ (vocabulary $0,1,+,\cdot$). yes
- The theory of total orders:

$$\forall x \forall y \neg ((x < y) \land (y < x))$$

$$\forall x \forall y ((x < y) \lor (x = y) \lor (y < x))$$

$$\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$$

No: $\forall x \exists y (x < y)$.

 The theory of dense total orders without endpoints: axioms above plus

Dense: $\forall x \forall y (x < y \rightarrow \exists v (x < v < y))$

W/o Endpoints: $\forall x \exists u \exists w (u < x < w)$

Yes! Will prove later

The Sentence Map

Give examples for each of the five classes

$$\exists x(\neg(x=x))$$
 "< is a dense total order"
"if < is a total order, then it has a maximal element"

 $\exists x \exists y (E(x,y)) \\ \forall x (x = x)$

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 20 / 80

The Zero-One Law for FO

- Some sentences are neither true (in all structures) nor false.
- The Zero-One Law says this: over finite structures, every sentence is true or false with high probability.
- Proven by Fagin in 1976 (part of his PhD thesis).
- Although the statement is about *finite* structures, the proof uses theorems on *finite* and *infinite* structures.

The Zero-One Law for FO

Consider a relational vocabulary (i.e. no functions, no constants). Let φ be a sentence. Forall $n \in \mathbb{N}$ denote:

$$\#_{n}\varphi \stackrel{\text{def}}{=} |\{ \boldsymbol{D} \mid D = [n], \boldsymbol{D} \models \varphi \}$$

$$\#_{n}\boldsymbol{T} \stackrel{\text{def}}{=} \text{ number of models with universe } [n]$$

$$\mu_{n}(\varphi) \stackrel{\text{def}}{=} \frac{\#_{n}\varphi}{\#_{n}\boldsymbol{T}}$$

Theorem (Fagin'1976)

For every sentence φ , either $\lim_{n\to\infty} \mu_n(\varphi) = 0$ or $\lim_{n\to\infty} \mu_n(\varphi) = 1$.

Informally: for every φ , its probability goes to either 0 or 1, when $n \to \infty$; it is either almost certainly true, or almost certainly false.

Dan Suciu

Examples

Vocabulary of graphs: $\sigma = \{E\}$. Compute these probabilities:

$$\varphi = \forall x \forall y E(x, y) \qquad \#_n(\varphi) = 1 \qquad \qquad \mu_n = \frac{1}{2^{n^2}} \to 0$$

$$\varphi = \exists x \exists y E(x, y) \qquad \#_n(\varphi) = 2^{n^2} - 1 \qquad \qquad \mu_n = \frac{2^{n^2} - 1}{2^{n^2}} \to 1$$

$$\varphi = \forall x \exists y E(x, y) \qquad \qquad \mu_n = \frac{(2^n - 1)^n}{2^{n^2}} \to 1$$

Dan Suciu

The Sentence Map Revised

Discussion

Attempted proof: Derive the general formula $\#_n \varphi$, then compute $\lim \#_n \varphi / 2^{n^2}$ and observe it is 0 or 1.

Problem: we don't know how to compute $\#_n\varphi$ in general: there is evidence this is "hard"

Instead, we will prove the 0/1 law using three results from classical model theory.

Three Classical Results in Model Theory

We will discuss and prove:

- Compactness Theorem.
- Lövenheim-Skolem Theorem.
- Los-Vaught Test.

Then will use them to prove Fagin's 0/1 Law for First Order Logic.

Later we will discuss:

- Gödel's completeness theorem.
- Decidability of theories.
- Gödel's incompleteness theorem.

Compactness Theorem

Recall: Σ is satisfiable if it has a model, i.e. there exists \boldsymbol{D} s.t. $\boldsymbol{D} \models \varphi$, forall $\varphi \in \Sigma$.

Theorem (Compactness Theorem)

If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Short: if Σ is finitely satisfiable¹, then it is satisfiable.

Considered to be the most important theorem in Mathematical Logic.

¹Don't confuse with saying "Σ has a finite model"!

Compactness Theorem - Alternative Formulation

The following is equivalent to the Compactness Theorem:

Theorem

If $\Sigma \vDash \varphi$ then there exists a finite subset $\Sigma_{fin} \subseteq \Sigma$ s.t. $\Sigma_{fin} \vDash \varphi$.

Proof: assume Compactness holds, and assume $\Sigma \models \varphi$. If $\Sigma_{\text{fin}} \not\models \varphi$ for any finite subset, then the set $\Sigma \cup \{\neg \varphi\}$ is finitely satisfiable, hence it is satisfiable, contradiction.

In the other direction, let Σ be finitely satisfiable. If Σ is not satisfiable, then $\Sigma \vDash \boldsymbol{F}$, hence there is a finite subset s.t. $\Sigma_{\text{fin}} \vDash \boldsymbol{F}$, contradicting the fact that Σ_{fin} has a model.

Warmup: The Propositional Case

Let Σ be a set of Boolean formulas, a.k.a. Propositional formulas.

Theorem (Compactness for Propositional Logic)

If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Application: G = (V, E) is an infinite graph s.t. every finite subgraph is 3-colorable. Prove: G is 3-colorable.

Boolean Variables: $\{R_i, G_i, B_i \mid i \in V\}$ ("i is colored Red/Green/Blue").

$$\begin{split} \Sigma = & \{ R_i \vee G_i \vee B_i \mid i \in V \} \\ & \cup \{ \neg R_i \vee \neg R_j \mid (i,j) \in E \} \\ & \cup \{ \neg G_i \vee \neg G_j \mid (i,j) \in E \} \\ & \cup \{ \neg B_i \vee \neg B_j \mid (i,j) \in E \} \end{split}$$
 every node gets some color

Every finite subset of Σ is satisfiable, hence so is Σ .

Dan Suciu

Warmup: The Propositional Case

Two steps:

• Extend Σ to $\bar{\Sigma}$ that is both complete and finitely satisfiable.

• Use the Inductive Structure of a complete and finite satisfiable set.

Step 1: Extend Σ to a complete $\bar{\Sigma}$

Enumerate all formulas $\varphi_1, \varphi_2, \ldots$, and define:

$$\Sigma_0 = \Sigma \qquad \Sigma_{i+1} = \begin{cases} \Sigma_i \cup \{\varphi_i\} & \text{if } \Sigma_i \cup \{\varphi_i\} \text{ is finitely satisfiable} \\ \Sigma_i \cup \{\neg \varphi_i\} & \text{if } \Sigma_i \cup \{\neg \varphi_i\} \text{ is finitely satisfiable} \end{cases}$$

One of the two cases above must hold, because, otherwise both $\Sigma_i \cup \{\varphi_i\}$ and $\Sigma_i \cup \{\neg \varphi_i\}$ are finitely UNSAT, then $\Sigma_{\text{fin}} \cup \{\varphi_i\}$ and $\Sigma'_{\text{fin}} \cup \{\neg \varphi_i\}$ are UNSAT for $\Sigma_{\text{fin}}, \Sigma'_{\text{fin}} \subseteq \Sigma_i$, hence $\Sigma_{\text{fin}} \cup \Sigma'_{\text{fin}}$ is UNSAT, contradiction.

Then $\bar{\Sigma} \stackrel{\text{def}}{=} \bigcup_i \Sigma_i$ is complete and finitely satisfiable

Step 2: Inductive Structure of a Complete Set

Lemma

If $\overline{\Sigma}$ is a complete, and finitely satisfiable set, then:

- $\varphi \wedge \psi \in \bar{\Sigma}$ iff $\varphi, \psi \in \bar{\Sigma}$.
- $\varphi \lor \psi \in \bar{\Sigma} \text{ iff } \varphi \in \bar{\Sigma} \text{ or } \psi \in \bar{\Sigma}.$
- $\neg \varphi \in \bar{\Sigma}$. iff $\varphi \notin \bar{\Sigma}$

Proof in class

To prove Compactness Theorem for Propositional Logic, define this model:

$$\theta(X) \stackrel{\text{def}}{=} 1 \text{ if } X \in \bar{\Sigma}$$

 $\theta(X) \stackrel{\text{def}}{=} 0 \text{ if } X \notin \bar{\Sigma}$

Then $\theta(\varphi) = 1$ iff $\varphi \in \overline{\Sigma}$ (proof by induction on φ). Hence θ is a model for $\overline{\Sigma}$, and thus for Σ .

Proof of the Compactness Theorem for FO

In addition to the propositional case, we need to handle \exists

 Σ is witness-complete if, forall $\exists x(\varphi) \in \Sigma$, there is some c s.t. $\varphi[c/x] \in \Sigma$.

Extend Σ to a complete and witness-complete set $\bar{\Sigma}$, by adding countably many new constants c_1, c_2, \ldots proof in class

Define a model D for $\bar{\Sigma}$ as follows:

- Its domain D consists of all terms².
- For each relation R, $R^D \stackrel{\text{def}}{=} \{(t_1, \ldots, t_k) \mid R(t_1, \ldots, t_k) \in \overline{\Sigma}\}.$
- Similarly for a function *f* .

Check this is a model of $\bar{\Sigma}$ (by showing $\mathbf{D} \models \varphi$ iff $\varphi \in \bar{\Sigma}$), hence of Σ .

Dan Suciu

²Up to the equivalence defined by $t_1 = t_2 \in \overline{\Sigma}$.

Discussion

- Compactness Theorem is considered the most important theorem in Mathematical Logic.
- Our discussion was restricted to a finite vocabulary σ , but compactness holds for any vocabulary; e.g. think of having infinitely many constants c
- Gödel proved compactness as a simple consequence of his completeness theorem.
- We will later prove Gödel's completeness following a similar proof as for compactness.

Application of the Compactness Theorem

Can we say in FO "the world is inifite"? Or "the world is finite"?

• Find a set of sentences Λ whose models are precisely the infinite structures.

 $\Lambda = \{\lambda_1, \lambda_2, \ldots\}$ where λ_n says "there are $\geq n$ elements":

$$\lambda_n = \exists x_1 \cdots \exists x_n \bigwedge_{i < j} (x_i \neq x_j)$$

- Find a set of sentences Σ whose models are precisely the finite structures.
 - Imposible! If we could, then $\Sigma \cup \Lambda$ were finitely satisfiable, hence satisfiable, constradiction.

Löwenheim-Skolem Theorem

Suppose the vocabulary σ is finite.

Theorem (Löwenheim-Skolem)

If Σ admits an infinite model, then it admits a countable model.

In other words, we can say "the world is infinite", but we can't say how big it is.

Background: Cardinal Numbers

If there is a bijection $f: A \to B$ then we say that A, B are equipotent, or equipollent, or equinumerous, and write $A \cong B$.

We write |A| for the equivalence class of A under \cong .

Definition

A cardinal number is an equivalence class |A|.

We write $|A| \le |B|$ if there exists an injective function $A \to B$; equivalently, if there exists a surjective function $B \to A$.

Background: Cardinal Numbers

- 4 is a cardinal number, why? The equivalence class of $\{a, b, c, d\}$.
- 4 < 7, why? $\{a, b, c, d\} \rightarrow \{x, y, z, u, v, w, m\}$: $a \mapsto x, b \mapsto y$ etc.
- \aleph_0 is the *infinite countable cardinal*; equivalence class of \mathbb{N} .
- \mathfrak{c} is the *cardinality of the continuum*; equivalence class of \mathbb{R} .
- What is the cardinality of the even numbers $\{0, 2, 4, 6, \ldots\}$? \aleph_0 .
- What is the cardinality of [0,1]? c.
- What is the cardinality of ℚ? ℵ₀
- Is there a cardinal number between ℵ₀ and c? Either yes or no! (Recall Logicomix!)
- What is the cardinality of the set of sentences over a finite vocabulary? ℵ₀

Löwenheim-Skolem Theorem: Proof

Suppose the vocabulary σ is finite or countable.

Theorem

If Σ admits an infinite model, then it admits a countable model.

Proof in four steps:

- Write each sentence $\varphi \in \Sigma$ in prenex-normal form: $(\forall |\exists)^* \psi$.
- "Skolemize" Σ : replace each \exists with a fresh "Skolem" function f, e.g.

$$\forall x \exists y \forall z \exists u (\varphi) \mapsto \forall x \forall z (\varphi[f_1(x)/y, f_2(x, z)/u])$$

Let Σ' be the set of Skolemized sentences.

- Property of Skolemization: Σ satisfiable iff Σ' satisfiable. In class
- Proof of Löwenheim-Skolem. Let $D \models \Sigma$; then $D \models \Sigma'$ (by interpreting the Skolem functions appropriately).
- Let: D_0 be any <u>countable</u> subset of D, $D_{i+1} = \{f^D(d_1, \dots, d_k) \mid d_1, \dots, d_k \in D_i, f \in \sigma\}$. Then $\bigcup_i D_i$ is countable and a model of Σ' why?.

Discussion

- We have assumed that σ is finite, or countable.
- If σ has cardinality κ , then the Löwenheim-Skolem Theorem says that there exists a model of cardinality κ .
- The *upwards* version of the Löwenheim-Skolem Theorem³ if Σ has a model of infinite cardinality κ and $\kappa < \kappa'$ then it also has a model of cardinality κ' .

Proof: add to σ constants $c_k, k \in \kappa'$, add axioms $c_i \neq c_j$ for $i \neq j$. By compactness there is a model; then we repeat the previous proof of Löwenheim-Skolem.

³Called: Löwenheim-Skolem-Tarski theorem.

The Los-Vaught Test

Simple observation: if \mathbf{D}_1 , \mathbf{D}_2 are isomorphic then $\mathsf{Th}(\mathbf{D}_1) = \mathsf{Th}(\mathbf{D}_2)$.

Call $\Sigma \bowtie_0$ -categorical if any two countable models of Σ are isomorphic.

Theorem (Los-Vaught Test)

If Σ has no finite models and is \aleph_0 categorical then it is complete.

Proof. Suppose otherwise: there exists φ s.t. $\Sigma \not\models \neg \varphi$ and $\Sigma \not\models \varphi$. Then:

- $\Sigma \cup \{\varphi\}$ has a model D_1 ; assume it is countable why can we?
- $\Sigma \cup \{\neg \varphi\}$ has a model \mathbf{D}_2 ; assume it is countable.
- Then D_1, D_2 are isomorphic.
- Contradiction because $D_1 \vDash \varphi$ and $D_2 \vDash \neg \varphi$.

Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

$$\forall x \forall y \neg ((x < y) \land (y < x))$$

$$\forall x \forall y ((x < y) \lor (x = y) \lor (y < x))$$

$$\forall x \forall y \forall z ((x < y) \land (y < z) \rightarrow (x < z))$$

Dense: $\forall x \forall y (x < y \rightarrow \exists v (x < v < y))$

W/o Endpoints: $\forall x \exists u \exists w (u < x < w)$

Note: just "total order" is not complete!

Proof: we apply the Los-Vaught test.

Let A, B be countable models. Construct inductively $A_i \subseteq A$, $B_i \subseteq B$, and isomorphism $f_i : (A_i, <) \to (B_i, <)$, using the Back and Forth argument.

The Back-and-Forth argument

 $\mathbf{A} = (\{a_1, a_2, \ldots\}, <), \ \mathbf{B} = (\{b_1, b_2, \ldots\}, <)$ are total orders w/o endpoints. Prove they are isomorphic.

$$A_0 \stackrel{\mathsf{def}}{=} \varnothing$$
, $B_0 \stackrel{\mathsf{def}}{=} \varnothing$.

Assuming $(A_{i-1}, <) \cong (B_{i-1}, <)$, extend to $(A_i, <) \cong (B_i, <)$ as follows:

• Add a_i and any $b \in B$ s.t. $(A_{i-1} \cup \{a_i\}, <) \cong (B_{i-1} \cup \{b\})$.

• Add b_i and any matching $a \in A$.

Then $A = \bigcup A_i$, $B = \bigcup B_i$ and $(A, <) \cong (B, <)$.

Discussion

The Los-Vaught test applies to any cardinal number, as follows:

• If Σ has no finite models and is categorical in some infinite cardinal κ (meaning: any two models of cardinality κ are isomorphic) then Σ is complete.

Useful for your homework.

Recap: Three Classical Results in Model Theory

We proved:

- Compactness Theorem.
- Lövenheim-Skolem Theorem.
- Los-Vaught Test.

Next, we use them to prove Fagin's 0/1 Law for First Order Logic.

Proof of the Zero-One Law: Plan

Zero-one Law: $\lim_{n\to\infty} \mu_n(\varphi)$ is 0 or 1, for every φ

For simplicity, assume vocabulary of graphs, i.e. only binary E.

- Define a set Σ of extension axioms, $EA_{k,\Delta}$
- We prove that $\lim_n \mu_n(EA_{k,\Delta}) = 1$
- Hence Σ is finitely satisfiable.
- By compactness: Σ has a model.
- By Löwenheim-Skolem: has a countable model (called the Rado graph R, when undirected).
- We prove that all countable models of Σ are isomorphic.
- By Los-Vaught: Σ is complete.
- Then $\Sigma \vDash \varphi$ implies $\lim \mu_n(\varphi) = 1$ and $\Sigma \not\models \varphi$ implies $\lim \mu_n(\varphi) = 0$.

The Extension Formulas and the Extension Axioms

For k > 0 denote $S_k = ([k] \times \{k\}) \cup (\{k\} \times [k])$ and $\Delta \subseteq S_k$.

$$\begin{aligned} & EF_{k,\Delta}(x_1, \dots, x_{k-1}, x_k) = \bigwedge_{(i,j) \in \Delta} E(x_i, x_j) \wedge \bigwedge_{(i,j) \in S_k - \Delta} \neg E(x_i, x_j) \\ & EA_{k,\Delta} = \forall x_1 \dots \forall x_{k-1} (\bigwedge_{i < j < k} (x_i \neq x_j)) \rightarrow \exists x_k (\bigwedge_{i < k} (x_k \neq x_i) \wedge EF_{k,\Delta}) \end{aligned}$$

Intuition: we can extend the graph as prescribed by Δ .

How many extension axioms are there for k = 5?

Proof of $\lim_{n} \mu_n(EA_{k,\Delta}) = 1$

$$\begin{aligned} & EF_{k,\Delta}(x_1,\ldots,x_{k-1},x_k) = \bigwedge_{(i,j)\in\Delta} E(x_i,x_j) \wedge \bigwedge_{(i,j)\in S_k-\Delta} \neg E(x_i,x_j) \\ & EA_{k,\Delta} = \forall x_1 \ldots \forall x_{k-1} (\bigwedge_{i < j < k} (x_i \neq x_j)) \rightarrow \exists x_k (\bigwedge_{i < k} (x_k \neq x_i) \wedge EF_{k,\Delta}) \end{aligned}$$

$$\mu_{n}(\neg EA_{k,\Delta}) = \mu_{n}\left(\exists x_{1} \dots \exists x_{k-1}\left(\bigwedge(x_{i} \neq x_{j}) \land \forall x_{k}\left(\bigwedge(x_{k} \neq x_{i}) \rightarrow \neg EF_{k,\Delta}\right)\right)\right)$$

$$\leq \sum_{a_{1},\dots,a_{k-1}\in[n],a_{i}\neq a_{j}} \mu_{n}\left(\bigwedge_{\substack{a_{k}\in[n]-\{a_{1},\dots,a_{k-1}\}\\ a_{1},\dots,a_{k-1}\in[n],a_{i}\neq a_{j}}} \neg EF_{k,\Delta}(a_{1},\dots,a_{k})\right)$$

$$= \sum_{a_{1},\dots,a_{k-1}\in[n],a_{i}\neq a_{j}} \prod_{\substack{a_{k}\in[n]-\{a_{1},\dots,a_{k-1}\}\\ a_{1},\dots,a_{k-1}\in[n],a_{i}\neq a_{j}}} c \quad \text{where } c = 1 - \frac{1}{2^{2k-1}} < 1$$

$$\leq n^{k-1} c^{n-k+1} \rightarrow 0$$

Extension Axioms Have a Countable Model

Let $\Sigma = \{ EA_{k,\Delta} \mid k > 0, \Delta \subseteq S_k \}$ be the set of extension axioms.

 Σ is finitely satisfiable why?

Because forall $\varphi_1, \ldots, \varphi_m \in \Sigma$, $\mu_n(\varphi_1 \wedge \cdots \wedge \varphi_m) \to 1$

Hence, when n is large, there are many finite models for $\varphi_1, \ldots, \varphi_m$!

By compactness, Σ has a model.

By Löwenheim-Skolem, Σ has a countable model.

Extension Axioms have a Unique Countable Model

Need to prove: any two countable models A, B of Σ are isomorphic.

Will use the Back-and-Forth construction!

Let
$$\mathbf{A} = \{a_1, a_2, \ldots\}, \ \mathbf{B} = \{b_1, b_2, \ldots\}.$$

By induction on k, construct $(A_k, E_k) \cong (B_k, E'_k)$, using the back-and-forth construction and the fact that both A, B satisfy Σ .

Hence, there is a unique (up to isomorphism) countable model. Called *The Random Graph* or *Rado Graph*, *R* for undirected graphs. See Libkin.

Proof of the Zero-One Law

Let φ be any sentence: we'll prove $\mu_n(\varphi)$ tends to either 0 or 1.

 Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Assume $\Sigma \vDash \varphi$.

By compactness, then there exists a finite set $\{\psi_1,\ldots,\psi_m\} \vDash \varphi$

Thus, $\mu_n(\varphi) \ge \mu_n(\psi_1 \wedge \cdots \wedge \psi_m) \to 1$ why?

Assume $\Sigma \vDash \neg \varphi$: then $\mu_n(\neg \varphi) \to 1$, hence $\mu_n(\varphi) \to 0$.

Discussion

- The 0/1 law does *not* hold if there constants: e.g. $\lim \mu_n R(a,b) = 1/2$ (neither 0 nor 1). Where in the proof did we use this fact? (Homework!)
- The Random Graph R satisfies precisely those sentences for which $\lim \mu_n(\varphi) = 1$.
- We proved the 0/1 law when every edge E(i,j) has probability p=1/2. The same proof also holds when every edge has probability $p \in (0,1)$ (independent of n).
- The Erdös-Rényi random graph G(n,p) allows p to depend on n. 0/1 law for FO may or may not hold. discuss more in class

A Cool Application: Non-standard Analysis

"Infinitezimals" have been used in calculus since Leibniz and Newton.

But they are not rigorous! Recall Logicomix.

Example: compute the derivative of x^2 :

$$\frac{dx^2}{dx} = \frac{(x+dx)^2 - x^2}{dx} = \frac{2 \cdot x \cdot dx + (dx)^2}{dx} = 2x + dx \approx 2x$$

because dx is "infinitely small", hence $dx \simeq 0$.

Robinson in 1961 showed that how to define infinitezimals rigorously (and easily) using the compactness theorem!

The Nonstandard Reals

 \mathbb{R} = the true real numbers.

- Let σ be the vocabulary of all numbers, functions, relations:
 - Every number in \mathbb{R} has a symbol: $0, -5, \pi, \dots$
 - Every function $\mathbb{R}^k \to \mathbb{R}$ has a symbol: $+, *, -, \sin, \dots$
 - Every relation $\subseteq R^k$ has a symbol: $<, \ge, \dots$
- Let $\mathsf{Th}(\mathbb{R})$ all true sentences, e.g.:

$$\forall x (x^2 \ge 0)$$

$$\forall x \forall y (|x + y| \le |x| + |y|)$$

$$\forall x (\sin(x + \pi) = -\sin(x))$$

- Let Ω be a new constant, and $\Sigma \stackrel{\text{def}}{=} \mathsf{Th}(\mathbb{R}) \cup \{n < \Omega \mid n \in \mathbb{N}\}.$ " Ω is bigger than everything".
- Σ has a model * \mathbb{R} . WHY?

What exactly is \mathbb{R} ???

- Every number in \mathbb{R} also exists in ${}^*\mathbb{R}$: $0, -5, \pi, \dots$
- Every function $\mathbb{R}^k \to \mathbb{R}$ has an extension $(*\mathbb{R})^k \to *\mathbb{R}$.
- Every relation $\subseteq \mathbb{R}^k$ has a corresponding $\subseteq (*\mathbb{R})^k$.
- $\omega \stackrel{\text{def}}{=} 1/\Omega$; the, $0 < \omega < c$ for all real c > 0. Infinitezimal! others?
- The infinitezimals are $\mathcal{I} \stackrel{\text{def}}{=} \{ v \in {}^*\mathbb{R} \mid \forall c \in \mathbb{R}, c > 0 : |v| < c \}$ The finite elements are $\mathcal{F} \stackrel{\text{def}}{=} \{ v \in {}^*\mathbb{R} \mid \exists c \in \mathbb{R}, |v| < c \}$
- $2\omega, \omega^3, \sin(\omega)$ are infinitezimals; 0.001 is not.
- π , 0.001, $10^{10^{10}}$ are finite: Ω , $\Omega/1000$, Ω^{Ω} are not.

The Nonstandard Reals

Infinitezimals closed under +, -, *; $x, y \in \mathcal{I}$ implies $x + y, x - y, x * y \in \mathcal{I}$

Finite elements closed under +, -, *; $x, y \in \mathcal{F}$ implies $x + y, x - y, x * y \in \mathcal{F}$

Call $x, y \in {}^*\mathbb{R}$ infinitely close if $x - y \in \mathcal{I}$; write $x \simeq y$.

Fact: ≃ is an equivalence relation. Exercise!

Now we can work with infinitezimals rigorously:

$$\frac{dx^2}{dx} = \frac{(x+dx)^2 - x^2}{dx} = \frac{2 \cdot x \cdot dx + (dx)^2}{dx} = 2x + dx \approx 2x$$

Two Other Classical Theorem (which everyone should know!)

• Gödel's completeness theorem.

Gödel's incompleteness theorem.

We discuss them next

Gödel's Completeness Theorem

- Part of Gödel's PhD Thesis. (We need to raise the bar at UW too.)
- It says that, using some reasonable axioms: $\Sigma \vDash \varphi$ iff there exists a syntactic proof of φ from Σ .
- Completeness ⇔ Compactness (⇒ is immediate; ← no easy proof).
- Instead, proof of Completeness Theorem is similar to Compactness.
- The Completeness Theorem depends on the rather ad-hoc choice of axioms, hence mathematicians consider it less deep than compactness.

Axioms

There are dozens of choices⁴ for the axioms⁵. Recall $\neg \varphi$ is $\varphi \rightarrow \mathbf{F}$.

$$A_{1}:\varphi \to (\psi \to \varphi)$$

$$A_{2}:(\varphi \to (\psi \to \gamma)) \to ((\varphi \to \psi) \to (\varphi \to \gamma))$$

$$A_{3}:\neg\neg\varphi \to \varphi$$

$$A_{4}:\forall x\varphi \to \varphi[t/x] \qquad \text{for any term } t$$

$$A_{5}:(\forall x(\varphi \to \psi)) \to (\forall x(\varphi) \to \forall x(\psi)))$$

$$A_{6}:\varphi \to \forall x(\varphi) \qquad x \notin \text{FreeVars}(\varphi)$$

$$A_{7}:x = x$$

$$A_{8}:(x = y) \to (\varphi \to \varphi[y/x])$$

These are axiom *schemas*: each A_i defines an infinite set of formulas.

⁵Fans of the Curry-Howard isomorphisms will recognize typed λ -calculus in A_1,A_2 .

 $^{{}^{4}}A_{1} - A_{8}$ are a combination of axioms from Barnes&Mack and Enderton.

Proofs

Let Σ be a set of formulas.

Definition

A proof or a deduction is a sequence $\varphi_1, \varphi_2, \dots, \varphi_n$ such that^a, for every i:

- φ_i is an Axiom, or $\varphi_i \in \Sigma$ or,
- φ_i is obtained by modus ponens from earlier $\varphi_j, \varphi_k \ (\varphi_k \equiv (\varphi_j \rightarrow \varphi_i).)$

Definition

We say that φ is *provable*, or *deducible* from Σ , and write $\Sigma \vdash \varphi$, if there exists a proof sequence ending in φ .

If $\vdash \varphi$ then we call φ a *theorem*.

 $\mathsf{Ded}(\Sigma)$ is the set of formulas φ provable from Σ .

^aThere is no Generalization Rule since it follows from A_6 (Enderton).

Discussion

- $\Sigma \vDash \varphi$ is semantics: it says something about truth.
- $\Sigma \vdash \varphi$ is syntactic: an application of ad-hoc rules.
- Example: prove that $\varphi \to \varphi$:

$$A_{1}:\varphi \to ((\varphi \to \varphi) \to \varphi)$$

$$A_{2}:(\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

$$MP:(\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)$$

$$A_{1}:(\varphi \to (\varphi \to \varphi))$$

$$MP:(\varphi \to \varphi)$$

• Prove at home $\mathbf{F} \to \varphi$ and $\varphi \to \psi, \psi \to \omega \vdash \varphi \to \omega$.

Consistency

Definition

 Σ is called inconsistent if $\Sigma \vdash F$. Otherwise we say Σ is consistent.

 Σ is inconsistent iff for every φ , $\Sigma \vdash \varphi$

Proof: $\vdash \mathbf{F} \rightarrow \varphi$.

 Σ is inconsistent iff there exists φ s.t. both $\Sigma \vdash \varphi$ and $\Sigma \vdash \neg \varphi$

Proof: $\varphi, \neg \varphi \vdash \mathbf{F}$.

Soundness and Completeness

Theorem (Soundness)

If Σ is satisfiable (i.e. $\Sigma \not\models \mathbf{F}$), then it is consistent (i.e. $\Sigma \not\models \mathbf{F}$).

Equivalent formulation: if $\Sigma \vdash \varphi$ then $\Sigma \vDash \varphi$.

Prove and discuss in class

Theorem (Gödel's Completeness Theorem)

If Σ is consistent $(\Sigma \not\vdash \mathbf{F})$, then it has a model $(\Sigma \not\models \mathbf{F})$.

Equivalent formulation: if $\Sigma \vDash \varphi$ then $\Sigma \vdash \varphi$.

The Completeness Theorem immediately implies the Compactness Theorem why?.

Proof of Gödel's Completeness Theorem

Follow exactly the steps of the compactness theorem.

• Extend a consistent Σ to a consistent $\bar{\Sigma}$ that is complete and witness-complete

• Use the Inductive Structure of a complete and witness-complete set.

Two Lemmas

Lemma (The Deduction Lemma)

If
$$\Sigma, \varphi \vdash \psi$$
 then $\Sigma \vdash \varphi \rightarrow \psi$.

Proof: induction on the length of $\Sigma, \varphi \vdash \psi$. Note: converse is trivial.

Lemma (Excluded Middle)

If
$$\Sigma, \varphi \vdash \psi$$
 and $\Sigma, (\varphi \rightarrow \mathbf{F}) \vdash \psi$ then $\Sigma \vdash \psi$.

Step 1: Extend Σ to a (witness-) complete $\bar{\Sigma}$

Enumerate all formulas $\varphi_1, \varphi_2, \ldots$, and define:

$$\Sigma_0 = \Sigma \qquad \qquad \Sigma_{i+1} = \begin{cases} \Sigma_i \cup \{\varphi_i\} & \text{if } \Sigma_i \cup \{\varphi_i\} \text{ is consistent} \\ \Sigma_i \cup \{\neg \varphi_i\} & \text{if } \Sigma_i \cup \{\neg \varphi_i\} \text{ is consistent} \end{cases}$$

At least one set is consistent, otherwise:

 $\Sigma_i, \varphi_i \vdash \mathbf{F}$ and $\Sigma_i, \neg \varphi_i \vdash \mathbf{F}$, thus $\Sigma_i \vdash \mathbf{F}$ by Excluded Middle.

To make it witness-complete, add countably many fresh constants c_1, c_2, \ldots , and repeatedly add $\neg \varphi[c_i/x]$ to Σ whenever $\neg \forall x(\varphi) \in \Sigma$; must show that we still have a consistent set (omitted).

Step 2: Inductive Structure of a (Witness-)Complete Set

Lemma

If $\bar{\Sigma}$ is complete, witness-complete, and consistent, then:

- $\varphi \to \psi \in \overline{\Sigma}$ iff $\varphi \notin \overline{\Sigma}$ or both $\varphi, \psi \in \overline{\Sigma}$.
- $\neg \varphi \in \overline{\Sigma}$ iff $\varphi \notin \overline{\Sigma}$.
- $\neg \forall x(\varphi) \in \overline{\Sigma}$ iff there exists a constant s.t. $\neg \varphi[c/x] \in \overline{\Sigma}$.

Sketch of the Proof in class

Now we can prove Gödel's completeness theorem:

• If Σ is consistent $(\Sigma \not\vdash \mathbf{F})$, then it has a model.

Simply construct a model of $\bar{\Sigma}$ exactly the same way as in the compactness theorem.

Discussion

- Gödel's completeness theorem is very strong: everything that is true has a syntactic proof.
- In particular, $Con(\Sigma)$ is r.e.
- If, furthermore, Σ is complete, then $Con(\Sigma)$ is decidable!
- Gödel's completeness theorem is also very weak: it does not tell us how to prove sentences that hold in a particular structure D.
- Gödel's incompleteness proves that this is unavoidable, if the structure is rich enough.

Application to Decidability

Corollary

If Σ is r.e. and complete (meaning: $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$ forall φ), then $Con(\Sigma)$ is decidable.

why?

Proof: given φ , simply enumerate all theorems from Σ :

$$\Sigma \vdash \varphi_1, \varphi_2, \varphi_3, \dots$$

Eventually, either φ or $\neg \varphi$ will appear in the list.

Example 1: total, dense linear order without fixpoint is decidable

Example 2: $\mathsf{Th}(\mathbb{N}, 0, \mathsf{succ})$ is decidable (on your homework).

Gödel's Incompleteness Theorem

- Proven by Gödel in 1931 (after his thesis).
- It says that no r.e. Σ exists that is both consistent and can prove all true sentences in $(\mathbb{N}, +, *)$.
- The proof is actually not very hard for someone who knows programming (anyone in the audience?).
- What is absolutely remarkable is that Gödel proved it before programming, and even computation, had been invented.
- Turing published his Turing Machine only in 1937, to explain what goes on in Gödel's proof.
- ... and 81 years later, we have Deep Learning!

Gödel's Incompleteness Theorem

Theorem

Let Σ be any r.e. set of axioms for $(\mathbb{N}, +, *)$. If Σ is consistent, then it is not complete.

What if Σ is not consistent?

In particular, there exists a sentenced A s.t. $(\mathbb{N}, +, *) \models A$ but $\Sigma \not\models A$.

We will prove it, by simplifying the (already simple!) proof by Arindama Singh https://mat.iitm.ac.in/home/samy/public_html/mnl-v22-Dec2012-i3.pdf

Computing in $(\mathbb{N}, +, *)$

Lemma

Fact: for every Turing computable function $f : \mathbb{N} \to \mathbb{N}$ there exists a sentence $\varphi(x,y)$ s.t. forall $m,n \in \mathbb{N}$, $\mathbb{N} \models \varphi(m,n)$ iff f(m) = n.

In other words, φ represents f.

The proof requires a lot of sweat, but it's not that hard.

Sketch on the next slide.

Computing in $(\mathbb{N}, +, *)$

- Express exponentiation: $\mathbb{N} \models \varphi(m, n, p)$ iff $p = m^n$. This is hard, lots of math. Some books give up and assume exp is given: $(\mathbb{N}, +, *, E)$.
- Encode a sequence $[n_1, n_2, ..., n_k]$ as powers of primes: $2^{n_1}3^{n_2}5^{n_3}...$ You might prefer: a sequence is just bits, hence just a number.
- Encode the API: concatenate, get i'th position, check membership.
- For any Turing Machine T, write a sentence $\varphi_T(x,y,z)$ that says⁶: "the sequence of tape contents z is a correct computation of output y from input x."
- The function computed by T is $\exists z (\varphi_T(x,y,z))$.

⁶We will do this in detail in Unit 3.

The Checker and the Prover

Fix an r.e. set of axioms⁷, $(\mathbb{N}, +, *) \models \Sigma$. Construct two sentences s.t.:

- $(\mathbb{N}, +, *) \vDash \mathsf{Checker}(x, y, z)$ iff
 - x encodes a formula φ ,
 - y encodes a sequence $[\varphi_1, \varphi_2, \dots, \varphi_k]$,
 - z encodes a finite set Σ_{fin} , and
 - $[\varphi_1, \varphi_2, \dots, \varphi_k]$ is proof of $\Sigma_{fin} \vdash \varphi$.
- Prover $_{\Sigma}(x) \equiv \exists y \exists z ("z \text{ encodes } \Sigma_{\text{fin}} \subseteq \Sigma" \land \text{Checker}(x, y, z)).$ Here we assume Σ is r.e.

By Soundness, $(\mathbb{N}, +, *) \models \mathsf{Prover}_{\Sigma}(\varphi)$ implies $\Sigma \vdash \varphi$.

⁷E.g. Endetron pp. 203 describes 11 axioms

Gödel's Sentence

- Let $\varphi_1(x), \varphi_2(x), \ldots$ be an enumeration⁸ of all formulas with one free variable.
- Consider the formula $\neg Prover_{\Sigma}(\varphi_{X}(x))$ this requires some thinking!
- It has a single variable x, hence it is in the list, say on position k: $\varphi_k(x) \equiv \neg \text{Prover}_{\Sigma}(\varphi_{\mathsf{x}}(x)).$
- Denote $\alpha \equiv \varphi_k(k)$.
- In other words: $\alpha = \neg Prover_{\Sigma}(\alpha)$ (syntactic identity)
- α says "I am not provable"!
- Next: prove two lemmas which imply Gödel's theorem.

⁸Computable!

Lemma 1

 $\alpha \equiv \neg \mathsf{Prover}_{\Sigma}(\alpha)$ (syntactic identity)

Lemma (1)

$$\Sigma \vdash Prover_{\Sigma}(\alpha) \rightarrow Prover_{\Sigma}(\neg \alpha)$$

Proof. Assume Σ is rich enough to prove:

$$P_1 : \Sigma \vdash \varphi \text{ implies } \Sigma \vdash \mathsf{Prover}_{\Sigma}(\varphi)$$

$$P_2 : \Sigma \vdash (\mathsf{Prover}_{\Sigma}(\varphi \to \psi)) \to (\mathsf{Prover}_{\Sigma}(\varphi) \to \mathsf{Prover}_{\Sigma}(\psi))$$

$$P_3 : \Sigma \vdash \mathsf{Prover}_{\Sigma}(\varphi) \to \mathsf{Prover}_{\Sigma}(\mathsf{Prover}_{\Sigma}(\varphi))$$

The lemma follows from the last two lines:

$$\vdash \neg \neg \mathsf{Prover}_{\Sigma}(\alpha) \to \neg \alpha$$

by
$$\varphi \to \varphi$$

$$\vdash \mathsf{Prover}_{\Sigma}(\alpha) \to \neg \alpha$$

$$\psi \to \neg \neg \psi$$

$$\Sigma \vdash \mathsf{Prover}_{\Sigma}(\mathsf{Prover}_{\Sigma}(\alpha) \to \neg \alpha)$$

$$P_1$$

$$\Sigma \vdash \mathsf{Prover}_{\Sigma}(\mathsf{Prover}_{\Sigma}(\alpha)) \to \mathsf{Prover}_{\Sigma}(\neg \alpha)$$

$$P_2$$

$$\sum \vdash \mathsf{Prover}_{\neg}(\alpha) \rightarrow \mathsf{Prover}_{\neg}(\mathsf{Prover}_{\neg}(\alpha))$$
Dan Suciu
Finite Model Theory – Unit 1

Lemma 2

$$\alpha \equiv \neg \mathsf{Prover}_{\Sigma}(\alpha) \text{ (syntax)} \qquad \Sigma \vdash \mathsf{Prover}_{\Sigma}(\alpha) \to \mathsf{Prover}_{\Sigma}(\neg \alpha) \text{ (Lemma 1)}$$

Lemma (2)

$$\Sigma \vdash Prover_{\Sigma}(\alpha) \rightarrow Prover_{\Sigma}(\mathbf{F})$$

Assume Σ is rich enough to also prove:

$$P_4 : \Sigma \vdash \mathsf{Prover}_{\Sigma}(\varphi) \land \mathsf{Prover}_{\Sigma}(\psi) \rightarrow \mathsf{Prover}_{\Sigma}(\varphi \land \psi)$$

Lemma 2 follows from the last line:

$$\Sigma$$
, Prover $\Sigma(\alpha) \vdash \text{Prover}_{\Sigma}(\neg \alpha)$ Lemma 1 and Deduction Lemma

$$\Sigma$$
, Prover $\Sigma(\alpha) \vdash \text{Prover}_{\Sigma}(\neg \alpha \land \alpha) \quad P_4$

$$\Sigma$$
, Prover _{Σ} (α) \vdash Prover _{Σ} (\mathbf{F}) $\neg \alpha \land \alpha \rightarrow \mathbf{F}$

Proof of Gödel's First Incompleteness Theorems

$$\alpha \equiv \neg \mathsf{Prover}_{\Sigma}(\alpha) \text{ (syntax)} \qquad \Sigma \vdash \mathsf{Prover}_{\Sigma}(\alpha) \to \mathsf{Prover}_{\Sigma}(F) \text{ (Lemma 2)}$$

Theorem (Σ Is Not Complete)

If Σ is consistent $(\Sigma \not\vdash \mathbf{F})$, then $\Sigma \not\vdash \alpha$ and $\Sigma \not\vdash \neg \alpha$.

Proof:

Suppose
$$\Sigma \vdash \alpha$$
:

Suppose
$$\Sigma \vdash \neg \alpha$$
:

$$\Sigma \vdash \mathsf{Prover}_{\Sigma}(\alpha)$$
 P_1
 $\Sigma \vdash \neg \mathsf{Prover}_{\Sigma}(\alpha)$ syntax

$$\Sigma \vdash \mathbf{F}$$
 $\varphi, \neg \varphi \vdash \mathbf{F}$

$$\Box \vdash \mathbf{F}$$
 $\varphi, \neg \varphi \vdash \mathbf{F}$

$$\varphi, \neg \varphi \vdash \mathbf{F}$$

$$\Sigma \vdash \neg \neg \mathsf{Prover}_{\Sigma}(\alpha)$$
 syntax

$$\Sigma \vdash \mathsf{Prover}_{\Sigma}(\alpha)$$
 A_3

$$\Sigma \vdash \mathsf{Prover}_{\Sigma}(\mathbf{F})$$
 Lemma 2

$$\Sigma \vdash \mathbf{F}$$
 soundness

Proof of Gödel's Second Incompleteness Theorems

$$\alpha \equiv \neg \mathsf{Prover}_{\Sigma}(\alpha) \text{ (syntax)} \qquad \Sigma \vdash \mathsf{Prover}_{\Sigma}(\alpha) \to \mathsf{Prover}_{\Sigma}(\textbf{\textit{F}}) \text{ (Lemma 2)}$$

Theorem (Σ Cannot Prove its Own Consistency)

$$\Sigma \not\vdash \neg Prover_{\Sigma}(\mathbf{F})$$

Proof: suppose $\Sigma \vdash \neg \mathsf{Prover}_{\Sigma}(\mathbf{F})$

 $\Sigma \vdash \neg \mathsf{Prover}_{\Sigma}(\mathbf{F}) \to \neg \mathsf{Prover}_{\Sigma}(\alpha)$ Lemma 2

 $\Sigma \vdash \neg \mathsf{Prover}_{\Sigma}(\alpha)$ Modus Ponens

 $\Sigma \vdash \alpha$ Syntax

 $\Sigma \vdash \mathbf{F}$ First Incompleteness Theorem

Discussion

• We only proved that neither α nor $\neg \alpha$ is provable. Can we get a complete theory by adding α or $\neg \alpha$ to Σ (whichever is true)? In class

- Not all theories of $\mathbb N$ are undecidable. Examples⁹:
 - $(\mathbb{N}, 0, \text{succ})$ is decidable (homework!).
 - $(\mathbb{N}, 0, \text{succ}, <)$ is decidable; can define finite and co-finite sets.
 - $(\mathbb{N}, 0, \text{succ}, +, <)$ is decidable and called Presburger Arithmetic; can define eventually periodic sets.
 - $(\mathbb{N}, 0, \text{succ}, +, *, <)$ is undecidable (Gödel).
 - $(\mathbb{C}, 0, 1, +, *)$ is decidable.

⁹Enderton pp. 187, 197, 158