Finite Model Theory Unit 1

Dan Suciu

Spring 2018

Welcome to 599c: Finite Model Theory

- Logic is the foundation of Mathematics (see Logicomix).
- Logic is the foundation of computing (see Turing Machines).
- Finite Model Theory is Logic restricted to finite models.
- Applications of FMT: Verification, Databases, Complexity
- This course is about:
- Classic results in Mathematical Logic
- Classic results in Finite Model Theory
- New results in Finite Model Theory
- Most results are negative, but some positive results too.
- This course is not about: systems, implementation, writing programs.

Course Organization

Lectures:

- Regular time: MW 10-11:20, CSE 303
- Canceled: April 9, 11; May 14, 16.
- Makeup (all in CSE 303):

4/6 (10-11:20), 4/20 (10-11:20), 5/17 (9:30-10:50), 5/18 (10-11:20)
Homework assignment:

- 6 Homework assignments
- Short problems, but some require thinking.
- Email them to me by the due date.
- Ignore points: I will grade all 6 together as Credit/No-credit.
- Discussion on the bboard encouraged!
- Goal: no stress, encourage to participate and think.

Resources

- Required (fun) reading: Logicomix.
- Libkin Finite Model Theory.
- Enderton A Mathematical Introduction to Logic.
- Barnes and Mack An Algebraic Introduction to Logic.
- Abiteboul, Hull, Vianu, Database Theory
- Several papers, talks, etc.
- Course on Friendly Logics from UPenn (by Val Tannen and Scott Weinstein) (older version:
http://www.cis.upenn.edu/~val/CIS682/)

Course Outline

Unit 1 Classical Model Theory and Applications to FMT.
Unit 2 Games and expressibility.
Unit 3 Descriptive Complexity.
Unit 4 Query Containment.
Unit 5 Algorithmic FMT.
Unit 6 Tree Decomposition. Guest lecturer: Hung Ngo.
Unit 7 Provenance semirings. Guest lecturer: Val Tannen.
Unit 8 Semantics of datalog programs.

Structures

A vocabulary σ is a set of relation symbols R_{1}, \ldots, R_{k} and function symbols f_{1}, \ldots, f_{m}, each with a fixed arity.

A structure is $\boldsymbol{D}=\left(D, R_{1}^{D}, \ldots, R_{k}^{D}, f_{1}^{D}, \ldots, f_{m}^{D}\right)$, where $R_{i}^{D} \subseteq(D)^{\text {arity }\left(R_{i}\right)}$ and $f_{j}^{D}:(D)^{\operatorname{arity}\left(f_{j}\right)} \rightarrow D$.
$D=$ the domain or the universe.
$v \in D$ is called a value or a point.
D called a structure or a model or database.

Examples

A graph is $G=(V, E), E \subseteq V \times V$.

A field is $\mathbb{F}=(F, 0,1,+, \cdot)$ where

- F is a set.
- 0 and 1 are constants (i.e. functions $F^{0} \rightarrow F$).
$\bullet+$ and \cdot are functions $F^{2} \rightarrow F$.

An ordered set is $\boldsymbol{S}=(S, \leq)$ where $\leq \leq S \times S$.

A database is $\boldsymbol{D}=($ Domain, Customer, Order, Product $)$.

Discussion

- We don't really need functions, since $f: D^{k} \rightarrow D$ is represented by its graph $\subseteq D^{k+1}$, but we keep them when convenient.
- If f is a 0 -ary function $D^{0} \rightarrow D$, then it is a constant D, and we denote it c rather than f.
- \boldsymbol{D} can be a finite or an infinite structure.

First Order Logic

Fix a vocabulary σ and a set of variables x_{1}, x_{2}, \ldots

Terms:

- Every constant c and every variable x is a term.
- If t_{1}, \ldots, t_{k} are terms then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.

Formulas:

- \boldsymbol{F} is a formula (means false).
- If t_{1}, \ldots, t_{k} are terms, then $t_{1}=t_{2}$ and $R\left(t_{1}, \ldots, t_{k}\right)$ are formulas.
- If φ, ψ are formulas, then so are $\varphi \rightarrow \psi$ and $\forall x(\varphi)$.

Discussion

\boldsymbol{F} often denoted: false or \perp or 0 .
$=$ is not always part of the language

Derived operations:

- $\neg \varphi$ is a shorthand for $\varphi \rightarrow \boldsymbol{F}$.
- $\varphi \vee \psi$ is a shorthand for $(\neg \varphi) \rightarrow \psi$.
- $\varphi \wedge \psi$ is a shorthand for $\neg(\varphi \vee \psi)$.
- $\exists x(\varphi)$ is a shorthand for $\neg(\forall x(\neg \varphi))$.

Formulas and Sentences

We say that $\forall x(\varphi)$ binds x in φ. Every occurrence of x in φ is bound. Otherwise it is free.

A sentence is a formula φ without free variables.
E.g. formula $\exists y(E(x, y) \wedge E(y, z))$.
E.g. sentence $\exists x \forall z \exists y(E(x, y) \wedge E(y, z))$.

Truth

Let φ be a formula with free variables $\boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right)$.
Let \boldsymbol{D} be a structure, and $\boldsymbol{a}=\left(a_{1}, \ldots, a_{k}\right) \in D^{k}$.
We say that φ is true in \boldsymbol{D}, written:

$$
D \vDash \varphi[a / x]
$$

if:

- φ is $x_{i}=x_{j}$ and a_{i}, a_{j} are the same value.
- φ is $R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ and $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \in R^{D}$.
- φ is $\psi_{1} \rightarrow \psi_{2}$ and $\boldsymbol{D} \neq \psi_{1}[\mathbf{a} / \boldsymbol{x}]$, or $\boldsymbol{D} \vDash \psi_{1}[\boldsymbol{a} / \boldsymbol{x}]$ and $\boldsymbol{D} \vDash \psi_{2}[\boldsymbol{a} / \boldsymbol{x}]$.
- φ is $\forall y(\psi)$, and, forall $b \in D, \boldsymbol{D} \vDash \psi\left[\left(a_{1}, \ldots, a_{k}, b\right) /\left(x_{1}, \ldots, x_{k}, y\right)\right]$.

Problems

- Classical model theory:
- Satisfiability Is φ true in some structure \boldsymbol{D} ?
- Validity Is φ true in all structures \boldsymbol{D} ?
- Finite model theory, databases, verification:
- Finite satisfiability/validity Is φ true in some/every finite structure \boldsymbol{D} ?
- Model checking Given φ, \boldsymbol{D}, determine whether $\boldsymbol{D} \vDash \varphi$.
- Query evaluation Given $\varphi(\boldsymbol{x}), \boldsymbol{D}$, compute $\{\boldsymbol{a} \mid \boldsymbol{D} \vDash \varphi[\boldsymbol{a} / \boldsymbol{x}]\}$.

What do these sentences say about D ?

$$
\exists x \exists y \exists z(x \neq y) \wedge(x \neq z) \wedge(y \neq z)
$$

"There are at least three elements", i.e. $|D| \geq 3$

$$
\exists x \exists y \forall z(z=x) \vee(z=y)
$$

"There are at most two elements", i.e. $|D| \leq 2$

What do these sentences say about D ?

$$
\forall x \exists y E(x, y) \vee E(y, x)
$$

"There are no isolated nodes"

$$
\forall x \forall y \exists z E(x, z) \wedge E(z, y)
$$

"Every two nodes are connected by a path of length 2"

$$
\begin{aligned}
\exists x \exists & y \exists z(\forall u(u=x) \vee(u=y) \vee(u=z)) \\
& \wedge \neg E(x, x) \wedge E(x, y) \wedge \neg E(x, z) \\
& \wedge \neg E(y, z) \wedge \neg E(y, y) \wedge E(y, z) \\
& \wedge E(z, x) \wedge \neg E(z, y) \wedge \neg E(z, z)
\end{aligned}
$$

It completely determines the graph: $D=\{a, b, c\}$ and $a \rightarrow b \rightarrow c \rightarrow a$.

Logical Implication

Fix a set of sentences Σ (may be infinite).
Σ implies $\varphi, \Sigma \vDash \varphi$, if every model of Σ is also a model of φ :
$\boldsymbol{D} \vDash \boldsymbol{\Sigma}$ implies $\boldsymbol{D} \vDash \varphi$.
$\operatorname{Con}(\Sigma) \stackrel{\text { def }}{=}\{\varphi \mid \Sigma \vDash \varphi\}$. Somtimes called the theory of $\Sigma, \operatorname{Th}(\Sigma)$.
Σ finitely implies $\varphi, \Sigma \vDash_{\text {fin }} \varphi$ if every finite model of Σ is also a model of φ.

Discussion

- $\boldsymbol{F} \vDash \varphi$ for any sentence φ why?
- $\Sigma \vDash \boldsymbol{F}$ iff Σ is unsatisfiable why?.
- If $\Sigma \vDash \varphi$ and $\Sigma, \varphi \vDash \psi$ then $\Sigma \vDash \psi$ why?.
- If $\Sigma \vDash \varphi$ then $\Sigma \vDash_{\text {fin }} \varphi$, but the converse fails in general why?. Let λ_{n} say "there are at least n elements, and $\Sigma=\left\{\lambda_{n} \mid n \geq 1\right\}$. Then $\Sigma \vDash_{\text {fin }} \boldsymbol{F}$ but $\Sigma \neq \boldsymbol{F}$ why?
- If $\vDash \varphi$ then we call φ a tautology.

Theory

A theory is a set of sentences Σ closed under implication, i.e. $\Sigma=\operatorname{Con}(\Sigma)$.

A theory Σ is complete if, for every sentence φ, either $\varphi \in \Sigma$ or $\neg \varphi \in \Sigma$.

The theory of a set of structures \mathcal{D} is
$\operatorname{Th}(\mathcal{D}) \stackrel{\text { def }}{=}\{\varphi \mid \varphi$ is true in every $\boldsymbol{D} \in \mathcal{D}\} \quad$ closed under implication?

For a single structure $\boldsymbol{D}, \operatorname{Th}(\boldsymbol{D})$ is complete why?

Discussion

Which of the following theories are complete?

- The theory of fields $\mathbb{F}=(F, 0,1,+, \cdot)$. No: $\exists x\left(x^{2}+1=0\right)$
- The theory $\operatorname{Th}(\mathbb{R})$ (vocabulary $0,1,+, \cdot)$. yes
- The theory of total orders:

$$
\begin{aligned}
& \forall x \forall y \neg((x<y) \wedge(y<x)) \\
& \forall x \forall y((x<y) \vee(x=y) \vee(y<x)) \\
& \forall x \forall y \forall z((x<y) \wedge(y<z) \rightarrow(x<z))
\end{aligned}
$$

No: $\forall x \exists y(x<y)$.

- The theory of dense total orders without endpoints: axioms above plus

Dense: $\quad \forall x \forall y(x<y \rightarrow \exists v(x<v<y))$
W/o Endpoints: $\quad \forall x \exists u \exists w(u<x<w)$
Yes! Will prove later

The Sentence Map

Give examples for each of the five classes
$\exists x(\neg(x=x))$
" $<$ is a dense total order" "if < is a total order, then it has a maximal element"

$$
\begin{array}{r}
\exists x \exists y(E(x, y)) \\
\forall x(x=x)
\end{array}
$$

The Zero-One Law for FO

- Some sentences are neither true (in all structures) nor false.
- The Zero-One Law says this: over finite structures, every sentence is true or false with high probability.
- Proven by Fagin in 1976 (part of his PhD thesis).
- Although the statement is about finite structures, the proof uses theorems on finite and infinite structures.

The Zero-One Law for FO

Consider a relational vocabulary (i.e. no functions, no constants). Let φ be a sentence. Forall $n \in \mathbb{N}$ denote:

$$
\begin{aligned}
\#_{n} \varphi & \stackrel{\operatorname{def}}{=} \mid\{\boldsymbol{D} \mid D=[n], \boldsymbol{D} \vDash \varphi\} \\
\#_{n} \boldsymbol{T} & \stackrel{\text { def }}{=} \text { number of models with universe }[n] \\
\mu_{n}(\varphi) & \stackrel{\operatorname{def}}{=} \frac{\#_{n} \varphi}{\#_{n} \boldsymbol{T}}
\end{aligned}
$$

Theorem (Fagin'1976)

For every sentence φ, either $\lim _{n \rightarrow \infty} \mu_{n}(\varphi)=0$ or $\lim _{n \rightarrow \infty} \mu_{n}(\varphi)=1$.
Informally: for every φ, its probability goes to either 0 or 1 , when $n \rightarrow \infty$; it is either almost certainly true, or almost certainly false.

Examples

Vocabulary of graphs: $\sigma=\{E\}$. Compute these probabilities:

$$
\begin{array}{lll}
\varphi=\forall x \forall y E(x, y) & \#_{n}(\varphi)=1 & \mu_{n}=\frac{1}{2^{n^{2}}} \rightarrow 0 \\
\varphi=\exists x \exists y E(x, y) & \#_{n}(\varphi)=2^{n^{2}}-1 & \mu_{n}=\frac{2^{n^{2}}-1}{2^{n^{2}}} \rightarrow 1 \\
\varphi=\forall x \exists y E(x, y) & \mu_{n}=\frac{\left(2^{n}-1\right)^{n}}{2^{n^{2}}} \rightarrow 1 &
\end{array}
$$

The Sentence Map Revised

Discussion

Attempted proof: Derive the general formula $\#_{n} \varphi$, then compute $\lim \#_{n} \varphi / 2^{n^{2}}$ and observe it is 0 or 1 .

Problem: we don't know how to compute $\#_{n} \varphi$ in general: there is evidence this is "hard"

Instead, we will prove the 0/1 law using three results from classical model theory.

Three Classical Results in Model Theory

We will discuss and prove:

- Compactness Theorem.
- Lövenheim-Skolem Theorem.
- Los-Vaught Test.

Then will use them to prove Fagin's 0/1 Law for First Order Logic.
Later we will discuss:

- Gödel's completeness theorem.
- Decidability of theories.
- Gödel's incompleteness theorem.

Compactness Theorem

Recall: Σ is satisfiable if it has a model, i.e. there exists \boldsymbol{D} s.t. $\boldsymbol{D} \vDash \varphi$, forall $\varphi \in \Sigma$.

Theorem (Compactness Theorem)
 If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Short: if Σ is finitely satisfiable ${ }^{1}$, then it is satisfiable.

Considered to be the most important theorem in Mathematical Logic.

[^0]
Compactness Theorem - Alternative Formulation

The following is equivalent to the Compactness Theorem:

```
Theorem
If \(\Sigma \vDash \varphi\) then there exists a finite subset \(\Sigma_{\text {fin }} \subseteq \Sigma\) s.t. \(\Sigma_{\text {fin }} \vDash \varphi\).
```

Proof: assume Compactness holds, and assume $\Sigma \vDash \varphi$. If $\Sigma_{\text {fin }} \neq \varphi$ for any finite subset, then the set $\Sigma \cup\{\neg \varphi\}$ is finitely satisfiable, hence it is satisfiable, contradiction.

In the other direction, let Σ be finitely satisfiable. If Σ is not satisfiable, then $\Sigma \vDash \boldsymbol{F}$, hence there is a finite subset s.t. $\Sigma_{\text {fin }} \vDash \boldsymbol{F}$, contradicting the fact that $\Sigma_{\text {fin }}$ has a model.

Warmup: The Propositional Case

Let Σ be a set of Boolean formulas, a.k.a. Propositional formulas.
Theorem (Compactness for Propositional Logic) If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Application: $G=(V, E)$ is an infinite graph s.t. every finite subgraph is 3-colorable. Prove: G is 3 -colorable.
Boolean Variables: $\left\{R_{i}, G_{i}, B_{i} \mid i \in V\right\}$ ("i is colored Red/Green/Blue").

$$
\begin{aligned}
\Sigma & =\left\{R_{i} \vee G_{i} \vee B_{i} \mid i \in V\right\} \\
& \cup\left\{\neg R_{i} \vee \neg R_{j} \mid(i, j) \in E\right\} \\
& \cup\left\{\neg G_{i} \vee \neg G_{j} \mid(i, j) \in E\right\} \\
& \cup\left\{\neg B_{i} \vee \neg B_{j} \mid(i, j) \in E\right\}
\end{aligned}
$$

every node gets some color adjacent nodes get different colors

Every finite subset of Σ is satisfiable, hence so is Σ.

Warmup: The Propositional Case

Two steps:

- Extend Σ to $\bar{\Sigma}$ that is both complete and finitely satisfiable.
- Use the Inductive Structure of a complete and finite satisfiable set.

Step 1: Extend Σ to a complete $\bar{\Sigma}$

Enumerate all formulas $\varphi_{1}, \varphi_{2}, \ldots$, and define:

$$
\Sigma_{0}=\Sigma \quad \Sigma_{i+1}= \begin{cases}\Sigma_{i} \cup\left\{\varphi_{i}\right\} & \text { if } \Sigma_{i} \cup\left\{\varphi_{i}\right\} \text { is finitely satisfiable } \\ \Sigma_{i} \cup\left\{\neg \varphi_{i}\right\} & \text { if } \Sigma_{i} \cup\left\{\neg \varphi_{i}\right\} \text { is finitely satisfiable }\end{cases}
$$

One of the two cases above must hold, because, otherwise both $\Sigma_{i} \cup\left\{\varphi_{i}\right\}$ and $\Sigma_{i} \cup\left\{\neg \varphi_{i}\right\}$ are finitely UNSAT, then $\Sigma_{\text {fin }} \cup\left\{\varphi_{i}\right\}$ and $\Sigma_{\text {fin }}^{\prime} \cup\left\{\neg \varphi_{i}\right\}$ are UNSAT for $\Sigma_{\text {fin }}, \Sigma_{\text {fin }}^{\prime} \subseteq \Sigma_{i}$, hence $\Sigma_{\text {fin }} \cup \Sigma_{\text {fin }}^{\prime}$ is UNSAT, contradiction.

Then $\Sigma \stackrel{\text { def }}{=} U_{i} \Sigma_{i}$ is complete and finitely satisfiable

Step 2: Inductive Structure of a Complete Set

Lemma

If $\bar{\Sigma}$ is a complete, and finitely satisfiable set, then:

- $\varphi \wedge \psi \in \bar{\Sigma}$ iff $\varphi, \psi \in \bar{\Sigma}$.
- $\varphi \vee \psi \in \bar{\Sigma}$ iff $\varphi \in \bar{\Sigma}$ or $\psi \in \bar{\Sigma}$.
- $\neg \varphi \in \bar{\Sigma}$. iff $\varphi \notin \bar{\Sigma}$

Proof in class
To prove Compactness Theorem for Propositional Logic, define this model:

$$
\begin{aligned}
& \theta(X) \stackrel{\operatorname{def}}{=} 1 \text { if } X \in \bar{\Sigma} \\
& \theta(X) \stackrel{\text { def }}{=} 0 \text { if } X \notin \bar{\Sigma}
\end{aligned}
$$

Then $\theta(\varphi)=1$ iff $\varphi \in \Sigma$ (proof by induction on φ). Hence θ is a model for $\bar{\Sigma}$, and thus for Σ.

Proof of the Compactness Theorem for FO

In addition to the propositional case, we need to handle \exists
Σ is witness-complete if, forall $\exists x(\varphi) \in \Sigma$, there is some c s.t. $\varphi[c / x] \in \Sigma$.
Extend Σ to a complete and witness-complete set $\bar{\Sigma}$, by adding countably many new constants c_{1}, c_{2}, \ldots proof in class

Define a model \boldsymbol{D} for $\bar{\Sigma}$ as follows:

- Its domain D consists of all terms ${ }^{2}$.
- For each relation $R, R^{D} \stackrel{\text { def }}{=}\left\{\left(t_{1}, \ldots, t_{k}\right) \mid R\left(t_{1}, \ldots, t_{k}\right) \in \bar{\Sigma}\right\}$.
- Similarly for a function f.

Check this is a model of $\bar{\Sigma}$ (by showing $\boldsymbol{D} \vDash \varphi$ iff $\varphi \in \bar{\Sigma}$), hence of Σ.
${ }^{2}$ Up to the equivalence defined by $t_{1}=t_{2} \in \bar{\Sigma}$.

Discussion

- Compactness Theorem is considered the most important theorem in Mathematical Logic.
- Our discussion was restricted to a finite vocabulary σ, but compactness holds for any vocabulary; e.g. think of having infinitely many constants c
- Gödel proved compactness as a simple consequence of his completeness theorem.
- We will later prove Gödel's completeness following a similar proof as for compactness.

Application of the Compactness Theorem

Can we say in FO "the world is inifite"? Or "the world is finite"?

- Find a set of sentences Λ whose models are precisely the infinite structures.
$\Lambda=\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ where λ_{n} says "there are $\geq n$ elements":

$$
\lambda_{n}=\exists x_{1} \cdots \exists x_{n} \bigwedge_{i<j}\left(x_{i} \neq x_{j}\right)
$$

- Find a set of sentences Σ whose models are precisely the finite structures.
Imposible! If we could, then $\Sigma \cup \wedge$ were finitely satisfiable, hence satisfiable, constradiction.

Löwenheim-Skolem Theorem

Suppose the vocabulary σ is finite.
Theorem (Löwenheim-Skolem)
If Σ admits an infinite model, then it admits a countable model.

In other words, we can say "the world is infinite", but we can't say how big it is.

Background: Cardinal Numbers

If there is a bijection $f: A \rightarrow B$ then we say that A, B are equipotent, or equipollent, or equinumerous, and write $A \cong B$.

We write $|A|$ for the equivalence class of A under \cong.

Definition

A cardinal number is an equivalence class $|A|$. We write $|A| \leq|B|$ if there exists an injective function $A \rightarrow B$; equivalently, if there exists a surjective function $B \rightarrow A$.

Background: Cardinal Numbers

- 4 is a cardinal number, why? The equivalence class of $\{a, b, c, d\}$.
- $4<7$, why? $\{a, b, c, d\} \rightarrow\{x, y, z, u, v, w, m\}: a \mapsto x, b \mapsto y$ etc.
- \mathfrak{N}_{0} is the infinite countable cardinal; equivalence class of \mathbb{N}.
- \mathfrak{c} is the cardinality of the continuum; equivalence class of \mathbb{R}.
- What is the cardinality of the even numbers $\{0,2,4,6, \ldots\}$? \aleph_{0}.
- What is the cardinality of $[0,1]$? c.
- What is the cardinality of \mathbb{Q} ? \aleph_{0}
- Is there a cardinal number between \aleph_{0} and c ? Either yes or no! (Recall Logicomix!)
- What is the cardinality of the set of sentences over a finite vocabulary? «0

Löwenheim-Skolem Theorem: Proof

Suppose the vocabulary σ is finite or countable.

Theorem

If Σ admits an infinite model, then it admits a countable model.
Proof in four steps:

- Write each sentence $\varphi \in \Sigma$ in prenex-normal form: $(\forall \mid \exists)^{*} \psi$.
- "Skolemize" Σ : replace each \exists with a fresh "Skolem" function f, e.g.

$$
\forall x \exists y \forall z \exists u(\varphi) \mapsto \forall x \forall z\left(\varphi\left[f_{1}(x) / y, f_{2}(x, z) / u\right]\right)
$$

Let Σ^{\prime} be the set of Skolemized sentences.

- Property of Skolemization: Σ satisfiable iff Σ^{\prime} satisfiable. In class
- Proof of Löwenheim-Skolem. Let $\boldsymbol{D} \vDash \Sigma$; then $\boldsymbol{D} \vDash \Sigma^{\prime}$ (by interpreting the Skolem functions appropriately).
- Let: D_{0} be any countable subset of D, $D_{i+1}=\left\{f^{D}\left(d_{1}, \ldots, d_{k}\right) \mid d_{1}, \ldots, d_{k} \in D_{i}, f \in \sigma\right\}$. Then $\cup_{i} D_{i}$ is countable and a model of Σ^{\prime} why?.

Discussion

- We have assumed that σ is finite, or countable.
- If σ has cardinality κ, then the Löwenheim-Skolem Theorem says that there exists a model of cardinality κ.
- The upwards version of the Löwenheim-Skolem Theorem ${ }^{3}$ if Σ has a model of infinite cardinality κ and $\kappa<\kappa^{\prime}$ then it also has a model of cardinality κ^{\prime}.

Proof: add to σ constants $c_{k}, k \in \kappa^{\prime}$, add axioms $c_{i} \neq c_{j}$ for $i \neq j$. By compactness there is a model; then we repeat the previous proof of Löwenheim-Skolem.

[^1]
The Los-Vaught Test

Simple observation: if $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$ are isomorphic then $\operatorname{Th}\left(\boldsymbol{D}_{1}\right)=\operatorname{Th}\left(\boldsymbol{D}_{2}\right)$.

Call $\Sigma \aleph_{0}$-categorical if any two countable models of Σ are isomorphic.

Theorem (Los-Vaught Test)
If Σ has no finite models and is \aleph_{0} categorical then it is complete.
Proof. Suppose otherwise: there exists φ s.t. $\Sigma \not \not \neg \neg$ and $\Sigma \not \neq \varphi$. Then:

- $\Sigma \cup\{\varphi\}$ has a model \boldsymbol{D}_{1}; assume it is countable why can we?
- $\Sigma \cup\{\neg \varphi\}$ has a model \boldsymbol{D}_{2}; assume it is countable.
- Then $\boldsymbol{D}_{1}, \boldsymbol{D}_{2}$ are isomorphic.
- Contradiction because $\boldsymbol{D}_{1} \vDash \varphi$ and $\boldsymbol{D}_{2} \vDash \neg \varphi$.

Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

$$
\begin{aligned}
& \forall x \forall y \neg((x<y) \wedge(y<x)) \\
& \forall x \forall y((x<y) \vee(x=y) \vee(y<x)) \\
& \forall x \forall y \forall z((x<y) \wedge(y<z) \rightarrow(x<z)) \\
\text { Dense: } & \forall x \forall y(x<y \rightarrow \exists v(x<v<y)) \\
\text { W/o Endpoints: } & \forall x \exists u \exists w(u<x<w)
\end{aligned}
$$

Note: just "total order" is not complete!
Proof: we apply the Los-Vaught test.
Let $\boldsymbol{A}, \boldsymbol{B}$ be countable models. Construct inductively $A_{i} \subseteq A, B_{i} \subseteq B$, and isomorphism $f_{i}:\left(A_{i},<\right) \rightarrow\left(B_{i},<\right)$, using the Back and Forth argument.

The Back-and-Forth argument

$\boldsymbol{A}=\left(\left\{a_{1}, a_{2}, \ldots\right\},<\right), \boldsymbol{B}=\left(\left\{b_{1}, b_{2}, \ldots\right\},<\right)$ are total orders w/o endpoints. Prove they are isomorphic.
$A_{0} \stackrel{\text { def }}{=} \varnothing, B_{0} \stackrel{\text { def }}{=} \varnothing$.
Assuming $\left(A_{i-1},<\right) \cong\left(B_{i-1},<\right)$, extend to $\left(A_{i},<\right) \cong\left(B_{i},<\right)$ as follows:

- Add a_{i} and any $b \in B$ s.t. $\left(A_{i-1} \cup\left\{a_{i}\right\},<\right) \cong\left(B_{i-1} \cup\{b\}\right)$.

- Add b_{i} and any matching $a \in A$.

Then $A=\cup A_{i}, B=\bigcup B_{i}$ and $(A,<) \cong(B,<)$.

Discussion

The Los-Vaught test applies to any cardinal number, as follows:

- If Σ has no finite models and is categorical in some infinite cardinal κ (meaning: any two models of cardinality κ are isomorphic) then Σ is complete.

Useful for your homework.

Recap: Three Classical Results in Model Theory

We proved:

- Compactness Theorem.
- Lövenheim-Skolem Theorem.
- Los-Vaught Test.

Next, we use them to prove Fagin's 0/1 Law for First Order Logic.

Proof of the Zero-One Law: Plan

Zero-one Law: $\lim _{n \rightarrow \infty} \mu_{n}(\varphi)$ is 0 or 1 , for every φ
For simplicity, assume vocabulary of graphs, i.e. only binary E.

- Define a set Σ of extension axioms, $E A_{k, \Delta}$
- We prove that $\lim _{n} \mu_{n}\left(E A_{k, \Delta}\right)=1$
- Hence Σ is finitely satisfiable.
- By compactness: Σ has a model.
- By Löwenheim-Skolem: has a countable model (called the Rado graph R, when undirected).
- We prove that all countable models of Σ are isomorphic.
- By Los-Vaught: Σ is complete.
- Then $\Sigma \vDash \varphi$ implies $\lim \mu_{n}(\varphi)=1$ and $\Sigma \not \vDash \varphi$ implies $\lim \mu_{n}(\varphi)=0$.

The Extension Formulas and the Extension Axioms

 For $k>0$ denote $S_{k}=([k] \times\{k\}) \cup(\{k\} \times[k])$ and $\Delta \subseteq S_{k}$.$$
\begin{aligned}
& E F_{k, \Delta}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right)=\bigwedge_{(i, j) \in \Delta} E\left(x_{i}, x_{j}\right) \wedge \bigwedge_{(i, j) \in S_{k}-\Delta} \neg E\left(x_{i}, x_{j}\right) \\
& E A_{k, \Delta}=\forall x_{1} \ldots \forall x_{k-1}\left(\bigwedge_{i<j<k}\left(x_{i} \neq x_{j}\right)\right) \rightarrow \exists x_{k}\left(\bigwedge_{i<k}\left(x_{k} \neq x_{i}\right) \wedge E F_{k, \Delta}\right)
\end{aligned}
$$

Intuition: we can extend the graph as prescribed by Δ.

$$
\begin{aligned}
& E\left(x_{1}, x_{5}\right) \wedge \neg E\left(x_{5}, x_{1}\right) \wedge \\
& E\left(x_{2}, x_{5}\right) \wedge E\left(x_{5}, x_{2}\right) \wedge \\
& \neg E\left(x_{3}, x_{5}\right) \wedge \neg E\left(x_{5}, x_{3}\right) \wedge \\
& \neg E\left(x_{4}, x_{5}\right) \wedge E\left(x_{5}, x_{4}\right) \wedge \\
& E\left(x_{5}, x_{5}\right)
\end{aligned}
$$

How many extension axioms are there for $k=5$?

Proof of $\lim _{n} \mu_{n}\left(E A_{k, \Delta}\right)=1$

$$
\begin{aligned}
& E F_{k, \Delta}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right)=\bigwedge_{(i, j) \in \Delta} E\left(x_{i}, x_{j}\right) \wedge \bigwedge_{(i, j) \in S_{k}-\Delta} \neg E\left(x_{i}, x_{j}\right) \\
& E A_{k, \Delta}=\forall x_{1} \ldots \forall x_{k-1}\left(\bigwedge_{i<j<k}\left(x_{i} \neq x_{j}\right)\right) \rightarrow \exists x_{k}\left(\bigwedge_{i<k}\left(x_{k} \neq x_{i}\right) \wedge E F_{k, \Delta}\right) \\
& \mu_{n}\left(\neg E A_{k, \Delta}\right)=\mu_{n}\left(\exists x_{1} \ldots \exists x_{k-1}\left(\bigwedge\left(x_{i} \neq x_{j}\right) \wedge \forall x_{k}\left(\bigwedge\left(x_{k} \neq x_{i}\right) \rightarrow \neg E F_{k, \Delta}\right)\right)\right) \\
& \leq \sum_{a_{1}, \ldots, a_{k-1} \in[n], a_{i} \neq a_{j}} \mu_{n}\left(\bigwedge_{a_{k} \in[n]-\left\{a_{1}, \ldots, a_{k-1}\right\}} \neg E F_{k, \Delta}\left(a_{1}, \ldots, a_{k-1}, a_{k}\right)\right) \\
& =\sum_{a_{1}, \ldots, a_{k-1} \in[n], a_{i} \neq a_{j} a_{k} \in[n]-\left\{a_{1}, \ldots, a_{k-1}\right\}} \mu_{n}\left(\neg E F_{k, \Delta}\left(a_{1}, \ldots, a_{k}\right)\right) \quad \text { why? } \\
& =\sum_{a_{1}, \ldots, a_{k-1} \in[n], a_{i} \neq a_{j}, a_{k} \in[n]-\left\{a_{1}\right.}{ }^{c} \quad \text { where } c=1-\frac{1}{2^{2 k-1}}<1 \\
& \leq n^{k-1} c^{n-k+1} \rightarrow 0
\end{aligned}
$$

Extension Axioms Have a Countable Model

Let $\Sigma=\left\{E A_{k, \Delta} \mid k>0, \Delta \subseteq S_{k}\right\}$ be the set of extension axioms.
Σ is finitely satisfiable why?

Because forall $\varphi_{1}, \ldots, \varphi_{m} \in \Sigma, \mu_{n}\left(\varphi_{1} \wedge \cdots \wedge \varphi_{m}\right) \rightarrow 1$
Hence, when n is large, there are many finite models for $\varphi_{1}, \ldots, \varphi_{m}$!

By compactness, Σ has a model.

By Löwenheim-Skolem, Σ has a countable model.

Extension Axioms have a Unique Countable Model

Need to prove: any two countable models $\boldsymbol{A}, \boldsymbol{B}$ of Σ are isomorphic.
Will use the Back-and-Forth construction!
Let $\boldsymbol{A}=\left\{a_{1}, a_{2}, \ldots\right\}, \boldsymbol{B}=\left\{b_{1}, b_{2}, \ldots\right\}$.
By induction on k, construct $\left(A_{k}, E_{k}\right) \cong\left(B_{k}, E_{k}^{\prime}\right)$, using the back-and-forth construction and the fact that both $\boldsymbol{A}, \boldsymbol{B}$ satisfy Σ.

Hence, there is a unique (up to isomorphism) countable model. Called The Random Graph or Rado Graph, \boldsymbol{R} for undirected graphs. See Libkin.

Proof of the Zero-One Law

Let φ be any sentence: we'll prove $\mu_{n}(\varphi)$ tends to either 0 or 1 .
Σ is complete, hence either $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$.

Assume $\Sigma \vDash \varphi$.

By compactness, then there exists a finite set $\left\{\psi_{1}, \ldots, \psi_{m}\right\} \vDash \varphi$

Thus, $\mu_{n}(\varphi) \geq \mu_{n}\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right) \rightarrow 1$ why?
Assume $\Sigma \vDash \neg \varphi$: then $\mu_{n}(\neg \varphi) \rightarrow 1$, hence $\mu_{n}(\varphi) \rightarrow 0$.

Discussion

- The $0 / 1$ law does not hold if there constants:
e.g. $\lim \mu_{n} R(a, b)=1 / 2$ (neither 0 nor 1).

Where in the proof did we use this fact? (Homework!)

- The Random Graph \boldsymbol{R} satisfies precisely those sentences for which $\lim \mu_{n}(\varphi)=1$.
- We proved the $0 / 1$ law when every edge $E(i, j)$ has probability $p=1 / 2$.
The same proof also holds when every edge has probability $p \in(0,1)$ (independent of n).
- The Erdös-Rényi random graph $G(n, p)$ allows p to depend on $n .0 / 1$ law for FO may or may not hold. discuss more in class

A Cool Application: Non-standard Analysis

"Infinitezimals" have been used in calculus since Leibniz and Newton.
But they are not rigorous! Recall Logicomix.
Example: compute the derivative of x^{2} :

$$
\frac{d x^{2}}{d x}=\frac{(x+d x)^{2}-x^{2}}{d x}=\frac{2 \cdot x \cdot d x+(d x)^{2}}{d x}=2 x+d x \simeq 2 x
$$

because $d x$ is "infinitely small", hence $d x \simeq 0$.
Robinson in 1961 showed that how to define infinitezimals rigorously (and easily) using the compactness theorem!

The Nonstandard Reals

$\mathbb{R}=$ the true real numbers.

- Let σ be the vocabulary of all numbers, functions, relations:
- Every number in \mathbb{R} has a symbol: $0,-5, \pi, \ldots$
- Every function $\mathbb{R}^{k} \rightarrow \mathbb{R}$ has a symbol: $+, *,-, \sin , \ldots$
- Every relation $\subseteq R^{k}$ has a symbol: $<, \geq, \ldots$
- Let $\mathrm{Th}(\mathbb{R})$ all true sentences, e.g.:

$$
\begin{aligned}
& \forall x\left(x^{2} \geq 0\right) \\
& \forall x \forall y(|x+y| \leq|x|+|y|) \\
& \forall x(\sin (x+\pi)=-\sin (x))
\end{aligned}
$$

- Let Ω be a new constant, and $\Sigma \stackrel{\operatorname{def}}{=} \operatorname{Th}(\mathbb{R}) \cup\{n<\Omega \mid n \in \mathbb{N}\}$. " Ω is bigger than everything".
- Σ has a model ${ }^{*} \mathbb{R}$. WHY?

The Nonstandard Reals

- Every number in \mathbb{R} also exists in ${ }^{*} \mathbb{R}: 0,-5, \pi, \ldots$
- Every function $\mathbb{R}^{k} \rightarrow \mathbb{R}$ has an extension $\left({ }^{*} \mathbb{R}\right)^{k} \rightarrow{ }^{*} \mathbb{R}$.
- Every relation $\subseteq \mathbb{R}^{k}$ has a corresponding $\subseteq\left({ }^{*} \mathbb{R}\right)^{k}$.
- $\omega \stackrel{\text { def }}{=} 1 / \Omega$; the, $0<\omega<c$ forall real $c>0$. Infinitezimal! others?
- The infinitezimals are $\mathcal{I} \stackrel{\text { def }}{=}\{v \in * \mathbb{R}|\forall c \in \mathbb{R}, c>0:|v|<c\}$ The finite elements are $\mathcal{F} \stackrel{\text { def }}{=}\left\{v \in{ }^{*} \mathbb{R}|\exists c \in \mathbb{R},|v|<c\}\right.$
- $2 \omega, \omega^{3}, \sin (\omega)$ are infinitezimals; 0.001 is not.
- $\pi, 0.001,10^{10^{10}}$ are finite; $\Omega, \Omega / 1000, \Omega^{\Omega^{\Omega}}$ are not.

The Nonstandard Reals

Infinitezimals closed under,,$+- * ; x, y \in \mathcal{I}$ implies $x+y, x-y, x * y \in \mathcal{I}$
Finite elements closed under,,$+- * ; x, y \in \mathcal{F}$ implies $x+y, x-y, x * y \in \mathcal{F}$
Call $x, y \in{ }^{*} \mathbb{R}$ infinitely close if $x-y \in \mathcal{I}$; write $x \simeq y$.

Fact: \simeq is an equivalence relation. Exercise!
Now we can work with infinitezimals rigorously:

$$
\frac{d x^{2}}{d x}=\frac{(x+d x)^{2}-x^{2}}{d x}=\frac{2 \cdot x \cdot d x+(d x)^{2}}{d x}=2 x+d x \simeq 2 x
$$

Two Other Classical Theorem (which everyone should know!)

- Gödel's completeness theorem.
- Gödel's incompleteness theorem.

We discuss them next

Gödel's Completeness Theorem

- Part of Gödel's PhD Thesis. (We need to raise the bar at UW too.)
- It says that, using some reasonable axioms: $\Sigma \vDash \varphi$ iff there exists a syntactic proof of φ from Σ.
- Completeness \Leftrightarrow Compactness (\Rightarrow is immediate; \Leftarrow no easy proof).
- Instead, proof of Completeness Theorem is similar to Compactness.
- The Completeness Theorem depends on the rather ad-hoc choice of axioms, hence mathematicians consider it less deep than compactness.

Axioms

There are dozens of choices ${ }^{4}$ for the axioms ${ }^{5}$. Recall $\neg \varphi$ is $\varphi \rightarrow \boldsymbol{F}$.

$$
\begin{array}{ll}
A_{1}: \varphi \rightarrow(\psi \rightarrow \varphi) & \\
A_{2}:(\varphi \rightarrow(\psi \rightarrow \gamma)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \gamma)) & \\
A_{3}: \neg \neg \varphi \rightarrow \varphi & \\
A_{4}: \forall x \varphi \rightarrow \varphi[t / x] & \text { for any term } t \\
\left.A_{5}:(\forall x(\varphi \rightarrow \psi)) \rightarrow(\forall x(\varphi) \rightarrow \forall x(\psi))\right) & \\
A_{6}: \varphi \rightarrow \forall x(\varphi) & \\
A_{7}: x=x & \\
A_{8}:(x=y) \rightarrow(\varphi \rightarrow \varphi[y / x]) &
\end{array}
$$

These are axiom schemas: each A_{i} defines an infinite set of formulas.
${ }^{4} A_{1}-A_{8}$ are a combination of axioms from Barnes\&Mack and Enderton.
${ }^{5}$ Fans of the Curry-Howard isomorphisms will recognize typed λ-calculus in A_{1}, A_{2}.

Proofs

Let Σ be a set of formulas.

Definition

A proof or a deduction is a sequence $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ such that ${ }^{a}$, for every i :

- φ_{i} is an Axiom, or $\varphi_{i} \in \Sigma$ or,
- φ_{i} is obtained by modus ponens from earlier $\varphi_{j}, \varphi_{k}\left(\varphi_{k} \equiv\left(\varphi_{j} \rightarrow \varphi_{i}\right)\right.$.)
${ }^{a}$ There is no Generalization Rule since it follows from A_{6} (Enderton).

Definition
 We say that φ is provable, or deducible from Σ, and write $\Sigma \vdash \varphi$, if there exists a proof sequence ending in φ. If $\vdash \varphi$ then we call φ a theorem.

$\operatorname{Ded}(\Sigma)$ is the set of formulas φ provable from Σ.

Discussion

- $\Sigma \vDash \varphi$ is semantics: it says something about truth.
- $\Sigma \vdash \varphi$ is syntactic: an application of ad-hoc rules.
- Example: prove that $\varphi \rightarrow \varphi$:

$$
\begin{aligned}
A_{1} & : \varphi \rightarrow((\varphi \rightarrow \varphi) \rightarrow \varphi) \\
A_{2} & :(\varphi \rightarrow((\varphi \rightarrow \varphi) \rightarrow \varphi)) \rightarrow((\varphi \rightarrow(\varphi \rightarrow \varphi)) \rightarrow(\varphi \rightarrow \varphi)) \\
\text { MP } & :(\varphi \rightarrow(\varphi \rightarrow \varphi)) \rightarrow(\varphi \rightarrow \varphi) \\
A_{1} & :(\varphi \rightarrow(\varphi \rightarrow \varphi)) \\
\text { MP } & :(\varphi \rightarrow \varphi)
\end{aligned}
$$

- Prove at home $\boldsymbol{F} \rightarrow \varphi$ and $\varphi \rightarrow \psi, \psi \rightarrow \omega \vdash \varphi \rightarrow \omega$.

Consistency

Definition
 Σ is called inconsistent if $\Sigma \vdash \boldsymbol{F}$. Otherwise we say Σ is consistent.

Σ is inconsistent iff for every $\varphi, \Sigma \vdash \varphi$
Proof: $\vdash \boldsymbol{F} \rightarrow \varphi$.
Σ is inconsistent iff there exists φ s.t. both $\Sigma \vdash \varphi$ and $\Sigma \vdash \neg \varphi$
Proof: $\varphi, \neg \varphi \vdash \boldsymbol{F}$.

Soundness and Completeness

Theorem (Soundness)
If Σ is satisfiable (i.e. $\Sigma \neq \boldsymbol{F}$), then it is consistent (i.e. $\Sigma \nmid \boldsymbol{F}$).

Equivalent formulation: if $\Sigma \vdash \varphi$ then $\Sigma \vDash \varphi$.
Prove and discuss in class
Theorem (Gödel's Completeness Theorem)
If Σ is consistent $(\Sigma \nmid \boldsymbol{F})$, then it has a model $(\Sigma \neq \boldsymbol{F})$.

Equivalent formulation: if $\Sigma \vDash \varphi$ then $\Sigma \vdash \varphi$.
The Completeness Theorem immediately implies the Compactness Theorem why?.

Proof of Gödel's Completeness Theorem

Follow exactly the steps of the compactness theorem.

- Extend a consistent Σ to a consistent $\bar{\Sigma}$ that is complete and witness-complete
- Use the Inductive Structure of a complete and witness-complete set.

Two Lemmas

Lemma (The Deduction Lemma)
If $\Sigma, \varphi \vdash \psi$ then $\Sigma \vdash \varphi \rightarrow \psi$.
Proof: induction on the length of $\Sigma, \varphi \vdash \psi$. Note: converse is trivial.

```
Lemma (Excluded Middle)
If }\Sigma,\varphi\vdash\psi\mathrm{ and }\Sigma,(\varphi->\boldsymbol{F})\vdash\psi\mathrm{ then }\Sigma\vdash\psi\mathrm{ .
```

$$
\begin{array}{rlrl}
& \Sigma \vdash \varphi \rightarrow \psi & & \text { Deduction Lemma } \\
\Sigma, \psi \rightarrow \boldsymbol{F} \vdash \varphi \rightarrow \boldsymbol{F} & & \text { by } \varphi \rightarrow \psi, \psi \rightarrow \boldsymbol{F} \vdash \varphi \rightarrow \boldsymbol{F} \\
& \Sigma \vdash(\varphi \rightarrow \boldsymbol{F}) \rightarrow \psi & & \text { Deduction Lemma } \\
\Sigma, \psi \rightarrow \boldsymbol{F} \vdash(\varphi \rightarrow \boldsymbol{F}) \rightarrow \boldsymbol{F} & & \text { As above } \\
\Sigma, \psi \rightarrow \boldsymbol{F} \vdash \boldsymbol{F} & & \text { MP: } \varphi \rightarrow \boldsymbol{F},(\varphi \rightarrow \boldsymbol{F}) \rightarrow \boldsymbol{F} \vdash \boldsymbol{F} \\
& \Sigma \vdash(\psi \rightarrow \boldsymbol{F}) \rightarrow \boldsymbol{F} & & \text { Deduction Lemma } \\
& \Sigma \vdash \psi & & \text { by } A_{3}
\end{array}
$$

Step 1: Extend Σ to a (witness-) complete $\bar{\Sigma}$

Enumerate all formulas $\varphi_{1}, \varphi_{2}, \ldots$, and define:

$$
\Sigma_{0}=\Sigma \quad \Sigma_{i+1}= \begin{cases}\Sigma_{i} \cup\left\{\varphi_{i}\right\} & \text { if } \Sigma_{i} \cup\left\{\varphi_{i}\right\} \text { is consistent } \\ \Sigma_{i} \cup\left\{-\varphi_{i}\right\} & \text { if } \Sigma_{i} \cup\left\{\neg \varphi_{i}\right\} \text { is consistent }\end{cases}
$$

At least one set is consistent, otherwise: $\Sigma_{i}, \varphi_{i} \vdash \boldsymbol{F}$ and $\Sigma_{i}, \neg \varphi_{i} \vdash \boldsymbol{F}$, thus $\Sigma_{i} \vdash \boldsymbol{F}$ by Excluded Middle.

To make it witness-complete, add countably many fresh constants c_{1}, c_{2}, \ldots, and repeatedly add $\neg \varphi\left[c_{i} / x\right]$ to Σ whenever $\neg \forall x(\varphi) \in \Sigma$; must show that we still have a consistent set (omitted).

Step 2: Inductive Structure of a (Witness-)Complete Set

Lemma

If $\bar{\Sigma}$ is complete, witness-complete, and consistent, then:

- $\varphi \rightarrow \psi \in \bar{\Sigma}$ iff $\varphi \notin \bar{\Sigma}$ or both $\varphi, \psi \in \bar{\Sigma}$.
- $\neg \varphi \in \bar{\Sigma}$ iff $\varphi \notin \bar{\Sigma}$.
- $\neg \forall x(\varphi) \in \bar{\Sigma}$ iff there exists a constant s.t. $\neg \varphi[c / x] \in \bar{\Sigma}$.

Sketch of the Proof in class
Now we can prove Gödel's completeness theorem:

- If Σ is consistent ($\Sigma \nmid \boldsymbol{F}$), then it has a model. Simply construct a model of $\bar{\Sigma}$ exactly the same way as in the compactness theorem.

Discussion

- Gödel's completeness theorem is very strong: everything that is true has a syntactic proof.
- In particular, $\operatorname{Con}(\Sigma)$ is r.e.
- If, furthermore, Σ is complete, then $\operatorname{Con}(\Sigma)$ is decidable!
- Gödel's completeness theorem is also very weak: it does not tell us how to prove sentences that hold in a particular structure \boldsymbol{D}.
- Gödel's incompleteness proves that this is unavoidable, if the structure is rich enough.

Application to Decidability

Corollary

If Σ is r.e. and complete (meaning: $\Sigma \vDash \varphi$ or $\Sigma \vDash \neg \varphi$ forall φ), then Con (Σ) is decidable.
why?
Proof: given φ, simply enumerate all theorems from Σ :

$$
\Sigma \vdash \varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots
$$

Eventually, either φ or $\neg \varphi$ will appear in the list.
Example 1: total, dense linear order without fixpoint is decidable
Example 2: $\operatorname{Th}(\mathbb{N}, 0$, succ $)$ is decidable (on your homework).

Gödel's Incompleteness Theorem

- Proven by Gödel in 1931 (after his thesis).
- It says that no r.e. Σ exists that is both consistent and can prove all true sentences in $(\mathbb{N},+, *)$.
- The proof is actually not very hard for someone who knows programming (anyone in the audience?).
- What is absolutely remarkable is that Gödel proved it before programming, and even computation, had been invented.
- Turing published his Turing Machine only in 1937, to explain what goes on in Gödel's proof.
- ... and 81 years later, we have Deep Learning!

Gödel's Incompleteness Theorem

Theorem

Let Σ be any r.e. set of axioms for $(\mathbb{N},+, *)$. If Σ is consistent, then it is not complete.

What if Σ is not consistent?

In particular, there exists a sentenced A s.t. $(\mathbb{N},+, *) \vDash A$ but $\Sigma \nmid A$.

We will prove it, by simplifying the (already simple!) proof by Arindama Singh https://mat.iitm.ac.in/home/samy/public_html/ mnl-v22-Dec2012-i3.pdf

Computing in $(\mathbb{N},+, *)$

Lemma

Fact: for every Turing computable function $f: \mathbb{N} \rightarrow \mathbb{N}$ there exists a sentence $\varphi(x, y)$ s.t. forall $m, n \in \mathbb{N}, \mathbb{N} \vDash \varphi(m, n)$ iff $f(m)=n$.

In other words, φ represents f.

The proof requires a lot of sweat, but it's not that hard.

Sketch on the next slide.

Computing in $(\mathbb{N},+, *)$

- Express exponentiation: $\mathbb{N} \vDash \varphi(m, n, p)$ iff $p=m^{n}$. This is hard, lots of math. Some books give up and assume exp is given: $(\mathbb{N},+, *, E)$.
- Encode a sequence $\left[n_{1}, n_{2}, \ldots, n_{k}\right.$] as powers of primes: $2^{n_{1}} 3^{n_{2}} 5^{n_{3}} \ldots$ You might prefer: a sequence is just bits, hence just a number.
- Encode the API: concatenate, get i 'th position, check membership.
- For any Turing Machine T, write a sentence $\varphi_{T}(x, y, z)$ that says ${ }^{6}$: "the sequence of tape contents z is a correct computation of output y from input x."
- The function computed by T is $\exists z\left(\varphi_{T}(x, y, z)\right)$.

[^2]
The Checker and the Prover

Fix an r.e. set of axioms ${ }^{7},(\mathbb{N},+, *) \vDash \Sigma$. Construct two sentences s.t.:

- ($\mathbb{N},+, *) \vDash$ Checker (x, y, z) iff
- x encodes a formula φ,
- y encodes a sequence $\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}\right]$,
- z encodes a finite set $\Sigma_{\text {fin }}$, and
- $\left[\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}\right]$ is proof of $\Sigma_{\text {fin }} \vdash \varphi$.
- $\operatorname{Prover}_{\Sigma}(x) \equiv \exists y \exists z\left(" z\right.$ encodes $\left.\Sigma_{\text {fin }} \subseteq \Sigma^{\prime \prime} \wedge \operatorname{Checker}(x, y, z)\right)$. Here we assume Σ is r.e.

By Soundness, $(\mathbb{N},+, *) \vDash \operatorname{Prover}_{\Sigma}(\varphi)$ implies $\Sigma \vdash \varphi$.
${ }^{7}$ E.g. Endetron pp. 203 describes 11 axioms

Gödel's Sentence

- Let $\varphi_{1}(x), \varphi_{2}(x), \ldots$ be an enumeration ${ }^{8}$ of all formulas with one free variable.
- Consider the formula $\neg \operatorname{Prover}_{\Sigma}\left(\varphi_{x}(x)\right)$ this requires some thinking!
- It has a single variable x, hence it is in the list, say on position k : $\varphi_{k}(x) \equiv \neg \operatorname{Prover}_{\Sigma}\left(\varphi_{x}(x)\right)$.
- Denote $\alpha \equiv \varphi_{k}(k)$.
- In other words: $\alpha \equiv \neg \operatorname{Prover}_{\Sigma}(\alpha)$ (syntactic identity)
- α says "I am not provable"!
- Next: prove two lemmas which imply Gödel's theorem.

Lemma 1

$\alpha \equiv \neg \operatorname{Prover}_{\Sigma}(\alpha)$ (syntactic identity)

Lemma (1)

$\Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \operatorname{Prover}_{\Sigma}(\neg \alpha)$
Proof. Assume Σ is rich enough to prove:

$$
\begin{aligned}
& P_{1}: \Sigma \vdash \varphi \text { implies } \Sigma \vdash \operatorname{Prover}_{\Sigma}(\varphi) \\
& P_{2}: \Sigma \vdash\left(\operatorname{Prover}_{\Sigma}(\varphi \rightarrow \psi)\right) \rightarrow\left(\operatorname{Prover}_{\Sigma}(\varphi) \rightarrow \operatorname{Prover}_{\Sigma}(\psi)\right) \\
& P_{3}: \Sigma \vdash \operatorname{Prover}_{\Sigma}(\varphi) \rightarrow \operatorname{Prover}_{\Sigma}\left(\operatorname{Prover}_{\Sigma}(\varphi)\right)
\end{aligned}
$$

The lemma follows from the last two lines:

$$
\begin{array}{ll}
\vdash \neg \neg \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \neg \alpha & \text { by } \varphi \rightarrow \varphi \\
\vdash \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \neg \alpha & \psi \rightarrow \neg \neg \psi \\
\Sigma \vdash \operatorname{Prover}_{\Sigma}\left(\operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \neg \alpha\right) & P_{1} \\
\Sigma \vdash \operatorname{Prover}_{\Sigma}\left(\operatorname{Prover}_{\Sigma}(\alpha)\right) \rightarrow \operatorname{Prover}_{\Sigma}(\neg \alpha) & P_{2} \\
\Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \operatorname{Prover}_{\Sigma}\left(\operatorname{Prover}_{\Sigma}(\alpha)\right) & P_{3}
\end{array}
$$

Lemma 2
$\alpha \equiv \neg \operatorname{Prover}_{\Sigma}(\alpha)($ syntax $) \quad \Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \operatorname{Prover}_{\Sigma}(\neg \alpha)($ Lemma 1)
Lemma (2)
$\Sigma_{\llcorner }$- $\operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \operatorname{Prover}_{\Sigma}(\boldsymbol{F})$
Assume Σ is rich enough to also prove:

$$
P_{4}: \Sigma \vdash \operatorname{Prover}_{\Sigma}(\varphi) \wedge \operatorname{Prover}_{\Sigma}(\psi) \rightarrow \operatorname{Prover}_{\Sigma}(\varphi \wedge \psi)
$$

Lemma 2 follows from the last line:

$$
\begin{array}{ll}
\Sigma, \operatorname{Prover}_{\Sigma}(\alpha) \vdash \operatorname{Prover}_{\Sigma}(\neg \alpha) & \text { Lemma } 1 \text { and Deduction Lemma } \\
\Sigma, \operatorname{Prover}_{\Sigma}(\alpha) \vdash \operatorname{Prover}_{\Sigma}(\neg \alpha \wedge \alpha) & P_{4} \\
\Sigma, \operatorname{Prover}_{\Sigma}(\alpha) \vdash \operatorname{Prover}_{\Sigma}(\boldsymbol{F}) & \neg \alpha \wedge \alpha \rightarrow \boldsymbol{F}
\end{array}
$$

Proof of Gödel's First Incompleteness Theorems

```
\alpha\equiv\neg\mp@subsup{\operatorname{Prover}}{\Sigma}{}(\alpha)(\mathrm{ syntax ) }\quad\Sigma\vdash\mp@subsup{\operatorname{Prover}}{\Sigma}{}(\alpha)->\mp@subsup{\operatorname{Prover}}{\Sigma}{}(\boldsymbol{F})(\mathrm{ Lemma 2)}
```

Theorem (Σ Is Not Complete)
If Σ is consistent $(\Sigma \nmid \boldsymbol{F}$), then $\Sigma \nmid \alpha$ and $\Sigma \nvdash \neg \alpha$.

```
Proof:
Suppose }\Sigma\vdash\alpha\mathrm{ :
```

$\Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \quad P_{1}$
$\Sigma \vdash \neg \operatorname{Prover}_{\Sigma}(\alpha)$ syntax
$\Sigma \vdash \boldsymbol{F} \quad \varphi, \neg \varphi \vdash \boldsymbol{F}$

```
                            \varphi,\neg\varphi\vdashF
```

Suppose $\Sigma \vdash \neg \alpha$:

Suppose $\Sigma \vdash \neg \alpha$:
$\Sigma \vdash \neg \neg \operatorname{Prover}_{\Sigma}(\alpha)$ syntax
$\Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \quad A_{3}$
$\Sigma \vdash \operatorname{Prover}_{\Sigma}(\boldsymbol{F}) \quad$ Lemma 2
$\Sigma \vdash \boldsymbol{F}$ soundness

Proof of Gödel's Second Incompleteness Theorems

$\alpha \equiv \neg \operatorname{Prover}_{\Sigma}(\alpha)(\operatorname{syntax}) \quad \Sigma \vdash \operatorname{Prover}_{\Sigma}(\alpha) \rightarrow \operatorname{Prover}_{\Sigma}(\boldsymbol{F})($ Lemma 2)

Theorem (Σ Cannot Prove its Own Consistency)
$\Sigma \nvdash \neg \operatorname{Prover}_{\Sigma}(\boldsymbol{F})$
Proof: suppose $\Sigma \vdash \neg \operatorname{Prover}_{\Sigma}(\boldsymbol{F})$

$$
\begin{array}{ll}
\Sigma \vdash \neg \operatorname{Prover}_{\Sigma}(\boldsymbol{F}) \rightarrow \neg \operatorname{Prover}_{\Sigma}(\alpha) & \text { Lemma 2 } \\
\Sigma \vdash \neg \operatorname{Prover}_{\Sigma}(\alpha) & \text { Modus Ponens } \\
\Sigma \vdash \alpha & \text { Syntax }
\end{array}
$$

$$
\Sigma \vdash F
$$

First Incompleteness Theorem

Discussion

- We only proved that neither α nor $\neg \alpha$ is provable. Can we get a complete theory by adding α or $\neg \alpha$ to Σ (whichever is true)? In class
- Not all theories of \mathbb{N} are undecidable. Examples ${ }^{9}$:
- ($\mathbb{N}, 0$, succ) is decidable (homework!).
- ($\mathbb{N}, 0$, succ,$<$) is decidable; can define finite and co-finite sets.
- ($\mathbb{N}, 0$, succ,,$+<$) is decidable and called Presburger Arithmetic; can define eventually periodic sets.
- ($\mathbb{N}, 0$, succ $,+, *,<$) is undecidable (Gödel).
- $(\mathbb{C}, 0,1,+, *)$ is decidable.

[^0]: ${ }^{1}$ Don't confuse with saying " Σ has a finite model"!

[^1]: ${ }^{3}$ Called: Löwenheim-Skolem-Tarski theorem.

[^2]: ${ }^{6}$ We will do this in detail in Unit 3.

