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Welcome to 599c: Finite Model Theory

Logic is the foundation of Mathematics (see Logicomix).

Logic is the foundation of computing (see Turing Machines).

Finite Model Theory is Logic restricted to finite models.

Applications of FMT: Verification, Databases, Complexity

This course is about:
▸ Classic results in Mathematical Logic
▸ Classic results in Finite Model Theory
▸ New results in Finite Model Theory
▸ Most results are negative, but some positive results too.

This course is not about: systems, implementation, writing programs.
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Course Organization

Lectures:

Regular time: MW 10 - 11:20, CSE 303

Canceled: April 9, 11; May 14, 16.

Makeup (all in CSE 303):
4/6 (10-11:20), 4/20 (10-11:20), 5/17 (9:30-10:50), 5/18 (10-11:20)

Homework assignment:

6 Homework assignments

Short problems, but some require thinking.

Email them to me by the due date.

Ignore points: I will grade all 6 together as Credit/No-credit.

Discussion on the bboard encouraged!

Goal: no stress, encourage to participate and think.
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Resources

Required (fun) reading: Logicomix.

Libkin Finite Model Theory.

Enderton A Mathematical Introduction to Logic.

Barnes and Mack An Algebraic Introduction to Logic.

Abiteboul, Hull, Vianu, Database Theory

Several papers, talks, etc.

Course on Friendly Logics from UPenn (by Val Tannen and Scott
Weinstein) (older version:
http://www.cis.upenn.edu/~val/CIS682/)
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Course Outline

Unit 1 Classical Model Theory and Applications to FMT.

Unit 2 Games and expressibility.

Unit 3 Descriptive Complexity.

Unit 4 Query Containment.

Unit 5 Algorithmic FMT.

Unit 6 Tree Decomposition. Guest lecturer: Hung Ngo.

Unit 7 Provenance semirings. Guest lecturer: Val Tannen.

Unit 8 Semantics of datalog programs.
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Structures

A vocabulary σ is a set of relation symbols R1, . . . ,Rk and function
symbols f1, . . . , fm, each with a fixed arity.

A structure is D = (D,RD
1 , . . . ,R

D
k , f

D
1 , . . . , f Dm ),

where RD
i ⊆ (D)arity(Ri) and f Dj ∶ (D)arity(fj) → D.

D = the domain or the universe.
v ∈ D is called a value or a point.
D called a structure or a model or database.
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Examples

A graph is G = (V ,E), E ⊆ V ×V .

A field is F = (F ,0,1,+, ⋅) where

F is a set.

0 and 1 are constants (i.e. functions F 0 → F ).

+ and ⋅ are functions F 2 → F .

An ordered set is S = (S ,≤) where ≤⊆ S × S .

A database is D = (Domain,Customer,Order,Product).
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Discussion

We don’t really need functions, since f ∶ Dk → D is represented by its
graph ⊆ Dk+1, but we keep them when convenient.

If f is a 0-ary function D0 → D, then it is a constant D, and we
denote it c rather than f .

D can be a finite or an infinite structure.
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First Order Logic

Fix a vocabulary σ and a set of variables x1, x2, . . .

Terms:

Every constant c and every variable x is a term.

If t1, . . . , tk are terms then f (t1, . . . , tk) is a term.

Formulas:

F is a formula (means false).

If t1, . . . , tk are terms, then t1 = t2 and R(t1, . . . , tk) are formulas.

If ϕ,ψ are formulas, then so are ϕ→ ψ and ∀x(ϕ).

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 9 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Discussion

F often denoted: false or � or 0.

= is not always part of the language

Derived operations:

¬ϕ is a shorthand for ϕ→ F .

ϕ ∨ ψ is a shorthand for (¬ϕ) → ψ.

ϕ ∧ ψ is a shorthand for ¬(ϕ ∨ ψ).

∃x(ϕ) is a shorthand for ¬(∀x(¬ϕ)).
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Formulas and Sentences

We say that ∀x(ϕ) binds x in ϕ. Every occurrence of x in ϕ is bound.
Otherwise it is free.

A sentence is a formula ϕ without free variables.

E.g. formula ∃y(E(x , y) ∧ E(y , z)).

E.g. sentence ∃x∀z∃y(E(x , y) ∧ E(y , z)).
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Truth

Let ϕ be a formula with free variables x = (x1, . . . , xk).
Let D be a structure, and a = (a1, . . . , ak) ∈ Dk .
We say that ϕ is true in D, written:

D ⊧ ϕ[a/x]

if:

ϕ is xi = xj and ai , aj are the same value.

ϕ is R(xi1 , . . . , xin) and (ai1 , . . . , ain) ∈ RD .

ϕ is ψ1 → ψ2 and D /⊧ ψ1[a/x], or D ⊧ ψ1[a/x] and D ⊧ ψ2[a/x].
ϕ is ∀y(ψ), and, forall b ∈ D, D ⊧ ψ[(a1, . . . , ak ,b)/(x1, . . . , xk , y)].
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Problems

Classical model theory:

▸ Satisfiability Is ϕ true in some structure D?

▸ Validity Is ϕ true in all structures D?

Finite model theory, databases, verification:

▸ Finite satisfiability/validity Is ϕ true in some/every finite structure D?

▸ Model checking Given ϕ, D, determine whether D ⊧ ϕ.

▸ Query evaluation Given ϕ(x), D, compute {a ∣ D ⊧ ϕ[a/x]}.
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What do these sentences say about D?

∃x∃y∃z(x ≠ y) ∧ (x ≠ z) ∧ (y ≠ z)

“There are at least three elements”, i.e. ∣D ∣ ≥ 3

∃x∃y∀z(z = x) ∨ (z = y)

“There are at most two elements”, i.e. ∣D ∣ ≤ 2
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What do these sentences say about D?

∀x∃yE(x , y) ∨ E(y , x)

“There are no isolated nodes”

∀x∀y∃zE(x , z) ∧ E(z , y)

“Every two nodes are connected by a path of length 2”

∃x∃y∃z(∀u(u = x) ∨ (u = y) ∨ (u = z))
∧¬E(x , x) ∧ E(x , y) ∧ ¬E(x , z)
∧¬E(y , z) ∧ ¬E(y , y) ∧ E(y , z)
∧E(z , x) ∧ ¬E(z , y) ∧ ¬E(z , z)

It completely determines the graph: D = {a,b, c} and a → b → c → a.
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Logical Implication

Fix a set of sentences Σ (may be infinite).

Σ implies ϕ, Σ ⊧ ϕ, if every model of Σ is also a model of ϕ:
D ⊧ Σ implies D ⊧ ϕ.

Con(Σ) def= {ϕ ∣ Σ ⊧ ϕ}. Somtimes called the theory of Σ, Th(Σ).

Σ finitely implies ϕ, Σ ⊧fin ϕ if every finite model of Σ is also a model of ϕ.
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Discussion

F ⊧ ϕ for any sentence ϕ why?.

Σ ⊧ F iff Σ is unsatisfiable why?.

If Σ ⊧ ϕ and Σ, ϕ ⊧ ψ then Σ ⊧ ψ why?.

If Σ ⊧ ϕ then Σ ⊧fin ϕ, but the converse fails in general why?.
Let λn say “there are at least n elements, and Σ = {λn ∣ n ≥ 1}.
Then Σ ⊧fin F but Σ /⊧ F why?.

If ⊧ ϕ then we call ϕ a tautology.
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Discussion

F ⊧ ϕ for any sentence ϕ why?.

Σ ⊧ F iff Σ is unsatisfiable why?.

If Σ ⊧ ϕ and Σ, ϕ ⊧ ψ then Σ ⊧ ψ why?.

If Σ ⊧ ϕ then Σ ⊧fin ϕ, but the converse fails in general why?.

Let λn say “there are at least n elements, and Σ = {λn ∣ n ≥ 1}.
Then Σ ⊧fin F but Σ /⊧ F why?.

If ⊧ ϕ then we call ϕ a tautology.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 17 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Discussion

F ⊧ ϕ for any sentence ϕ why?.

Σ ⊧ F iff Σ is unsatisfiable why?.

If Σ ⊧ ϕ and Σ, ϕ ⊧ ψ then Σ ⊧ ψ why?.

If Σ ⊧ ϕ then Σ ⊧fin ϕ, but the converse fails in general why?.
Let λn say “there are at least n elements, and Σ = {λn ∣ n ≥ 1}.
Then Σ ⊧fin F but Σ /⊧ F why?.

If ⊧ ϕ then we call ϕ a tautology.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 17 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems
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Theory

A theory is a set of sentences Σ closed under implication, i.e. Σ = Con(Σ).

A theory Σ is complete if, for every sentence ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ.

The theory of a set of structures D is

Th(D) def= {ϕ ∣ ϕ is true in every D ∈ D} closed under implication?

For a single structure D, Th(D) is complete why?
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Discussion
Which of the following theories are complete?

The theory of fields F = (F ,0,1,+, ⋅).

No: ∃x(x2 + 1 = 0)

The theory Th(R) (vocabulary 0,1,+, ⋅).

yes

The theory of total orders:

∀x∀y¬((x < y) ∧ (y < x))
∀x∀y((x < y) ∨ (x = y) ∨ (y < x))
∀x∀y∀z((x < y) ∧ (y < z) → (x < z))

No: ∀x∃y(x < y).

The theory of dense total orders without endpoints:
axioms above plus

Dense: ∀x∀y(x < y → ∃v(x < v < y))
W/o Endpoints: ∀x∃u∃w(u < x < w)

Yes! Will prove later
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The Sentence Map

FO sentences 

Unsat 
Valid 

Finitely 
valid 

Finitely 
unsat 

Give examples for each of the five classes

∃x(¬(x = x)) “< is a dense total order” ∃x∃y(E(x , y))
“if < is a total order, then it has a maximal element” ∀x(x = x)
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The Zero-One Law for FO

Some sentences are neither true (in all structures) nor false.

The Zero-One Law says this: over finite structures, every sentence is
true or false with high probability.

Proven by Fagin in 1976 (part of his PhD thesis).

Although the statement is about finite structures, the proof uses
theorems on finite and infinite structures.
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The Zero-One Law for FO

Consider a relational vocabulary (i.e. no functions, no constants).
Let ϕ be a sentence. Forall n ∈ N denote:

#nϕ
def= ∣{D ∣ D = [n],D ⊧ ϕ}

#nT
def= number of models with universe [n]

µn(ϕ) def= #nϕ

#nT

Theorem (Fagin’1976)

For every sentence ϕ, either limn→∞ µn(ϕ) = 0 or limn→∞ µn(ϕ) = 1.

Informally: for every ϕ, its probability goes to either 0 or 1, when n →∞;
it is either almost certainly true, or almost certainly false.
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Examples

Vocabulary of graphs: σ = {E}. Compute these probabilities:

ϕ =∀x∀yE(x , y)

#n(ϕ) =1 µn =
1

2n2 → 0

ϕ =∃x∃yE(x , y)

#n(ϕ) =2n
2 − 1 µn =

2n
2 − 1

2n2 → 1

ϕ =∀x∃yE(x , y)

µn =
(2n − 1)n

2n2 → 1
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The Sentence Map Revised

FO sentences 

Unsat w.h.p. 

Valid w.h.p. 

Unsat 
Valid 

Finitely 
valid 

Finitely 
unsat 
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Discussion

Attempted proof: Derive the general formula #nϕ, then compute
lim #nϕ/2n

2
and observe it is 0 or 1.

Problem: we don’t know how to compute #nϕ in general: there is
evidence this is “hard”

Instead, we will prove the 0/1 law using three results from classical model
theory.
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Three Classical Results in Model Theory

We will discuss and prove:

Compactness Theorem.

Lövenheim-Skolem Theorem.

Los-Vaught Test.

Then will use them to prove Fagin’s 0/1 Law for First Order Logic.

Later we will discuss:

Gödel’s completeness theorem.

Decidability of theories.

Gödel’s incompleteness theorem.
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Compactness Theorem

Recall: Σ is satisfiable if it has a model, i.e. there exists D s.t. D ⊧ ϕ,
forall ϕ ∈ Σ.

Theorem (Compactness Theorem)

If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Short: if Σ is finitely satisfiable1, then it is satisfiable.

Considered to be the most important theorem in Mathematical Logic.

1Don’t confuse with saying “Σ has a finite model”!
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Compactness Theorem - Alternative Formulation

The following is equivalent to the Compactness Theorem:

Theorem

If Σ ⊧ ϕ then there exists a finite subset Σfin ⊆ Σ s.t. Σfin ⊧ ϕ.

Proof: assume Compactness holds, and assume Σ ⊧ ϕ. If Σfin /⊧ ϕ for any
finite subset, then the set Σ ∪ {¬ϕ} is finitely satisfiable, hence it is
satisfiable, contradiction.

In the other direction, let Σ be finitely satisfiable. If Σ is not satisfiable,
then Σ ⊧ F , hence there is a finite subset s.t. Σfin ⊧ F , contradicting the
fact that Σfin has a model.
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Warmup: The Propositional Case

Let Σ be a set of Boolean formulas, a.k.a. Propositional formulas.

Theorem (Compactness for Propositional Logic)

If every finite subset of Σ is satisfiable, then Σ is satisfiable.

Application: G = (V ,E) is an infinite graph s.t. every finite subgraph is
3-colorable. Prove: G is 3-colorable.
Boolean Variables: {Ri ,Gi ,Bi ∣ i ∈ V } (“i is colored Red/Green/Blue”).

Σ ={Ri ∨Gi ∨Bi ∣ i ∈ V } every node gets some color

∪{¬Ri ∨ ¬Rj ∣ (i , j) ∈ E} adjacent nodes get different colors

∪{¬Gi ∨ ¬Gj ∣ (i , j) ∈ E}
∪{¬Bi ∨ ¬Bj ∣ (i , j) ∈ E}

Every finite subset of Σ is satisfiable, hence so is Σ.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 29 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems
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Warmup: The Propositional Case

Two steps:

Extend Σ to Σ̄ that is both complete and finitely satisfiable.

Use the Inductive Structure of a complete and finite satisfiable set.
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Step 1: Extend Σ to a complete Σ̄

Enumerate all formulas ϕ1, ϕ2, . . ., and define:

Σ0 =Σ Σi+1 =
⎧⎪⎪⎨⎪⎪⎩

Σi ∪ {ϕi} if Σi ∪ {ϕi} is finitely satisfiable

Σi ∪ {¬ϕi} if Σi ∪ {¬ϕi} is finitely satisfiable

One of the two cases above must hold, because, otherwise
both Σi ∪ {ϕi} and Σi ∪ {¬ϕi} are finitely UNSAT,
then Σfin ∪ {ϕi} and Σ′

fin ∪ {¬ϕi} are UNSAT for Σfin,Σ
′

fin ⊆ Σi ,
hence Σfin ∪Σ′

fin is UNSAT, contradiction.

Then Σ̄
def= ⋃i Σi is complete and finitely satisfiable

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 31 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Step 2: Inductive Structure of a Complete Set

Lemma

If Σ̄ is a complete, and finitely satisfiable set, then:

ϕ ∧ ψ ∈ Σ̄ iff ϕ,ψ ∈ Σ̄.

ϕ ∨ ψ ∈ Σ̄ iff ϕ ∈ Σ̄ or ψ ∈ Σ̄.

¬ϕ ∈ Σ̄. iff ϕ /∈ Σ̄

Proof in class

To prove Compactness Theorem for Propositional Logic, define this model:

θ(X ) def= 1 if X ∈ Σ̄

θ(X ) def= 0 if X /∈ Σ̄

Then θ(ϕ) = 1 iff ϕ ∈ Σ̄ (proof by induction on ϕ).
Hence θ is a model for Σ̄, and thus for Σ.
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Proof of the Compactness Theorem for FO

In addition to the propositional case, we need to handle ∃

Σ is witness-complete if, forall ∃x(ϕ) ∈ Σ, there is some c s.t. ϕ[c/x] ∈ Σ.

Extend Σ to a complete and witness-complete set Σ̄, by adding countably
many new constants c1, c2, . . . proof in class

Define a model D for Σ̄ as follows:

Its domain D consists of all terms2.

For each relation R, RD def= {(t1, . . . , tk) ∣ R(t1, . . . , tk) ∈ Σ̄}.

Similarly for a function f .

Check this is a model of Σ̄ (by showing D ⊧ ϕ iff ϕ ∈ Σ̄), hence of Σ.

2Up to the equivalence defined by t1 = t2 ∈ Σ̄.
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Discussion

Compactness Theorem is considered the most important theorem in
Mathematical Logic.

Our discussion was restricted to a finite vocabulary σ, but
compactness holds for any vocabulary; e.g. think of having infinitely
many constants c

Gödel proved compactness as a simple consequence of his
completeness theorem.

We will later prove Gödel’s completeness following a similar proof as
for compactness.
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Application of the Compactness Theorem

Can we say in FO “the world is inifite”? Or “the world is finite”?

Find a set of sentences Λ whose models are precisely the infinite
structures.

Λ = {λ1, λ2, . . .} where λn says “there are ≥ n elements”:

λn =∃x1⋯∃xn⋀
i<j

(xi ≠ xj)

Find a set of sentences Σ whose models are precisely the finite
structures.

Imposible! If we could, then Σ ∪ Λ were finitely satisfiable, hence
satisfiable, constradiction.
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Löwenheim-Skolem Theorem

Suppose the vocabulary σ is finite.

Theorem (Löwenheim-Skolem)

If Σ admits an infinite model, then it admits a countable model.

In other words, we can say “the world is infinite”, but we can’t say how
big it is.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 36 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Background: Cardinal Numbers

If there is a bijection f ∶ A→ B then we say that A,B are equipotent, or
equipollent, or equinumerous, and write A ≅ B.

We write ∣A∣ for the equivalence class of A under ≅.

Definition

A cardinal number is an equivalence class ∣A∣.
We write ∣A∣ ≤ ∣B ∣ if there exists an injective function A→ B;
equivalently, if there exists a surjective function B → A.
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Background: Cardinal Numbers

4 is a cardinal number, why?

The equivalence class of {a,b, c ,d}.

4 < 7, why? {a,b, c,d} → {x , y , z ,u, v ,w ,m}: a ↦ x , b ↦ y etc.

ℵ0 is the infinite countable cardinal; equivalence class of N.

c is the cardinality of the continuum; equivalence class of R.

What is the cardinality of the even numbers {0,2,4,6, . . .}? ℵ0.

What is the cardinality of [0,1]? c.

What is the cardinality of Q? ℵ0

Is there a cardinal number between ℵ0 and c? Either yes or no!
(Recall Logicomix!)

What is the cardinality of the set of sentences over a finite
vocabulary? ℵ0
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Löwenheim-Skolem Theorem: Proof
Suppose the vocabulary σ is finite or countable.

Theorem

If Σ admits an infinite model, then it admits a countable model.

Proof in four steps:

Write each sentence ϕ ∈ Σ in prenex-normal form: (∀∣∃)∗ψ.

“Skolemize” Σ: replace each ∃ with a fresh “Skolem” function f , e.g.

∀x∃y∀z∃u(ϕ) ↦∀x∀z(ϕ[f1(x)/y , f2(x , z)/u])
Let Σ′ be the set of Skolemized sentences.

Property of Skolemization: Σ satisfiable iff Σ′ satisfiable. In class

Proof of Löwenheim-Skolem. Let D ⊧ Σ; then D ⊧ Σ′ (by
interpreting the Skolem functions appropriately).

Let: D0 be any countable subset of D,
Di+1 = {f D(d1, . . . ,dk) ∣ d1, . . . ,dk ∈ Di , f ∈ σ}.
Then ⋃i Di is countable and a model of Σ′ why?.
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Löwenheim-Skolem Theorem: Proof
Suppose the vocabulary σ is finite or countable.

Theorem

If Σ admits an infinite model, then it admits a countable model.

Proof in four steps:

Write each sentence ϕ ∈ Σ in prenex-normal form: (∀∣∃)∗ψ.

“Skolemize” Σ: replace each ∃ with a fresh “Skolem” function f , e.g.

∀x∃y∀z∃u(ϕ) ↦∀x∀z(ϕ[f1(x)/y , f2(x , z)/u])
Let Σ′ be the set of Skolemized sentences.

Property of Skolemization: Σ satisfiable iff Σ′ satisfiable. In class
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Discussion

We have assumed that σ is finite, or countable.

If σ has cardinality κ, then the Löwenheim-Skolem Theorem says that
there exists a model of cardinality κ.

The upwards version of the Löwenheim-Skolem Theorem3 if Σ has a
model of infinite cardinality κ and κ < κ′ then it also has a model of
cardinality κ′.

Proof: add to σ constants ck , k ∈ κ′, add axioms ci ≠ cj for i ≠ j . By
compactness there is a model; then we repeat the previous proof of
Löwenheim-Skolem.

3Called: Löwenheim-Skolem-Tarski theorem.
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The Los-Vaught Test

Simple observation: if D1,D2 are isomorphic then Th(D1) = Th(D2).

Call Σ ℵ0-categorical if any two countable models of Σ are isomorphic.

Theorem (Los-Vaught Test)

If Σ has no finite models and is ℵ0 categorical then it is complete.

Proof. Suppose otherwise: there exists ϕ s.t. Σ /⊧ ¬ϕ and Σ /⊧ ϕ. Then:

Σ ∪ {ϕ} has a model D1; assume it is countable why can we?

Σ ∪ {¬ϕ} has a model D2; assume it is countable.

Then D1,D2 are isomorphic.

Contradiction because D1 ⊧ ϕ and D2 ⊧ ¬ϕ.
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Application of the Los-Vaught Test

The theory of dense linear orders without endpoints is complete.

∀x∀y¬((x < y) ∧ (y < x))
∀x∀y((x < y) ∨ (x = y) ∨ (y < x))
∀x∀y∀z((x < y) ∧ (y < z) → (x < z))

Dense: ∀x∀y(x < y → ∃v(x < v < y))
W/o Endpoints: ∀x∃u∃w(u < x < w)

Note: just “total order” is not complete!

Proof: we apply the Los-Vaught test.

Let A,B be countable models. Construct inductively Ai ⊆ A, Bi ⊆ B, and
isomorphism fi ∶ (Ai ,<) → (Bi ,<), using the Back and Forth argument.
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The Back-and-Forth argument

A = ({a1, a2, . . .},<), B = ({b1,b2, . . .},<) are total orders w/o endpoints.
Prove they are isomorphic.

A0
def= ∅, B0

def= ∅.
Assuming (Ai−1,<) ≅ (Bi−1,<), extend to (Ai ,<) ≅ (Bi ,<) as follows:

Add ai and any b ∈ B s.t. (Ai−1 ∪ {ai},<) ≅ (Bi−1 ∪ {b}).

a1 a2 a3 ai-1 

b1 b2 b3 bi-1 

ai … …   …  …   …  

… …   …  …   …  

a1 a2 a3 ai-1 

b1 b2 b3 bi-1 

ai … …   …  …   …  

… …   …  …   …  bi 

Add bi and any matching a ∈ A.

Then A = ⋃Ai , B = ⋃Bi and (A,<) ≅ (B,<).
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Discussion

The Los-Vaught test applies to any cardinal number, as follows:

If Σ has no finite models and is categorical in some infinite cardinal κ
(meaning: any two models of cardinality κ are isomorphic) then Σ is
complete.

Useful for your homework.
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Recap: Three Classical Results in Model Theory

We proved:

Compactness Theorem.

Lövenheim-Skolem Theorem.

Los-Vaught Test.

Next, we use them to prove Fagin’s 0/1 Law for First Order Logic.
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Proof of the Zero-One Law: Plan

Zero-one Law: limn→∞ µn(ϕ) is 0 or 1, for every ϕ

For simplicity, assume vocabulary of graphs, i.e. only binary E .

Define a set Σ of extension axioms, EAk,∆

We prove that limn µn(EAk,∆) = 1

Hence Σ is finitely satisfiable.

By compactness: Σ has a model.

By Löwenheim-Skolem: has a countable model (called the Rado
graph R, when undirected).

We prove that all countable models of Σ are isomorphic.

By Los-Vaught: Σ is complete.

Then Σ ⊧ ϕ implies limµn(ϕ) = 1 and Σ /⊧ ϕ implies limµn(ϕ) = 0.
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The Extension Formulas and the Extension Axioms
For k > 0 denote Sk = ([k] × {k}) ∪ ({k} × [k]) and ∆ ⊆ Sk .

EFk,∆(x1, . . . , xk−1, xk) = ⋀
(i ,j)∈∆

E(xi , xj) ∧ ⋀
(i ,j)∈Sk−∆

¬E(xi , xj)

EAk,∆ = ∀x1 . . .∀xk−1( ⋀
i<j<k

(xi ≠ xj)) → ∃xk(⋀
i<k

(xk ≠ xi) ∧ EFk,∆)

Intuition: we can extend the graph as prescribed by ∆.

x1 

x3 

x2 x5 

x4 

E(x1, x5) ∧ ¬E(x5, x1)∧
E(x2, x5) ∧ E(x5, x2)∧
¬E(x3, x5) ∧ ¬E(x5, x3)∧
¬E(x4, x5) ∧ E(x5, x4)∧
E(x5, x5)

How many extension axioms are there for k = 5?
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Proof of limn µn(EAk ,∆) = 1

EFk,∆(x1, . . . , xk−1, xk) = ⋀
(i ,j)∈∆

E(xi , xj) ∧ ⋀
(i ,j)∈Sk−∆

¬E(xi , xj)

EAk,∆ = ∀x1 . . .∀xk−1( ⋀
i<j<k

(xi ≠ xj)) → ∃xk(⋀
i<k

(xk ≠ xi) ∧ EFk,∆)

µn(¬EAk,∆) = µn (∃x1 . . .∃xk−1 (⋀(xi ≠ xj) ∧ ∀xk (⋀(xk ≠ xi) → ¬EFk,∆)))

≤ ∑
a1,...,ak−1∈[n],ai≠aj

µn
⎛
⎝ ⋀
ak∈[n]−{a1,...,ak−1}

¬EFk,∆(a1, . . . , ak−1, ak)
⎞
⎠

= ∑
a1,...,ak−1∈[n],ai≠aj

∏
ak∈[n]−{a1,...,ak−1}

µn(¬EFk,∆(a1, . . . , ak)) why?

= ∑
a1,...,ak−1∈[n],ai≠aj

∏
ak∈[n]−{a1,...,ak−1}

c where c = 1 − 1
22k−1 < 1

≤nk−1cn−k+1 → 0
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Extension Axioms Have a Countable Model

Let Σ = {EAk,∆ ∣ k > 0,∆ ⊆ Sk} be the set of extension axioms.

Σ is finitely satisfiable why?

Because forall ϕ1, . . . , ϕm ∈ Σ, µn(ϕ1 ∧⋯ ∧ ϕm) → 1

Hence, when n is large, there are many finite models for ϕ1, . . . , ϕm!

By compactness, Σ has a model.

By Löwenheim-Skolem, Σ has a countable model.
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Extension Axioms have a Unique Countable Model

Need to prove: any two countable models A,B of Σ are isomorphic.

Will use the Back-and-Forth construction!

Let A = {a1, a2, . . .}, B = {b1,b2, . . .}.

By induction on k, construct (Ak ,Ek) ≅ (Bk ,E
′

k), using the back-and-forth
construction and the fact that both A, B satisfy Σ.

a1 

a3 

a2 
a5 

a4 

b1 

b3 

b2 
b5 

b4 

Hence, there is a unique (up to isomorphism) countable model. Called The
Random Graph or Rado Graph, R for undirected graphs. See Libkin.
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Extension Axioms have a Unique Countable Model

Need to prove: any two countable models A,B of Σ are isomorphic.

Will use the Back-and-Forth construction!

Let A = {a1, a2, . . .}, B = {b1,b2, . . .}.

By induction on k, construct (Ak ,Ek) ≅ (Bk ,E
′

k), using the back-and-forth
construction and the fact that both A, B satisfy Σ.

a1 

a3 

a2 
a5 

a4 

b1 

b3 

b2 
b5 

b4 

Hence, there is a unique (up to isomorphism) countable model. Called The
Random Graph or Rado Graph, R for undirected graphs. See Libkin.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 50 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems
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Proof of the Zero-One Law

Let ϕ be any sentence: we’ll prove µn(ϕ) tends to either 0 or 1.

Σ is complete, hence either Σ ⊧ ϕ or Σ ⊧ ¬ϕ.

Assume Σ ⊧ ϕ.

By compactness, then there exists a finite set {ψ1, . . . , ψm} ⊧ ϕ

Thus, µn(ϕ) ≥ µn(ψ1 ∧⋯ ∧ ψm) → 1 why?

Assume Σ ⊧ ¬ϕ: then µn(¬ϕ) → 1, hence µn(ϕ) → 0.
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Discussion

The 0/1 law does not hold if there constants:
e.g. limµnR(a,b) = 1/2 (neither 0 nor 1).
Where in the proof did we use this fact? (Homework!)

The Random Graph R satisfies precisely those sentences for which
limµn(ϕ) = 1.

We proved the 0/1 law when every edge E(i , j) has probability
p = 1/2.
The same proof also holds when every edge has probability p ∈ (0,1)
(independent of n).

The Erdös-Rényi random graph G(n,p) allows p to depend on n. 0/1
law for FO may or may not hold. discuss more in class
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A Cool Application: Non-standard Analysis

“Infinitezimals” have been used in calculus since Leibniz and Newton.

But they are not rigorous! Recall Logicomix.

Example: compute the derivative of x2:

dx2

dx
=(x + dx)2 − x2

dx
= 2 ⋅ x ⋅ dx + (dx)2

dx
= 2x + dx ≃ 2x

because dx is “infinitely small”, hence dx ≃ 0.

Robinson in 1961 showed that how to define infinitezimals rigorously (and
easily) using the compactness theorem!
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The Nonstandard Reals
R = the true real numbers.

Let σ be the vocabulary of all numbers, functions, relations:
▸ Every number in R has a symbol: 0,−5, π, . . .
▸ Every function Rk → R has a symbol: +,∗,−, sin, . . .
▸ Every relation ⊆ Rk has a symbol: <,≥, . . .

Let Th(R) all true sentences, e.g.:

∀x(x2 ≥ 0)
∀x∀y(∣x + y ∣ ≤ ∣x ∣ + ∣y ∣)
∀x(sin(x + π) = − sin(x))

Let Ω be a new constant, and Σ
def= Th(R) ∪ {n < Ω ∣ n ∈ N}.

“Ω is bigger than everything”.

Σ has a model ∗R. WHY?

What exactly is ∗R???
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The Nonstandard Reals

Every number in R also exists in ∗R: 0,−5, π, . . .

Every function Rk → R has an extension (∗R)k → ∗R.

Every relation ⊆ Rk has a corresponding ⊆ (∗R)k .

ω
def= 1/Ω; the, 0 < ω < c forall real c > 0. Infinitezimal! others?

The infinitezimals are I def= {v ∈ ∗R ∣ ∀c ∈ R, c > 0 ∶ ∣v ∣ < c}
The finite elements are F def= {v ∈ ∗R ∣ ∃c ∈ R, ∣v ∣ < c}

2ω,ω3, sin(ω) are infinitezimals; 0.001 is not.

π,0.001,101010
are finite; Ω,Ω/1000,ΩΩΩ

are not.
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The Nonstandard Reals

Every number in R also exists in ∗R: 0,−5, π, . . .

Every function Rk → R has an extension (∗R)k → ∗R.

Every relation ⊆ Rk has a corresponding ⊆ (∗R)k .

ω
def= 1/Ω; the, 0 < ω < c forall real c > 0. Infinitezimal! others?

The infinitezimals are I def= {v ∈ ∗R ∣ ∀c ∈ R, c > 0 ∶ ∣v ∣ < c}
The finite elements are F def= {v ∈ ∗R ∣ ∃c ∈ R, ∣v ∣ < c}

2ω,ω3, sin(ω) are infinitezimals; 0.001 is not.

π,0.001,101010
are finite; Ω,Ω/1000,ΩΩΩ

are not.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 55 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

The Nonstandard Reals

Infinitezimals closed under +,−,∗; x , y ∈ I implies x + y , x − y , x ∗ y ∈ I

Finite elements closed under +,−,∗; x , y ∈ F implies x + y , x − y , x ∗ y ∈ F

Call x , y ∈ ∗R infinitely close if x − y ∈ I; write x ≃ y .

Fact: ≃ is an equivalence relation. Exercise!

Now we can work with infinitezimals rigorously:

dx2

dx
=(x + dx)2 − x2

dx
= 2 ⋅ x ⋅ dx + (dx)2

dx
= 2x + dx ≃ 2x
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The Nonstandard Reals

Infinitezimals closed under +,−,∗; x , y ∈ I implies x + y , x − y , x ∗ y ∈ I

Finite elements closed under +,−,∗; x , y ∈ F implies x + y , x − y , x ∗ y ∈ F

Call x , y ∈ ∗R infinitely close if x − y ∈ I; write x ≃ y .

Fact: ≃ is an equivalence relation. Exercise!

Now we can work with infinitezimals rigorously:

dx2

dx
=(x + dx)2 − x2

dx
= 2 ⋅ x ⋅ dx + (dx)2

dx
= 2x + dx ≃ 2x

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 56 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Two Other Classical Theorem
(which everyone should know!)

Gödel’s completeness theorem.

Gödel’s incompleteness theorem.

We discuss them next
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Gödel’s Completeness Theorem

Part of Gödel’s PhD Thesis. (We need to raise the bar at UW too.)

It says that, using some reasonable axioms:
Σ ⊧ ϕ iff there exists a syntactic proof of ϕ from Σ.

Completeness ⇔ Compactness (⇒ is immediate; ⇐ no easy proof).

Instead, proof of Completeness Theorem is similar to Compactness.

The Completeness Theorem depends on the rather ad-hoc choice of
axioms, hence mathematicians consider it less deep than compactness.
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Axioms

There are dozens of choices4 for the axioms5. Recall ¬ϕ is ϕ→ F .

A1 ∶ϕ→ (ψ → ϕ)
A2 ∶(ϕ→ (ψ → γ)) → ((ϕ→ ψ) → (ϕ→ γ))
A3 ∶¬¬ϕ→ ϕ

A4 ∶∀xϕ→ ϕ[t/x] for any term t

A5 ∶(∀x(ϕ→ ψ)) → (∀x(ϕ) → ∀x(ψ)))
A6 ∶ϕ→ ∀x(ϕ) x /∈ FreeVars(ϕ)
A7 ∶x = x

A8 ∶(x = y) → (ϕ→ ϕ[y/x])

These are axiom schemas: each Ai defines an infinite set of formulas.
4A1 −A8 are a combination of axioms from Barnes&Mack and Enderton.
5Fans of the Curry-Howard isomorphisms will recognize typed λ-calculus in A1,A2.
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Proofs

Let Σ be a set of formulas.

Definition

A proof or a deduction is a sequence ϕ1, ϕ2, . . . , ϕn such thata, for every i :

ϕi is an Axiom, or ϕi ∈ Σ or,

ϕi is obtained by modus ponens from earlier ϕj , ϕk (ϕk ≡ (ϕj → ϕi).)

aThere is no Generalization Rule since it follows from A6 (Enderton).

Definition

We say that ϕ is provable, or deducible from Σ, and write Σ ⊢ ϕ, if there
exists a proof sequence ending in ϕ.
If ⊢ ϕ then we call ϕ a theorem.

Ded(Σ) is the set of formulas ϕ provable from Σ.
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Discussion

Σ ⊧ ϕ is semantics: it says something about truth.

Σ ⊢ ϕ is syntactic: an application of ad-hoc rules.

Example: prove that ϕ→ ϕ:

A1 ∶ϕ→ ((ϕ→ ϕ) → ϕ)
A2 ∶(ϕ→ ((ϕ→ ϕ) → ϕ)) → ((ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ))

MP ∶(ϕ→ (ϕ→ ϕ)) → (ϕ→ ϕ)
A1 ∶(ϕ→ (ϕ→ ϕ))

MP ∶(ϕ→ ϕ)

Prove at home F → ϕ and ϕ→ ψ,ψ → ω ⊢ ϕ→ ω.
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Consistency

Definition

Σ is called inconsistent if Σ ⊢ F . Otherwise we say Σ is consistent.

Σ is inconsistent iff for every ϕ, Σ ⊢ ϕ
Proof: ⊢ F → ϕ.

Σ is inconsistent iff there exists ϕ s.t. both Σ ⊢ ϕ and Σ ⊢ ¬ϕ
Proof: ϕ,¬ϕ ⊢ F .
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Soundness and Completeness

Theorem (Soundness)

If Σ is satisfiable (i.e. Σ /⊧ F ), then it is consistent (i.e. Σ /⊢ F ).

Equivalent formulation: if Σ ⊢ ϕ then Σ ⊧ ϕ.

Prove and discuss in class

Theorem (Gödel’s Completeness Theorem)

If Σ is consistent (Σ /⊢ F ), then it has a model (Σ /⊧ F ).

Equivalent formulation: if Σ ⊧ ϕ then Σ ⊢ ϕ.

The Completeness Theorem immediately implies the Compactness
Theorem why?.
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Proof of Gödel’s Completeness Theorem

Follow exactly the steps of the compactness theorem.

Extend a consistent Σ to a consistent Σ̄ that is complete and
witness-complete

Use the Inductive Structure of a complete and witness-complete set.
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Two Lemmas

Lemma (The Deduction Lemma)

If Σ, ϕ ⊢ ψ then Σ ⊢ ϕ→ ψ.

Proof: induction on the length of Σ, ϕ ⊢ ψ. Note: converse is trivial.

Lemma (Excluded Middle)

If Σ, ϕ ⊢ ψ and Σ, (ϕ→ F) ⊢ ψ then Σ ⊢ ψ.

Σ ⊢ϕ→ ψ Deduction Lemma

Σ, ψ → F ⊢ϕ→ F by ϕ→ ψ,ψ → F ⊢ ϕ→ F
Σ ⊢(ϕ→ F) → ψ Deduction Lemma

Σ, ψ → F ⊢(ϕ→ F) → F As above

Σ, ψ → F ⊢F MP: ϕ→ F , (ϕ→ F) → F ⊢ F
Σ ⊢(ψ → F) → F Deduction Lemma

Σ ⊢ψ by A3
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Step 1: Extend Σ to a (witness-) complete Σ̄

Enumerate all formulas ϕ1, ϕ2, . . ., and define:

Σ0 =Σ Σi+1 =
⎧⎪⎪⎨⎪⎪⎩

Σi ∪ {ϕi} if Σi ∪ {ϕi} is consistent

Σi ∪ {¬ϕi} if Σi ∪ {¬ϕi} is consistent

At least one set is consistent, otherwise:
Σi , ϕi ⊢ F and Σi ,¬ϕi ⊢ F , thus Σi ⊢ F by Excluded Middle.

To make it witness-complete, add countably many fresh constants
c1, c2, . . ., and repeatedly add ¬ϕ[ci/x] to Σ whenever ¬∀x(ϕ) ∈ Σ;
must show that we still have a consistent set (omitted).
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Step 2: Inductive Structure of a (Witness-)Complete Set

Lemma

If Σ̄ is complete, witness-complete, and consistent, then:

ϕ→ ψ ∈ Σ̄ iff ϕ /∈ Σ̄ or both ϕ,ψ ∈ Σ̄.

¬ϕ ∈ Σ̄ iff ϕ /∈ Σ̄.

¬∀x(ϕ) ∈ Σ̄ iff there exists a constant s.t. ¬ϕ[c/x] ∈ Σ̄.

Sketch of the Proof in class

Now we can prove Gödel’s completeness theorem:

If Σ is consistent (Σ /⊢ F ), then it has a model.

Simply construct a model of Σ̄ exactly the same way as in the
compactness theorem.
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Now we can prove Gödel’s completeness theorem:

If Σ is consistent (Σ /⊢ F ), then it has a model.

Simply construct a model of Σ̄ exactly the same way as in the
compactness theorem.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 67 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Discussion

Gödel’s completeness theorem is very strong: everything that is true
has a syntactic proof.

In particular, Con(Σ) is r.e.

If, furthermore, Σ is complete, then Con(Σ) is decidable!

Gödel’s completeness theorem is also very weak: it does not tell us
how to prove sentences that hold in a particular structure D.

Gödel’s incompleteness proves that this is unavoidable, if the
structure is rich enough.
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Application to Decidability

Corollary

If Σ is r.e. and complete (meaning: Σ ⊧ ϕ or Σ ⊧ ¬ϕ forall ϕ), then
Con(Σ) is decidable.

why?

Proof: given ϕ, simply enumerate all theorems from Σ:

Σ ⊢ϕ1, ϕ2, ϕ3, . . .

Eventually, either ϕ or ¬ϕ will appear in the list.

Example 1: total, dense linear order without fixpoint is decidable

Example 2: Th(N,0,succ) is decidable (on your homework).
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Gödel’s Incompleteness Theorem

Proven by Gödel in 1931 (after his thesis).

It says that no r.e. Σ exists that is both consistent and can prove all
true sentences in (N,+,∗).

The proof is actually not very hard for someone who knows
programming (anyone in the audience?).

What is absolutely remarkable is that Gödel proved it before
programming, and even computation, had been invented.

Turing published his Turing Machine only in 1937, to explain what
goes on in Gödel’s proof.

. . . and 81 years later, we have Deep Learning!
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Gödel’s Incompleteness Theorem

Theorem

Let Σ be any r.e. set of axioms for (N,+,∗). If Σ is consistent, then it is
not complete.

What if Σ is not consistent?

In particular, there exists a sentenced A s.t. (N,+,∗) ⊧ A but Σ /⊢ A.

We will prove it, by simplifying the (already simple!) proof by Arindama
Singh https://mat.iitm.ac.in/home/samy/public_html/

mnl-v22-Dec2012-i3.pdf
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Computing in (N,+,∗)

Lemma

Fact: for every Turing computable function f ∶ N→ N there exists a
sentence ϕ(x , y) s.t. forall m,n ∈ N, N ⊧ ϕ(m,n) iff f (m) = n.

In other words, ϕ represents f .

The proof requires a lot of sweat, but it’s not that hard.

Sketch on the next slide.

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 72 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Computing in (N,+,∗)

Express exponentiation: N ⊧ ϕ(m,n,p) iff p = mn. This is hard, lots
of math. Some books give up and assume exp is given: (N,+,∗,E).

Encode a sequence [n1,n2, . . . ,nk] as powers of primes: 2n13n25n3⋯
You might prefer: a sequence is just bits, hence just a number.

Encode the API: concatenate, get i ’th position, check membership.

For any Turing Machine T , write a sentence ϕT (x , y , z) that says6:
“the sequence of tape contents z is a correct computation of output
y from input x .”

The function computed by T is ∃z(ϕT (x , y , z)).

6We will do this in detail in Unit 3.
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Computing in (N,+,∗)
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You might prefer: a sequence is just bits, hence just a number.

Encode the API: concatenate, get i ’th position, check membership.

For any Turing Machine T , write a sentence ϕT (x , y , z) that says6:
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The Checker and the Prover

Fix an r.e. set of axioms7, (N,+,∗) ⊧ Σ. Construct two sentences s.t.:

(N,+,∗) ⊧ Checker(x , y , z) iff

▸ x encodes a formula ϕ,
▸ y encodes a sequence [ϕ1, ϕ2, . . . , ϕk],
▸ z encodes a finite set Σfin, and
▸ [ϕ1, ϕ2, . . . , ϕk] is proof of Σfin ⊢ ϕ.

ProverΣ(x) ≡ ∃y∃z(”z encodes Σfin ⊆ Σ” ∧ Checker(x , y , z)).
Here we assume Σ is r.e.

By Soundness, (N,+,∗) ⊧ ProverΣ(ϕ) implies Σ ⊢ ϕ.

7E.g. Endetron pp. 203 describes 11 axioms
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Gödel’s Sentence

Let ϕ1(x), ϕ2(x), . . . be an enumeration8 of all formulas with one free
variable.

Consider the formula ¬ProverΣ(ϕx(x)) this requires some thinking!

It has a single variable x , hence it is in the list, say on position k:
ϕk(x) ≡ ¬ProverΣ(ϕx(x)).

Denote α ≡ ϕk(k).

In other words: α ≡ ¬ProverΣ(α) (syntactic identity)

α says “I am not provable”!

Next: prove two lemmas which imply Gödel’s theorem.

8Computable!
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Lemma 1
α ≡ ¬ProverΣ(α) (syntactic identity)

Lemma (1)

Σ ⊢ ProverΣ(α) → ProverΣ(¬α)

Proof. Assume Σ is rich enough to prove:

P1 ∶Σ ⊢ ϕ implies Σ ⊢ ProverΣ(ϕ)
P2 ∶Σ ⊢ (ProverΣ(ϕ→ ψ)) → (ProverΣ(ϕ) → ProverΣ(ψ))
P3 ∶Σ ⊢ ProverΣ(ϕ) → ProverΣ(ProverΣ(ϕ))

The lemma follows from the last two lines:

⊢¬¬ProverΣ(α) → ¬α by ϕ→ ϕ

⊢ProverΣ(α) → ¬α ψ → ¬¬ψ
Σ ⊢ProverΣ(ProverΣ(α) → ¬α) P1

Σ ⊢ProverΣ(ProverΣ(α)) → ProverΣ(¬α) P2

Σ ⊢ProverΣ(α) → ProverΣ(ProverΣ(α)) P3
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Lemma 2

α ≡ ¬ProverΣ(α) (syntax) Σ ⊢ ProverΣ(α) → ProverΣ(¬α) (Lemma 1)

Lemma (2)

Σ ⊢ ProverΣ(α) → ProverΣ(F)

Assume Σ is rich enough to also prove:

P4 ∶Σ ⊢ ProverΣ(ϕ) ∧ ProverΣ(ψ) → ProverΣ(ϕ ∧ ψ)

Lemma 2 follows from the last line:

Σ,ProverΣ(α) ⊢ProverΣ(¬α) Lemma 1 and Deduction Lemma

Σ,ProverΣ(α) ⊢ProverΣ(¬α ∧ α) P4

Σ,ProverΣ(α) ⊢ProverΣ(F) ¬α ∧ α → F
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Proof of Gödel’s First Incompleteness Theorems

α ≡ ¬ProverΣ(α) (syntax) Σ ⊢ ProverΣ(α) → ProverΣ(F) (Lemma 2)

Theorem (Σ Is Not Complete)

If Σ is consistent (Σ /⊢ F ), then Σ /⊢ α and Σ /⊢ ¬α.

Proof:
Suppose Σ ⊢ α:

Σ ⊢ProverΣ(α) P1

Σ ⊢¬ProverΣ(α) syntax

Σ ⊢F ϕ,¬ϕ ⊢ F

Suppose Σ ⊢ ¬α:

Σ ⊢¬¬ProverΣ(α) syntax

Σ ⊢ProverΣ(α) A3

Σ ⊢ProverΣ(F) Lemma 2

Σ ⊢F soundness
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Proof of Gödel’s First Incompleteness Theorems

α ≡ ¬ProverΣ(α) (syntax) Σ ⊢ ProverΣ(α) → ProverΣ(F) (Lemma 2)

Theorem (Σ Is Not Complete)

If Σ is consistent (Σ /⊢ F ), then Σ /⊢ α and Σ /⊢ ¬α.

Proof:
Suppose Σ ⊢ α:

Σ ⊢ProverΣ(α) P1

Σ ⊢¬ProverΣ(α) syntax

Σ ⊢F ϕ,¬ϕ ⊢ F

Suppose Σ ⊢ ¬α:

Σ ⊢¬¬ProverΣ(α) syntax

Σ ⊢ProverΣ(α) A3

Σ ⊢ProverΣ(F) Lemma 2

Σ ⊢F soundness

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 78 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems
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Proof of Gödel’s Second Incompleteness Theorems

α ≡ ¬ProverΣ(α) (syntax) Σ ⊢ ProverΣ(α) → ProverΣ(F) (Lemma 2)

Theorem (Σ Cannot Prove its Own Consistency)

Σ /⊢ ¬ProverΣ(F)

Proof: suppose Σ ⊢ ¬ProverΣ(F)

Σ ⊢¬ProverΣ(F) → ¬ProverΣ(α) Lemma 2

Σ ⊢¬ProverΣ(α) Modus Ponens

Σ ⊢α Syntax

Σ ⊢F First Incompleteness Theorem

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 79 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems
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Proof of Gödel’s Second Incompleteness Theorems

α ≡ ¬ProverΣ(α) (syntax) Σ ⊢ ProverΣ(α) → ProverΣ(F) (Lemma 2)

Theorem (Σ Cannot Prove its Own Consistency)

Σ /⊢ ¬ProverΣ(F)

Proof: suppose Σ ⊢ ¬ProverΣ(F)

Σ ⊢¬ProverΣ(F) → ¬ProverΣ(α) Lemma 2

Σ ⊢¬ProverΣ(α) Modus Ponens

Σ ⊢α Syntax

Σ ⊢F First Incompleteness Theorem

Dan Suciu Finite Model Theory – Unit 1 Spring 2018 79 / 80



Basic Definitions Zero-One Law for FO Classical Model Theory Proof of 0/1 Law Non-standard Analysis Gödel’s Theorems

Discussion

We only proved that neither α nor ¬α is provable. Can we get a
complete theory by adding α or ¬α to Σ (whichever is true)? In class

Not all theories of N are undecidable. Examples9:

▸ (N,0,succ) is decidable (homework!).

▸ (N,0,succ,<) is decidable; can define finite and co-finite sets.

▸ (N,0,succ,+,<) is decidable and called Presburger Arithmetic; can
define eventually periodic sets.

▸ (N,0,succ,+,∗,<) is undecidable (Gödel).

▸ (C,0,1,+,∗) is decidable.

9Enderton pp. 187, 197, 158
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