Finite Model Theory - Homework 3

April 27, 2018

1 The Satisfiability Problem

1. (0 points)
(a) Let $\sigma=\left\{U_{1}, \ldots, U_{m}\right\}$ be a relational vocabulary with k unary predicate symbols. Prove that sentences over this vocabulary satisfy the small model property: if φ has a model, then it has a finite model of size $\leq f(|\varphi|)$, for some computable function f. (Hint: given any infinite structure \boldsymbol{A} and a number k describe a finite model \boldsymbol{B} s.t. $\boldsymbol{A} \sim_{k} \boldsymbol{B}$.)
(b) Prove that the satisfiability problem for a relational vocabulary consisting of only unary predicate symbols is decidable.
(c) Let $\varphi(x)$ be formula with a free variable x, and R be a unary relational symbol. We say that φ is monotone in a relational symbol R if for any two structures $\boldsymbol{A}, \boldsymbol{B}$ with the same domain and satisfying $R^{A} \subseteq R^{B}$, and $S^{A}=S^{B}$ for every other relational symbol S, we have $\{a \in A \mid \boldsymbol{A} \models \varphi(a)\} \subseteq\{b \in B \mid \boldsymbol{B} \models \varphi(b)\}$. (Note: this is the semantic property needed for the least fixpoint, $\left[\operatorname{lfp}_{R, x} \varphi\right]$.) Prove that, if the vocabulary includes at least one binary relational symbol other than R, then the problem "given φ check if it is monotone in R over all finite structures" is undecidable.

2 Descriptive Complexity

2. (0 points)
(a) Let $G=(V, E)$ be a finite graph, and consider the following query:

$$
q(x)=\left[\operatorname{lfp}_{S, x}(\forall y(E(x, y) \rightarrow S(y)))\right](x)
$$

i. Which nodes x does the query return on the graph below?

ii. Write an FO sentence (without fixpoints!) that is equivalent to $\forall x \neg q(x)$.
iii. Consider these complexity classes: $A C^{0}, P T I M E, N P, P S P A C E$. Indicate the lowest complexity class to which q belongs. You can just indicate the lowest complexity class, no need to prove that it's not lower than that (but you are welcome to do so).
(b) Consider the vocabulary $\left(<, P_{a}, P_{b}, P_{c}\right)$ of strings over the alphabet $\Sigma=\{a, b, c\}$.
i. Write each of the regular expressions below in FO or in MSO. Use succ, \leq, min, max when needed, since these are expressible using $<$.

$$
E_{1}=(a \mid b)^{*} \cdot c^{*} \quad E_{2}=(a . b)^{*} \quad E_{3}=(a . a \cdot a)^{*}
$$

ii. Write a regular expression describing the following language:

$$
\forall S\left(\exists x\left(S(x) \wedge P_{a}(x)\right)\right) \rightarrow\left(\exists y\left(S(y) \wedge P_{b}(y)\right)\right.
$$

