1 The Satisfiability Problem

1. (0 points)
 (a) Let \(\sigma = \{U_1, \ldots, U_m\} \) be a relational vocabulary with \(k \) unary predicate symbols. Prove that sentences over this vocabulary satisfy the small model property: if \(\phi \) has a model, then it has a finite model of size \(\leq f(|\phi|) \), for some computable function \(f \). (Hint: given any infinite structure \(A \) and a number \(k \) describe a finite model \(B \) s.t. \(A \sim_k B \).)

 (b) Prove that the satisfiability problem for a relational vocabulary consisting of only unary predicate symbols is decidable.

 (c) Let \(\phi(x) \) be formula with a free variable \(x \), and \(R \) be a unary relational symbol. We say that \(\phi \) is monotone in a relational symbol \(R \) if for any two structures \(A, B \) with the same domain and satisfying \(R^A \subseteq R^B \), and \(S^A = S^B \) for every other relational symbol \(S \), we have \(\{a \in A \mid A \models \phi(a)\} \subseteq \{b \in B \mid B \models \phi(b)\} \). (Note: this is the semantic property needed for the least fixpoint, \(lfp_{R,x} \phi \).) Prove that, if the vocabulary includes at least one binary relational symbol other than \(R \), then the problem “given \(\phi \) check if it is monotone in \(R \) over all finite structures” is undecidable.
2 Descriptive Complexity

2. (0 points)

(a) Let $G = (V, E)$ be a finite graph, and consider the following query:

$$q(x) = \text{Lfp}_{S,x} (\forall y (E(x, y) \rightarrow S(y))) (x)$$

i. Which nodes x does the query return on the graph below?

ii. Write an FO sentence (without fixpoints!) that is equivalent to $\forall x q(x)$.

iii. Consider these complexity classes: AC^0, $PTIME$, NP, $PSPACE$. Indicate the lowest complexity class to which q belongs. You can just indicate the lowest complexity class, no need to prove that it’s not lower than that (but you are welcome to do so).

(b) Consider the vocabulary $(<, P_a, P_b, P_c)$ of strings over the alphabet $\Sigma = \{a, b, c\}$.

i. Write each of the regular expressions below in FO or in MSO. Use succ, \leq, min, max when needed, since these are expressible using $<$.

$$E_1 = (a|b)^*c^* \quad E_2 = (a.b)^* \quad E_3 = (a.a.a)^*$$

ii. Write a regular expression describing the following language:

$$\forall S (\exists x (S(x) \land P_a(x))) \rightarrow (\exists y (S(y) \land P_b(y)))$$