
Metadata and Semantic Technologies for Science

Bill Howe

Johan Bollen Los Alamos PLoS ONE, March 2009

3 of 45

Metadata

Literally: data about data

- Descriptive (meta-)information about the "actual" data
- Distinction between data and metadata is not always clear
- "Someone's metadata is someone else's data"
- Related notions:
 - □ schema, data dictionary, conceptual model, ontology,
- Traditional example: Library catalog card contains metadata about the contents and location of books

Perspectives on Metadata

- Digital Library perspective?
 - **Resource descriptions**
 - **Operation: retrieval**
- Database perspective?
 - Schema, describing the logical ("almost physical") structure of the data
 - **Operation: query (query as "computation" -- more** than retrieval)

Metadata Standards

Content standards:

□ which pieces of information are to be recorded (e.g. DC)

Value standards:

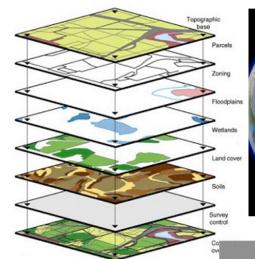
- □ how is the information to be recorded (= DC *encoding schemes*)
- formats (ISO date format, NCA name formats, AACR)
- lists of valid values (thesauri, controlled vocabularies, authority files)

Structure standards:

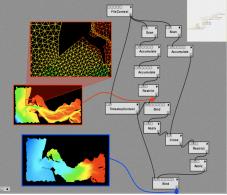
how the information is to be grouped and labelled for use by computers and humans (XML schemas, MARC)

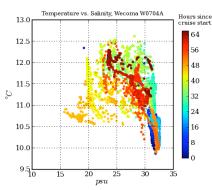
Content Standard Example: Dublin Core

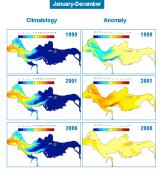
■ 1. Title

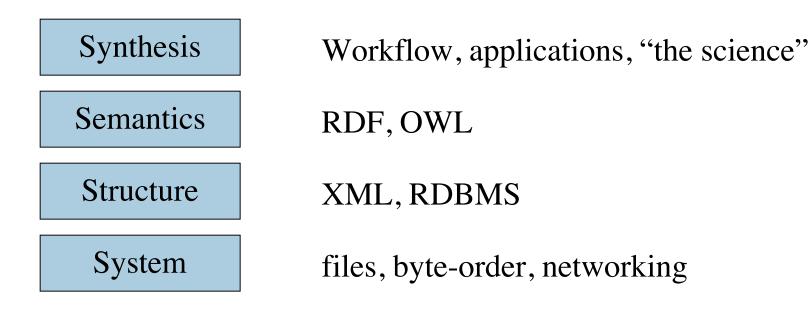

- **2**. Creator
 - 3. Subject
- 4. Description
- **5**. Publisher
- 6. Contributor
- **7**. Date

- **8**. Type
- **9**. Format
- 10. Identifier
- 11. Source
- 12. Language
- 13. Relation
- 14. Coverage
- 15. Rights


Why Metadata?


Types of Integration


- Spatiotemporal coregistration/"overlay"
 - "Desktop integration"
- Schema-oriented integration
 - View-based
 - Task: Derive mediated schema
 - Global as View or Local as View
- Application/Process Integration
 - Workflows, Mashups
- "Manual", Programmatic Integration
 - Statistics, Visualization


Lecture 6

What's Missing?

- Spatiotemporal co-registration
 - Assumes agreement on coordinate systems
- Schema-oriented integration
 - Assumes agreement on (complex) data model
- Application integration
 - Assumes agreement on process descriptions
- Programmtic integration
 - Few assumptions, but no real help either
- All of these assume agreement on semantics

Goal: Interoperability

Resolve heterogeneity in...

Paraphrasing Bertram Ludascher

4/12/08

Example: XML

No commitment to or specification of semantics

What is a "name"?

What are the units of "length"?

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> <!-- This XML document was generated by RCCOB XML --> - <TRAINDOC> - <SOAP-ENV: Envelope xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap" xmlns: uk="http://www.greenwichmeantime.co.uk" xmlns: us="http://www.easternstandardtime.com"> < <SOAP-ENV: Body> - <TRAIN Date="18/03/2003" Time="13:00"> - <LOCOMOTIVE> <Name>Thomas</Name> <Length>12,500.00</Length> <Weight>3,400</Weight> </LOCOMOTIVE> - <CARRIAGE> <Name>Annie</Name> <Length>10,000.00</Length> <Weight>2,000</Weight> - < Other Information> Room for <count>100</count> standing & seated </Other Information> </CARRIAGE> - <CARRIAGE> <Name>Clarabel</Name> <Length>12,500.00</Length> < Weight /> </CARRIAGE> </TRAIN> </SOAP-ENV:Body> </SOAP-ENV:Envelope> </TRAINDOC>

Example: Relational

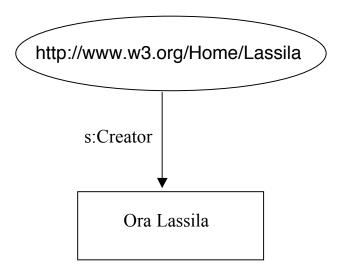
type	name	length	weight	other
locomotive	Thomas	12,500	3,400	
carriage	Annie	10,000	2,000	room for 100
carriage	Clarabel	12,500		

No commitment to or specification of semantics

What is a "name"?

What are the units of "length"?

Semantic Web


- "The Semantic Web is an extension of the current Web in which information is given well-defined meaning, enabling computers and people to work in better cooperation"
- "The web will reach its full potential when it becomes an environment where data can be shared and processed by automated tools as well as by people."

-- Tim Berners-Lee and Eric Miller

RDF: Web based data model

- Semantic Web: beyond machine readable to *machine understandable*.
- Resource Description Framework is the W3C language for describing metadata on the Web.
- **RDF** consists of two parts
 - 1. RDF Model (a set of triples)
 - 2. **RDF Syntax (different XML serialization syntaxes)**
 - RDF a small set of modelling primitives + syntax
 - RDF does not commit to a domain vocabulary
- <u>RDF Schema</u> for definition of Vocabularies (simple Ontologies) for RDF (and in RDF)

A simple RDF example

Triples

Resource (subject) http://www.w3.org/Home/Lassila

Property (predicate) http://www.schema.org/#Creator

Value (object) "Ora Lassila"

Resources

- □ A thing you can reference (URI)
- RDF definitions are themselves Resources.

Properties

- slots, defines relationship to other resources or atomic values
- Similar to Frames.

Statements

- "Resource has Property with Value"
- Values can be resources or atomic
 XML Schema data types.
- Directed graph

Why RDF? 1st Attempt

- Universal machine-readable standard for representing semantics
- "Push-based" integration
 - Describe everything precisely up-front, and integration is easier
 - So easy, in fact, that little autonomous agents will be able to scurry around the web booking flights on your behalf

An allegory

A Data Model Continuum *Lift a special* Generalize *"uniformity"* ordering to ignore values can relationship into multiple refer to other grammar the model dimensions keys relations tags arrays OO/DL graphs prop-value free text meshes trees streams pairs *Lift a special Lift a topology* lift "groups of Lift a special relationship into ordering tags" into the parent-child the model relationship relationship into model into the model the model

higher-level services, stronger guarantees, up-front design, difficulty in optimization

Why RDF? 2nd attempt

- "Lowest common denominator" data model
- Just enough structure to represent explicit machine-readable relationships

unlike free text, tags, key-value pairs

- Not so much structure as to require complicated, brittle modeling decisions
 - unlike XML, RDBMS, OO

Roadmap

Background and Motivation

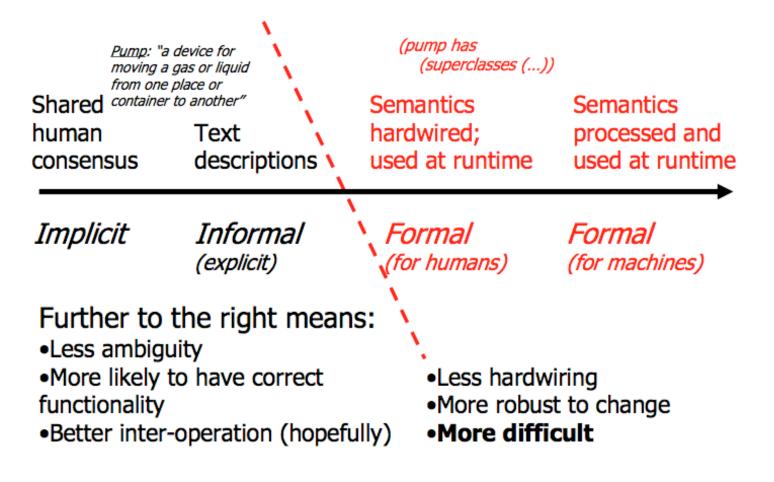
- Overview of Ontologies and Reasoning
- Storing and Querying RDF
- Papers

Ontologies

What is an ontology? An ontology usually

- □ specifies a theory (a set of logic models models) by...
- □ defining and relating ...
- **concepts** representing features of a domain of interest

Also overloaded (sloppy) for:

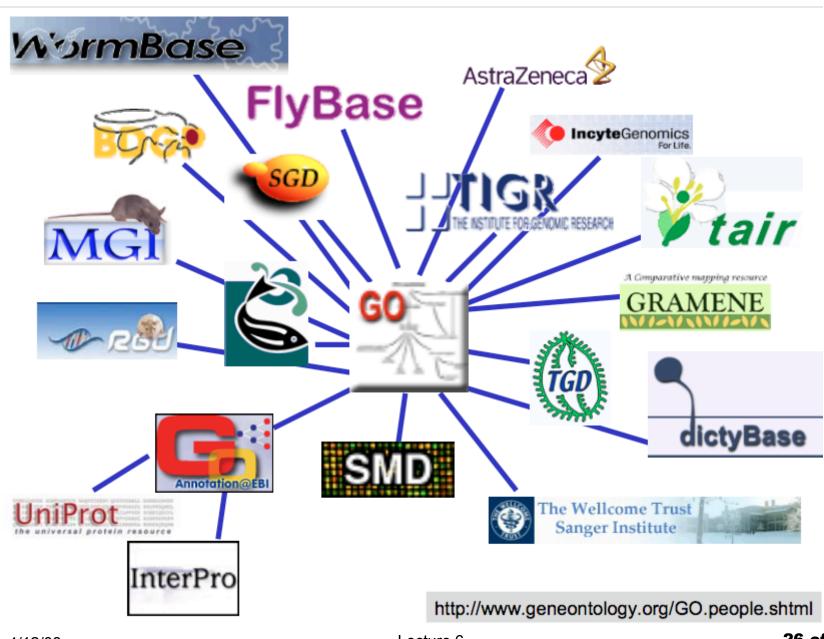

- Controlled vocabularies
- Database schema (relational, XML Schema/DTD)
- □ **Conceptual schema** (ER, UML)
- □ **Thesauri** (synonyms, broader term/narrower term)
- **Taxonomies** (classifications)
- Informal/semi-formal knowledge representations Concept spaces, concept maps, Labeled graphs / semantic networks (RDF)
- Formal ontologies, e.g., in [Description] Logic (OWL) formalization of a specification constrains possible interpretation of terms

src: Carole Goble

Inference machinery

- Any knowledge is
 - A language representation +
 - An inference mechanism for deduction
- First order calculus + resolution method
- Frames + matcher
- Semantic net + graph traversal
- Description logics + theorem prover

Ontologies: A Semantic Continuum


Src: [Mike Uschold, Boeing Corp]

Example: Gene Ontology (GO)

- Well-known life science ontology
- Three things described
 - sub-cellular localization
 - molecular function (what the gene does)
 - biological process (the cellular, developmental or physiological events the gene product is involved in)

Example:

- Taking 4 kinases at random from 4 different organisms (Fly: ZWIM, Mouse: DAPK2 and Arabidopsis: KIPK and yeast: WEE1), based on gene nomenclature it is not clear that all of these genes encode protein kinases!
- However, in GO, all 4 genes are annotated to the term "protein kinaseactivity" making it simple to find genes with similar functions in diverse species.

RDF Schema (RDFS)

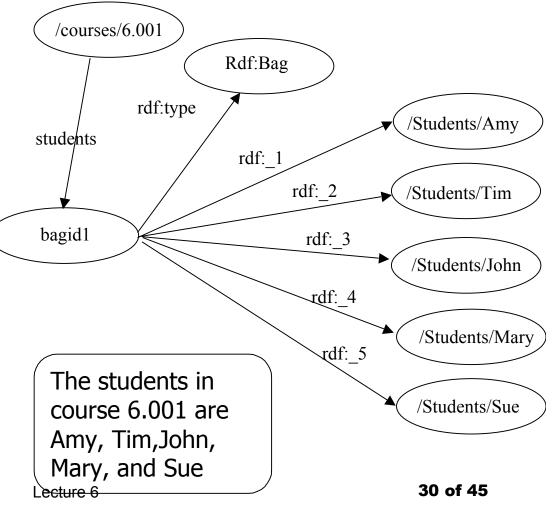
- RDF just defines the data model.
- Need for definition of vocabularies for the data model an Ontology Language!
- RDF-Schemas describe rules for using RDF properties
 - Define a domain vocabulary for RDF
 - Organise this vocabulary in a typed hierarchy
- RDF Schemas are Web resources (and have URIs) and can be described using RDF.
- Are not to be confused with XML Schemas.
- RDFS is the framework for a vocabulary.

RDF Schema Model

- Each property specifies what classes of subjects and objects it relates. New properties can be added to a class without modifying the class
 - resource, class, subClassOf, type
 - property, subPropertyOf
 - domain, range, constraintResource, constraintProperty
- Definitions can include constraints which express validation conditions
 - domain constraints link properties with classes
 - range constraints limit property values
- BUT expressive inadequacy and poorly defined semantics

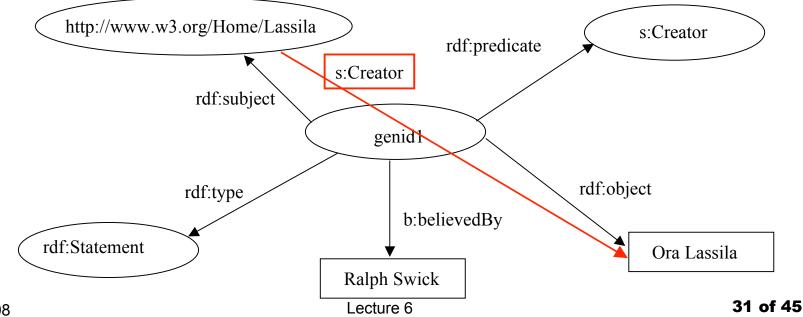
Blank Nodes

Existentially quantified variables


ex:John foaf:knows _:p1 _:p1 foaf:birthDate 04-21

Use cases

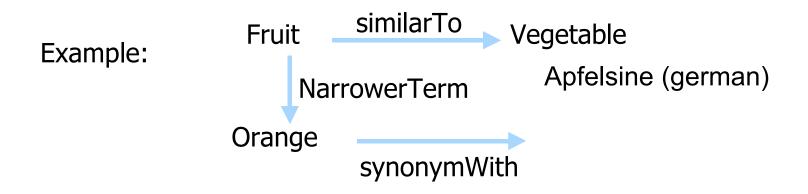
- Reasoning/Graph entailment
- Modeling complex structures; Collections
- Anonymous classes in OWL


Collection Containers

- Multiple occurrences of the same PropertyType doesn't establish a relation between the values
 - The Millers own a boat, a bike, and a TV set
- RDF defines three special Resources:
 - Bag
 - Sequence
 - Alternative

Reification: Statements about statements

- Transform them into Resources.
- Ralph Swick believes that
 - the creator of the resource http://www.w3.org/Home/Lassila is Ora Lassila



4/12/08

Related Concept: Controlled Vocabulary

- Domain model
- No relationships
- Standardizes terminology to reduce semantic heterogeneity

Related concept: Thesauri

- Graph with labels edges (similar, nt, bt, synonym)
- Fixed set of edge labels (aka relations)
- no instances
- Well known in library science
- cf. terminologies / classifications (Dewey)

Related Concept: Topic Maps

- Topics
 - concepts/categories/classes/etc.
- Associations
 - n-ary relationships (key difference with RDF)
- Ocurrences
 - instances
- Standardized: ISO/IEC 13250:2003
- To enable information resources to be classified and navigated in a consistent manner

Related Technology: Description Logics

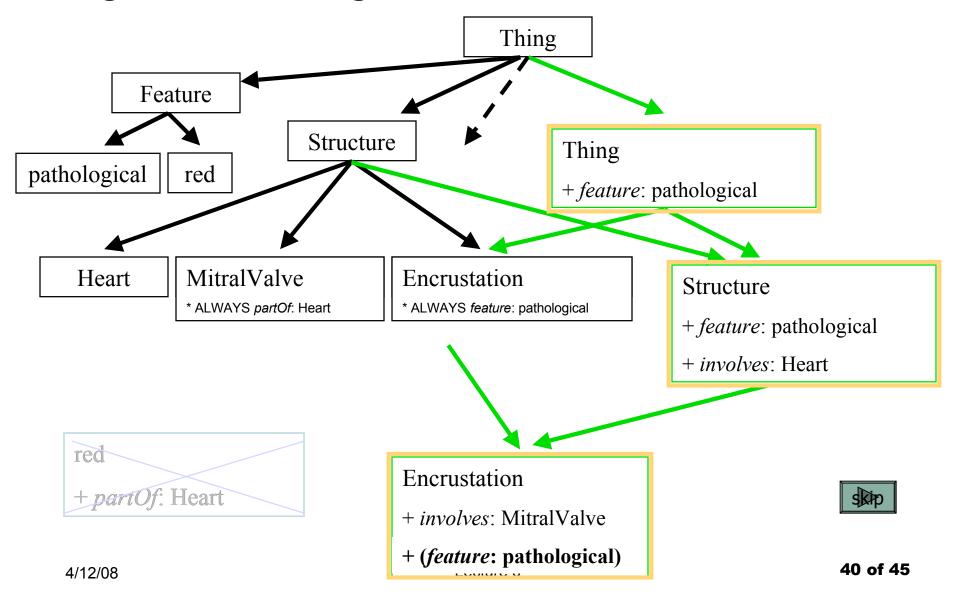
- KL-ONE [Brachman and Schmolze, 1985]
 Inheritance
- AL
 - Atomic negation, Concept intersection, Universal restrictions, existential quantification
- ALC (+concept complement)
- SHIQ (+cardinality restrictions, inverse relationships)
- Many more permutations...

Related Concept: Description Logics

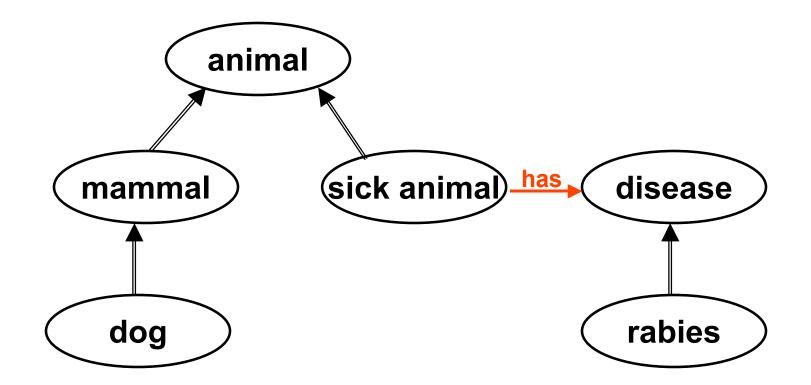
- DAML+ OIL equivalent to the expressive Description Logic (an extension of) SHIQ DL
- The descendants of frame systems and object hierarchies via KL-ONE.
- Core distinction between T-Box ≈ Schema) and (A-Box ≈ Database tuples)
- Many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
- Known reasoning algorithms
- Implemented systems (highly optimised)

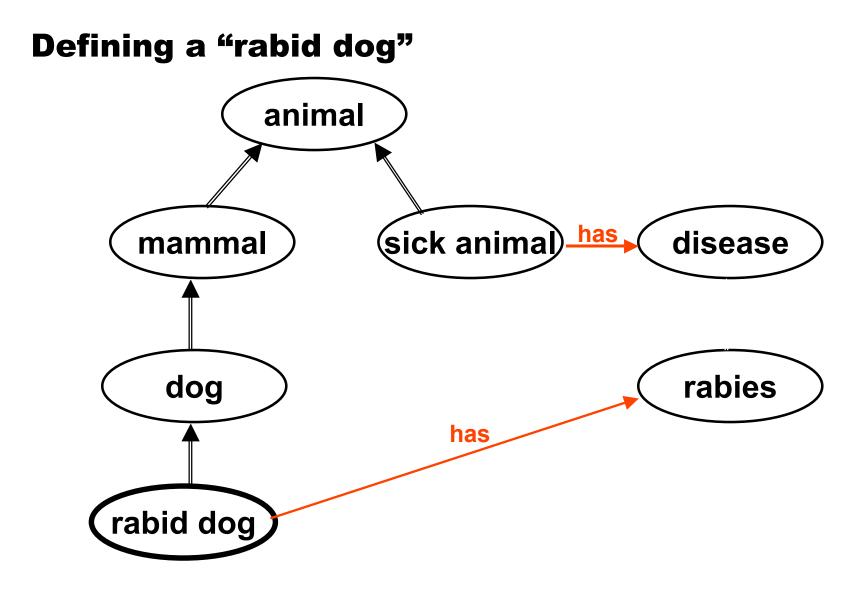
OO languages

- How are they different?
- What relationships are "lifted" into the model?


History: DAML+OIL

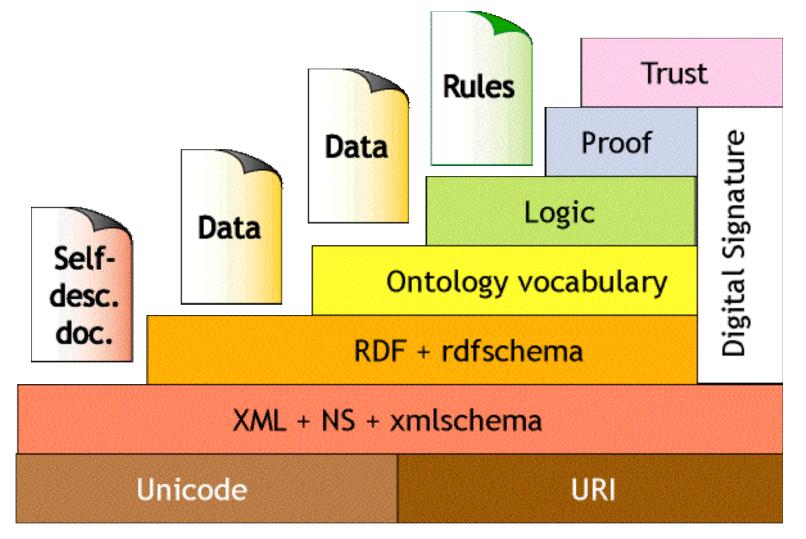
- OIL : developed by group of (largely) European researchers.
- DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme).
- Efforts merged to produce DAML+ OIL.
- Development was overseen by joint EU/ US committee.
- Now submitted to W3C as basis for standardisation WebOnt working group developing language standard.
- Subsumed by OWL


		DI A			
	Abstract Syntax	DL Syntax	Semantics		
	Desc	Descriptions (C)			
	A (URI Reference)	Α	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$		
OWL	owl:Thing	Т	$owl : Thing^2 = \Delta^2$		
UNE	owl:Nothing	\perp	$\texttt{owl}: \texttt{Nothing}^\mathcal{I} = \emptyset$		
Semantics	$intersectionOf(C_1 C_2)$	$C_1 \sqcap C_2$	$C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}}$		
	$unionOf(C_1 \ C_2 \ \ldots)$	$C_1 \sqcup C_2$	$C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$		
	complementOf(C)	$\neg C$	$\Delta^2 \setminus C^2$		
	$oneOf(o_1)$	$\{o_1,\ldots\}$	$\{o_1^2, \ldots\}$		
	restriction(R someValuesFrom(C))	$\exists R.C$	$\{x \exists y \ (x,y)\in R^{\mathcal{I}}\cup y\in C^{\mathcal{I}}\}$		
	restriction(R allValuesFrom(C))	$\forall R.C$	$\{x \forall y \ (x,y) \in R^{\mathcal{I}} \rightarrow y \in C^{\mathcal{I}}\}$		
	restriction(R hasValue(o))	R:o	$\{x (x,o^\mathcal{I})\in R^\mathcal{I}\}$		
	restriction(R minCardinality(n))	$\geq nR$	$ \{a \in \Delta^2 \{b (a, b) \in R^2 \} \ge n \}$		
	restriction(R maxCardinality(n))	$\leq nR$	$\{a \in \Delta^2 \mid \{b (a, b) \in R^2\} \le n\}$		
	restriction(U someValuesFrom(D))	$\exists U.D$	$\{x \exists y \ (x,y)\in U^{\mathcal{I}}\cup y\in D^{\mathcal{D}}\}$		
	restriction(U allValuesFrom(D))	$\forall U.D$	$\{x \forall y \ (x,y) \in U^2 \to y \in D^{\mathcal{D}}\}$		
	restriction(U hasValue(v))	U: v	$\{x (x,v^2)\in U^2\}$		
	restriction(U minCardinality(n))	$\geq nU$	$\{a \in \Delta^{\mathcal{I}} \mid \{b (a,b) \in U^{\mathcal{I}}\} \ge n\}$		
	restriction(U maxCardinality(n))	$\leq nU$	$ \{a\in\Delta^{\mathcal{I}} \ \{b (a,b)\in U^{\mathcal{I}}\} \leq n\} $		
	Data Ranges (D)				
	D (URI reference)	D	$D^{\mathcal{D}} \subseteq \Delta_{\mathcal{D}}^2$		
	$oneOf(v_1,)$	$\{v_1\ldots,\}$	$\{v_1^2 \dots, \}$		
	Object Properties (R)				
	R (URI reference)	R	$\Delta^2 \times \Delta^2$		
		R^-	$(R^2)^-$		
	Datatype Properties (U)				
	U (URI reference) U $U^{2} \subseteq \Delta^{2} \times \Delta_{D}^{2}$				
	Individuals (o)				
	o (URI reference)	0	$o^2 \in \Delta^2$		
4/12/09	Data	a Values (v)			
4/12/08	v (RDF literal)	v	$v^{\mathcal{D}}$		


[Rector]

Logic Based Ontologies

A Simple Ontology [Swartout]



Reasoning Tasks

- Satisfiability of a concept
 - determine whether a description of the concept is not contradictory,
 i.e., whether an individual can exist that would be instance of the concept.
- Subsumption of concepts
 - determine whether concept C subsumes concept D, i.e., whether description of C is more general than the description of D.
- Consistency of individuals with respect to concept
 - determine whether individuals in ABox do not violate descriptions and axioms described by TBox.
- Membership
 - check whether the individual is an instance of a concept
- Compute Extent
 - find all individuals that are instances of a concept
- Realization of an individual
 - find all concepts which the individual belongs to, especially the most specific ones

Stack of languages:

Web Language Stack summary

XML:

- interchange syntax, no semantics
- **RDF**:
 - Data model, some semantics & inference

RDF Schema:

- concept modelling, more semantics & inference
- OWL:
 - more expressive ontology language;
 - quite expressive; expensive inference

Roadmap

- Background and Motivation
- Ontologies and Reasoning
- Storing and Querying RDF
- Papers

OWL Example

<owl:Class rdf:ID="Lookout"> <owl:equivalentClass> <owl:Class rdf:ID="Scout"/> </owl:equivalentClass> <rdfs:label>Lookout</rdfs:label> </owl:Class>

<owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="http://..."/>
 <rdfs:subClassOf>
 <owl:Class rdf:about="http://..."/>
 </rdfs:subClassOf>
 <owl:Class rdf:about="http://.../>
 </rdfs:subClassOf>
 <owl:Class rdf:about="http://.../>
 </rdfs:subClassOf>
 <rdfs:comment xml:lang="en">
 An individual human being.
 </rdfs:comment>
 <rdfs:label>Person</rdfs:label>
 </owl:Class>

<owl:Class rdf:ID="PoliceOfficer">
 <rdfs:subClassOf rdf:resource="#Person"/>
 <rdfs:comment xml:lang="en">
 A warranted employee of a police force.
 </rdfs:comment>
 <rdfs:label>Police Officer</rdfs:label>
 </owl:Class>

<owl:Class rdf:about="#Scout"> <rdfs:subClassOf rdf:resource="#Person"/> <rdfs:label>Scout</rdfs:label> </owl:Class>

> <owl:Class rdf:ID="CashierPost"> <rdfs:subClassOf> <owl:Restriction> <owl:someValuesFrom> <owl:Class rdf:ID="Cashier"/> </owl:someValuesFrom> <owl:onProperty> <owl:ObjectProperty rdf:ID="associatedWith"/> </owl:onProperty> </owl:Restriction> </rdfs:subClassOf> <rdfs:subClassOf> <owl:Class rdf:ID="**Post**"/> </rdfs:subClassOf> <rdfs:label>Cashier Post</rdfs:label> </owl:Class> 47 of 45

RDF Example

<rdf:Description rdf:about="http://www.jhuapl.edu/merc/ba-instance-example#edge-31066">

<rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>

<rdf:subject rdf:resource="#Person-24"/>

<rdf:predicate rdf:resource="http://bethewl1-wd1.dom1.jhuapl.edu/Ontology/BAOntology.owl#meetswith"/> <rdf:object rdf:resource="#Person-23"/>

<ba:beginTime rdf:datatype="http://www.w3.org/2001/XMLSchema#integer"> 78397</ba:beginTime> </rdf:Description>

- <rdf:Description rdf:about="http://www.jhuapl.edu/merc/ba-instance-example#edge-31067">
- <rdf:**type** rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/>

<rdf:**subject** rdf:resource="#Person-15"/>

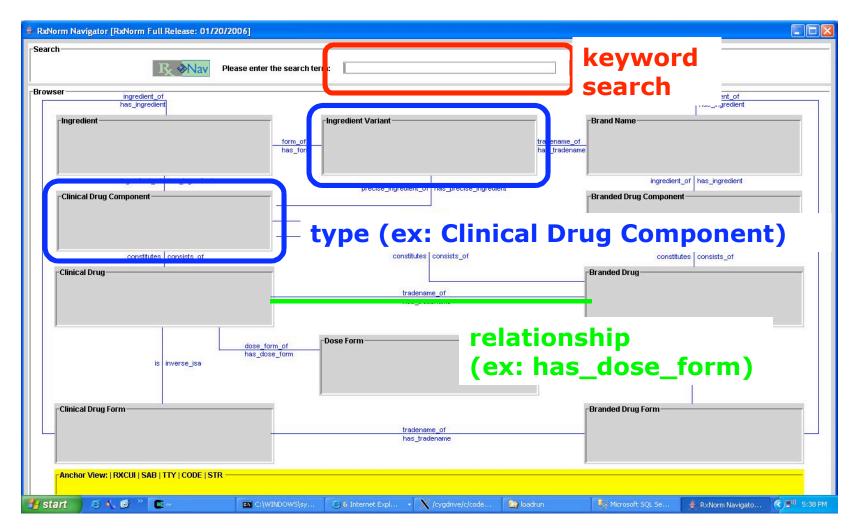
<rdf:**predicate** rdf:resource="http://bethewl1-wd1.dom1.jhuapl.edu/Ontology/BAOntology.owl#gf"/> <rdf:**object** rdf:resource="#Person-21"/>

<ba:beginTime rdf:datatype="http://www.w3.org/2001/XMLSchema#integer"> 78399</ba:beginTime>
<ba:endTime rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">78439</ba:endTime></rdf:Description>

- <rdf:Description rdf:about="http://www.jhuapl.edu/merc/ba-instance-example#edge-31068"> <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> <rdf:subject rdf:resource="#Person-15"/>
- <rdf:predicate rdf:resource="http://bethewl1-wd1.dom1.jhuapl.edu/Ontology/BAOntology.owl#signals"/> <rdf:object rdf:resource="#Person-21"/>

ba:beginTime rdf:datatype="http://www.w3.org/2001/XMLSchema#integer"> 78399</ba:beginTime> </rdf:Description>

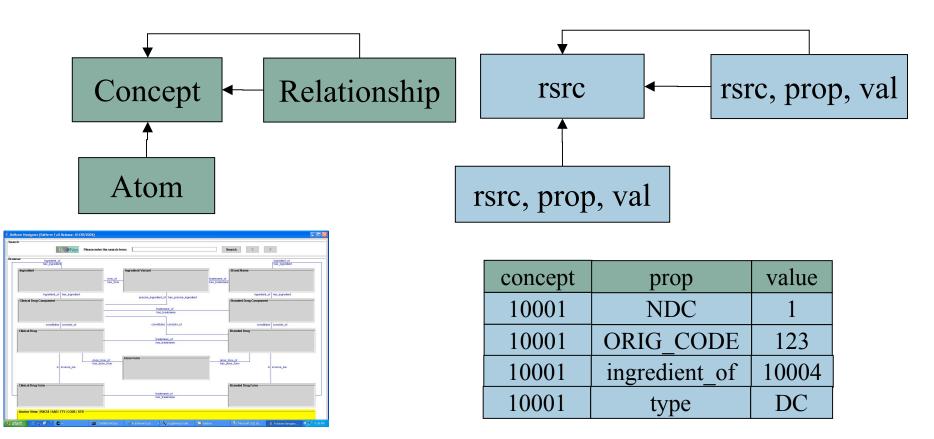
SPARQL Example


PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX ba: <http://bethewl1-wd1.dom1.jhuapl.edu/Ontology/BAOntology.owl#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX op: <http://www.w3.org/2005/xpath-functions#>

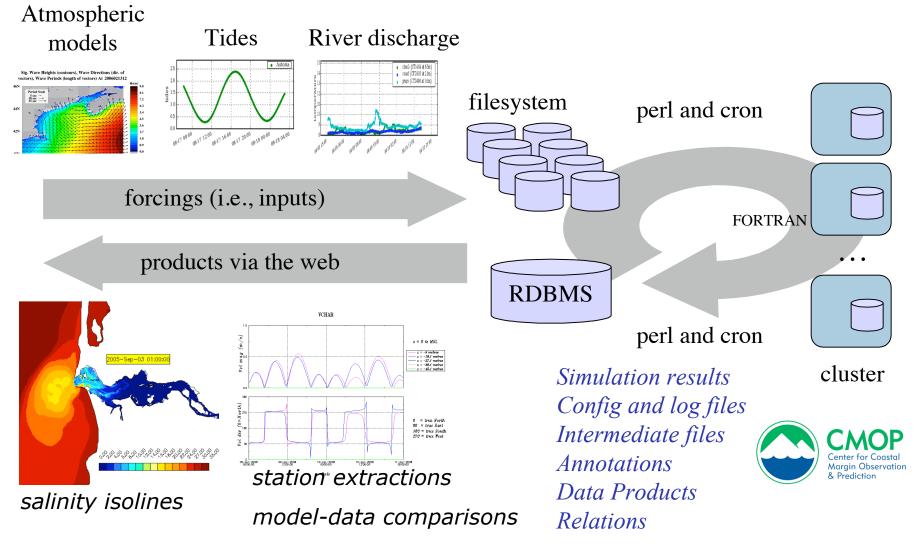
SELECT ?a ?b ?c ?t1 ?t2 ?t3 WHERE

	{
(s1 rdf:type rdf:Statement.
	?s1 rdf:subject ?a .
	?s1 rdf:predicate ba:meetswith .
	?s1 rdf:object ?b.
	?s1 ba:beginTime ?t1 .
7	?s2 rdf:type rdf:Statement .
	?s2 rdf:subject ?b.
	?s2 rdf:predicate ba:signals.
	?s2 rdf:object ?c.
	?s2 ba:beginTime ?t2 .
7	?s3 rdf:type rdf:Statement .
	?s3 rdf:subject ?c .
	?s3 rdf:predicate ba:meetswith .
	?s3 rdf:object ?a.
	?s3 ba:beginTime ?t3 .
	FILTER (
	((?t1 < ?t2) && (?t2 < ?t3))
	&& (((xsd:integer(?t2) - xsd:integer(?t1)) <= $"1200"^{xsd:integer}$
	&& ((xsd:integer(?t3) - xsd:integer(?t2)) <= $"1200"^{xsd:integer}$
)
	} Lecture 6

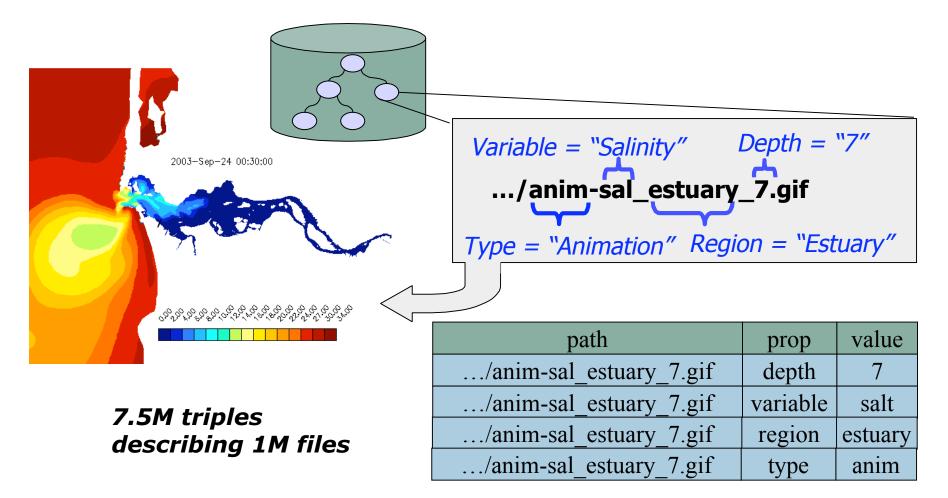
4/12/08


Example: Medical Nomenclature

"RxNav" Interface developed by the National Library of Medicine


4/12/08

Example: UMLS



up to 23M triples describing 0.6M "concepts"

Example: Ocean Circulation Forecasting System

Example: Ocean Circulation Forecasting

Exercise

data1

```
year=2004, week=24, day=1, variable=salt
```

data2

```
year=2004, week=24, day=1, variable=temp
```

- image1
 - variable=salt, depth=7
 - src=data1
- image2
 - type=animation, variable=temp, depth=12
 - src=data2

Q1: Find all resources with variable = "salt"

Q2: Find all images generated from week 24 data (use "src")

Some Storage Models

- Schema-dependent storage (RDFS)
 - Chen et al 06
 - Pan and Heflin 03
- Indexed Triple Store
 - RDF-3X, 10
 - Sesame, Broekstra 02
 - YARS, Harth and Decker 05
 - □ **3store, Harris and Gibbons 03**
 - Oracle, Chong et al 05 (and ICDE 08)

- Property Tables
 - Jena, Wilkinson 06
 - □ C-Store, Abadi et al 07
- Horizontal DB
 - Agrawal 01
- Signature-based
 - □ Howe 04, 06
 - RDFBroker 06

Simple Idea: Cluster by Signature

- Resources expressing the same properties clustered together
- Posit that |Signature| << |Resource|</p>
- Queries evaluated transparently over Signature Extents

1) Triple Store

Triples

rsrc	prop	value
101	depth	7
336	variable	temp
101	path	/iso_e_s_7.gif
101	variable	salt
843	channel	north
843	variable	salt
336	path	/trans_s_t.gif
843	path	/trans_n_s.gif
336	channel	south
101	region	estuary

One join per condition

A Query in SPARQL/RDQL:

```
select ?v
where
   (?r. <s.region</pre>
```

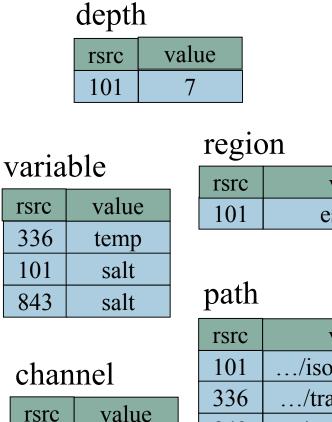
(?r, <s:region>, <s:estuary>),
(?r, <s:variable>, <s:salt>),
(?r, <s:depth>, <s:7>),
(?r, <s:path>, ?v)

```
... and in SQL:
SELECT p.value as path
FROM Triples r, Triples v,
Triples d, Triples p
WHERE r.property = 'region'
AND v.property = 'variable'
AND d.property = 'depth'
AND p.property = 'path'
AND r.rsrc = v.rsrc
AND v.rsrc = d.rsrc
AND d.rsrc = p.rsrc
```

1) Triple Store, single pass trick

Triples

rsrc	prop	value
101	depth	7
336	variable	temp
101	path	/iso e s 7.gif
101	variable	salt
843	channel	north
843	variable	salt
336	path	/trans_s_t.gif
843	path	/trans n s.gif
336	channel	south
101	region	estuary


select ?v
where
 (?r, <s:region>, <s:estuary>),
 (?r, <s:variable>, <s:salt>),
 (?r, <s:depth>, <s:7>)

(?r, <s:path>, ?v)

SELECT MAX(CASE WHEN property='path' THEN value END) as path
FROM Triples
GROUP BY rsrc
HAVING
MAX(CASE WHEN property='region' THEN value END) = 'estuary'
AND MAX(CASE WHEN property='variable' THEN value END) = 'salt'

AND MAX(CASE WHEN property='region' THEN value END) = '7'

2) Property Tables

inel	101	• • •
	336	
value	843	
north	045	•
south		

0	
src	value
01	estuary

rsrc	value	
101	/iso_e_s_7.gif	
336	/trans_s_t.gif	
843	/trans_n_s.gif	

select ?p where (?r, <s:region>, <s:estuary>), (?r, <s:variable>, <s:salt>), (?r, <s:depth>, <s:7>) (?r, <s:path>, ?p)

```
select p.value
from region r, variable v,
    depth d, path p
where r.value = 'estuary'
and v.value = 'salt'
and d.value = '7'
and r.rsrc = v.rsrc
and v.rsrc = d.rsrc
and d.rsrc = p.rsrc
```

843

336

3) Signature Tables

S1: variable, channel, path

rsrc	variable	channel	path
336	temp	south	/trans_s_t.gif
843	salt	north	/trans_n_s.gif

select ?p where (?r, <s:region>, <s:estuary>), (?r, <s:variable>, <s:salt>), (?r, <s:depth>, <s:7>) (?r, <s:path>, ?p)

S2: depth, region, variable, path

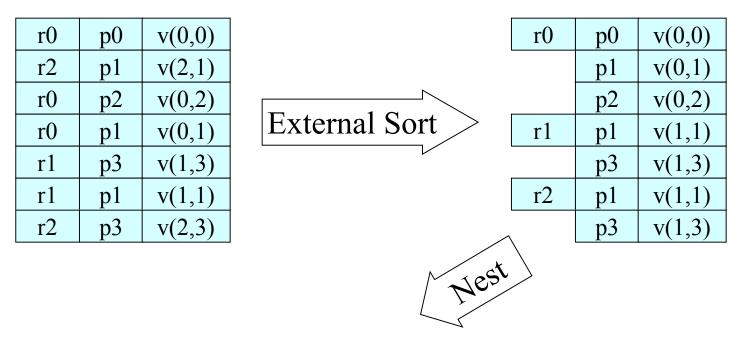
rsrc	depth	region	variable	path
101	7	estuary	salt	/iso_e_s_7.gif

```
select path
  from S2
 where region = 'estuary'
   and variable = 'salt'
   and depth = ^{7'}
```

3) Signature Tables (2)

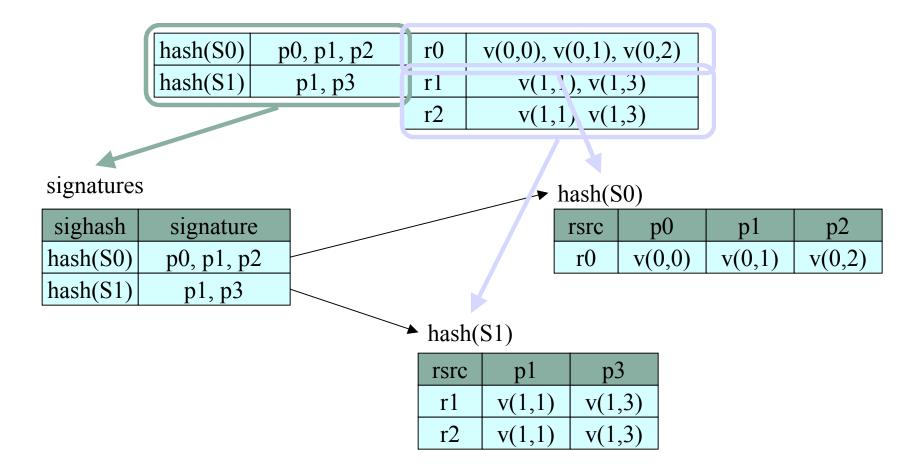
S1: variable, channel, path

rsrc	variable	channel	path
336	temp	south	/trans_s_t.gif
843	salt	north	/trans_n_s.gif


S2: depth, region, variable, path

rsrc	depth	region	variable	path
101	7	estuary	salt	/iso_e_s_7.gif

select ?v
where
 (?r, <s:variable>, ?v)

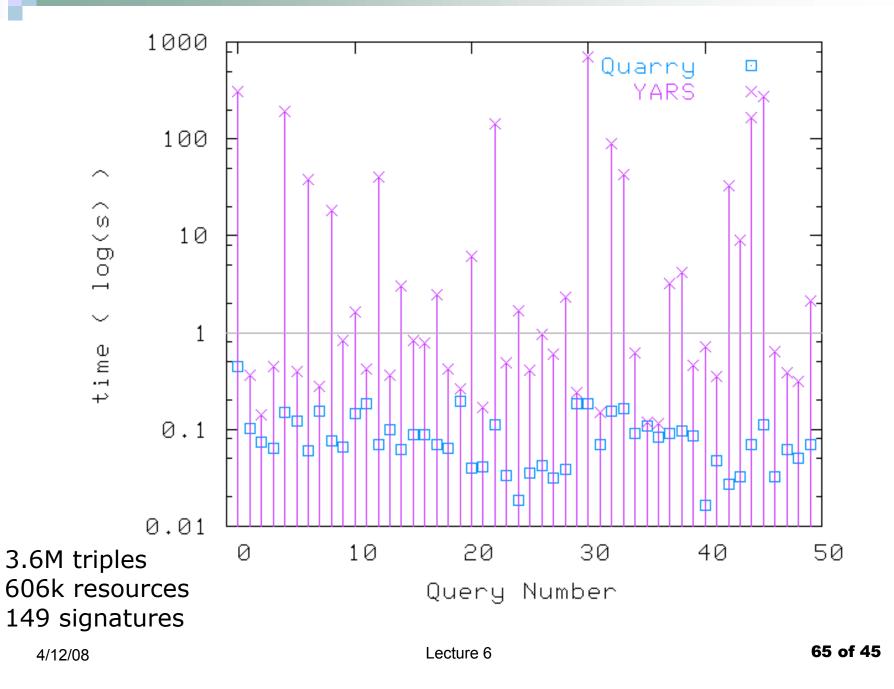

select variable from S2 UNION select variable from S1

Computing Signatures

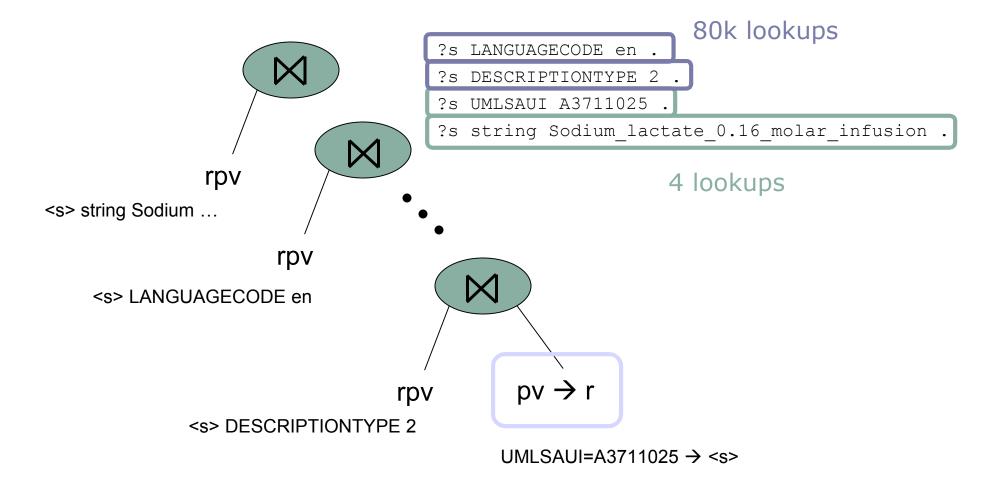
r0	hash(S0)	p0, p1, p2	v(0,0), v(0,1), v(0,2)
r1	hash(S1)	p1, p3	v(1,1), v(1,3)
r2	hash(S2)	p1, p3	v(1,1), v(1,3)

Computing Signatures

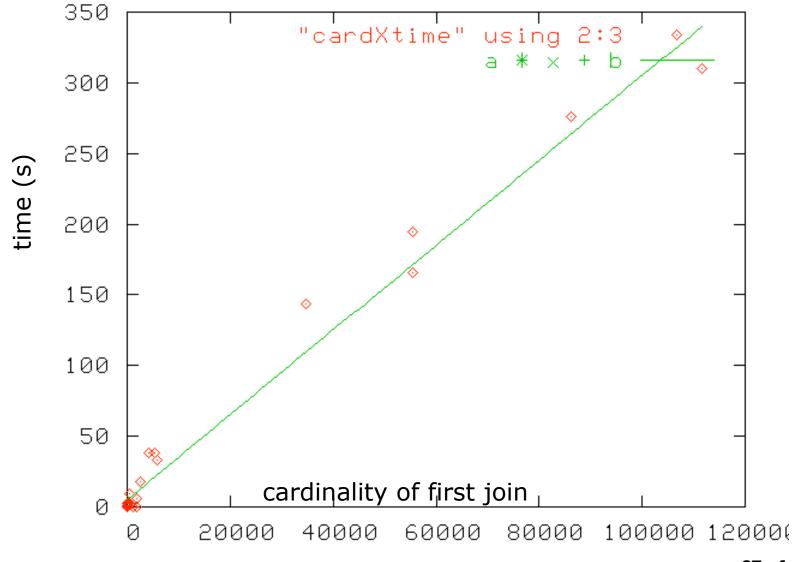
Experimental Results


Yet Another RDF Store (YARS)

9 B-Tree indexes in Berkeley DB


- $rpv \rightarrow _$ ■ $pv \rightarrow r$ ■ $vr \rightarrow p$
- etc.

□ Authors report performance gain over Redland and Sesame


- \sim 3M triples, single term queries
- Random multi-term conjunctive queries

A Common YARS Query Plan

YARS Plan Speed

4/12/08