
CSE 599c
Scientific Data Management

Magdalena Balazinska and Bill Howe

Spring 2010

Lecture 5 Part 2 – SciDB

CSE 599c - Spring 2010 2

References

•  Requirements for Science Data Bases and SciDB. M. Stonebraker
et. al. CIDR Perspectives 2009

The Problem…

•  Sciences are increasingly data rich
–  Simulations on server clusters produce lots of data

–  Improved instrumentation collects more data
–  Automated experiments produce more data

•  Scientists need effective tools to manage data
–  Storage
–  Analysis

–  Organization

–  Sharing

•  Existing DBMSs do not meet scientists needs
CSE 599c - Spring 2010 3

What are the Challenges

•  “Big science” very unhappy with RDBMS

•  Reason 1: Main data type is not a relation!

–  Many sciences need arrays

–  Others want graphs, sequences, or meshes

•  Reason 2: Many required features are absent

–  Provenance

–  Uncertainty

–  Version control

•  Reason 3: Operations are wrong

–  Regrid – not join
CSE 599c - Spring 2010 4

What is the State of Affairs?

•  Roll-your-own on the bare metal
–  Larger Hadron Collider (LHC) [http://lhc.web.cern.ch/lhc/]

–  NASA Mission to Planet Earth: [http://www.hq.nasa.gov/office/nsp/mtpe.htm]

•  Or put up with a horrible kludge on RDBMS
–  With mountains of application logic
–  And copying the world to application space

CSE 599c - Spring 2010 5

So What is SciDB?

•  A new type of DBMS for data intensive analytics

•  Addresses the above limitations

•  Community supported, open-source project

•  Fundamental idea: build an array-based DBMS!

CSE 599c - Spring 2010 6

How Can We Build an Array DBMS?

•  By storing arrays as tables inside of a DBMS
–  Advocated by Greenplum [http://www.greenplum.com/]

–  And MonetDB [http://monetdb.cwi.nl/]
–  But can lead to terrible performance

•  Using BLOBs (binary object types) in a DBMS to
represent arrays
–  Implemented in RasdaMan [http://www.rasdaman.com/]

•  A from-the-ground-up native array system: SciDB

CSE 599c - Spring 2010 7

(1.0, 3.4, 45.0) (2.0, 3.3, 44.0) (3.0, 3.5, 42.0) (4.0, 3.4, 40.0)

… … … …

(1.0, 3.4, 45.0) (2.0, 3.3, 44.0) (3.0, 3.5, 42.0) (4.0, 3.4, 40.0)

… … … …

(1.0, 3.4, 45.0) (2.0, 3.3, 44.0) (3.0, 3.5, 42.0) (4.0, 3.4, 40.0)

… … … …

SciDB Data Model Basics

•  Nested multidimensional arrays

•  Array values are vectors (tuples)
define Remote (s1 = float, s2 = float, s3 = float) (I, J)

create My_remote as Remote [4,*]

•  Updates to arrays logged in a history dimension
define updatable

Remote_2 (s1=float, s2=float, s3=float) (I, J, history)

(1.0, 3.4, 45.0) (2.0, 3.3, 44.0) (3.0, 3.5, 42.0) (4.0, 3.4, 40.0)

… … … …

Arrays
can be
nested

CSE 599c - Spring 2010 8

SciDB Data Model
Advanced Features

•  Arrays can be augmented with co-ordinate systems
–  My_remote[x,y], where (x,y) is the cell in the array

–  My_remote{latitude,longitude}

–  Coordinates need not be integer-valued nor contiguous

•  Arrays can be augmented with “shape” functions
–  To define irregular arrays

–  shape-function (My_remote[11, *])

•  Returns info about range of defined values for slice of array

9

Operators

•  Structural Operators
–  Subsample: Subsample (F, even(X))

–  Reshape: not in current system
–  Structured join or SJoin: example in Figure 1

•  Content-Dependent Operators
–  Filter

–  Aggregate

–  Cjoin

•  But, extensibility is key! Support for user-defined functions

CSE 599c - Spring 2010 10

SciDB Query Language

•  Declarative queries

•  SQL-like and array operators
–  Filter, trim, project, add-dim, slice, join, regrid, etc.

•  With a binding to
–  MatLab

–  C++
–  Python

–  There may be more….

CSE 599c - Spring 2010 11

Language Binding Example

Filter pixels with flux values between x1 and x2 and display resulting observations

string filterPredicate = "xAstrom BETWEEN @x1 AND @x2

 AND psfFlux > @flux AND flagForDetection = @flag”;

DBArray dba("@arrayName");

DBArray dba2 = dba.filter(filterPredicate);

typedef Observation T;

for (DBArrayIterator<T> it = dba2.begin<T>(); it != dba2.end<T>(); ++it){

 Observation observ= (*it);

 cout << observ.ToString();

}

CSE 599c - Spring 2010 12

Algebra Tree

  Code is translated into algebra tree

CSE 599c - Spring 2010 13

Shipping Query to SciDB

  Algebra tree is serialized to xml format

<store ref="q4_res" overwrite="true">

 <filter pred=" xAstrom BETWEEN @x1 AND @x2

 AND psfFlux > @flux AND flagForDetection = @flag ">

 <array ref=“@arrayName"/>

 </filter>

</store>

CSE 599c - Spring 2010 14

Environment and Storage

•  Store hundreds of Petabytes of data
–  Tables with trillions of rows

•  Extendable cloud
–  N clusters of machines spread over WAN

–  Each cluster is a grid of machines on a LAN

•  Built-in high availability, failover, disaster recovery
CSE 599c - Spring 2010 15

Storage manager

•  Splits large arrays into series of multidimensional chunks
–  Fixed stride

•  Easy to index

•  But blocks may be highly variable in size

–  Or variable stride
•  Need an R-tree

•  But packing can be more uniform

•  Each attribute stored in a separate physical array

•  Vertica-style compression

•  Replication by multiple copies with different partitioning

•  Supports overlap

CSE 599c - Spring 2010 16

“In Situ” Data

•  Can we process data without a load phase?
–  Loading requires that the user define a schema

–  Loading can fail due to errors
–  Loading is time consuming

•  SciDB will try to process data without loading it first
–  Of course, only subset of features will be supported on such data

–  And performance will likely be worse

CSE 599c - Spring 2010 17

Additional Features

•  No overwrite data model: Instead use updatable arrays

•  Named versions

•  Provenance
–  Need to log all operations

–  Want to trace “back” and “forward” in time

•  Uncertainty

CSE 599c - Spring 2010 18

