
CSE 599c
Scientific Data Management

Magdalena Balazinska and Bill Howe

Spring 2010

Lecture 4 – Data Intensive Analytics

CSE 599c - Spring 2010 2

References

•  Parallel Database Systems: The Future of High Performance
Database Systems. Dave DeWitt and Jim Gray. Com. of the ACM.
1992. Also in Red Book 4th Ed. Sec. 1 and 2.

•  MapReduce: Simplified Data Processing on Large Clusters.
Jeffrey Dean and Sanjay Ghemawat. OSDI 2004. Sec. 1 - 4.

•  Pig Latin: A Not-So-Foreign Language for Data Processing. C.
Olston, B. Reed, U. Srivastava, R. Kumar and A. Tomkins. SIGMOD
2008. Introduction.

•  CloudBurst: highly sensitive read mapping with MapReduce.
Michael C. Schatz. Bioinformatics 2009 25(11):1363-1369

•  Skew-Resistant Parallel Processing of Feature-Extracting
Scientific User-Defined Functions. YongChul Kwon, Magdalena
Balazinska, Bill Howe, and Jerome Rolia. To appear in SOCC 2010.

The Problem

•  As we have seen over the past few lectures, science is
becoming data intensive

•  Not all scientists but increasingly many scientists can no
longer perform their analysis locally on their desktop
using Excel

•  They need more powerful data analysis tools

•  Many scientists even need to use clusters of machines

CSE 599c - Spring 2010 3

State of the Art

•  Surprisingly few scientists use databases today
–  Although some do use dbs and even data warehousing systems

•  Even fewer use parallel databases or MapReduce

•  Why is that? See discussion from past lecture

•  So what do they use for their data intensive analytics?
–  MPI

–  OpenMP

–  Specialized libraries such as ScaLAPACK (matrix ops and more)
CSE 599c - Spring 2010 4

Message Passing Interface (MPI)

•  ”A message-passing API, together with protocol and
semantic specifications for how its features must behave
in any implementation.” [Wikipedia]

–  Designed for shared-nothing clusters

–  Very popular for HPC programming

•  Example functionality:
–  Message send and receive
–  Broadcast, scatter/gather, synchronization barrier

•  Limitations
–  Low-level; Need to know and think in terms of parallel processing

–  Libraries on top of MPI exist but are domain-specific and limited

CSE 599c - Spring 2010 5

OpenMP

•  Alternative: forget clusters get shared-memory machine

•  “The OpenMP Application Program Interface (API)
supports multi-platform shared-memory parallel
programming in C/C++ and Fortran” http://openmp.org/wp/

•  OpenMP allows one to give directives to the compiler as
to how to parallelize the code

•  Limitation: shared-memory machines can be expensive

CSE 599c - Spring 2010 6

Our Discussion Today

•  Can parallel databases and MapReduce help?

•  What are the challenges behind applying these
technologies?

•  Outline for the rest of the lecture
–  Quick review of parallel dbs and MapReduce

–  CloudBurst paper
•  Concrete example of applying MapReduce

–  SkewReduce
•  Example of extending MapReduce motivated by science requirements

CSE 599c - Spring 2010 7

Parallel DBMSs

•  Goal
–  Improve performance by executing multiple operations in parallel

•  Key benefit
–  Cheaper to scale than relying on a single increasingly more

powerful processor

•  Key challenge
–  Ensure overhead and contention do not kill performance

CSE 599c - Spring 2010 8

Performance Metrics
for Parallel DBMSs

•  Speedup
–  More processors higher speed

–  Individual queries should run faster
–  Should do more transactions per second (TPS)

•  Scaleup
–  More processors can process more data

–  Batch scaleup
•  Same query on larger input data should take the same time

–  Transaction scaleup
•  N-times as many TPS on N-times larger database

•  But each transaction typically remains small

9 CSE 599c - Spring 2010

Challenges to
Linear Speedup and Scaleup

•  Startup cost
–  Cost of starting an operation on many processors

•  Interference
–  Contention for resources between processors

•  Skew
–  Slowest step becomes the bottleneck

CSE 599c - Spring 2010 10

Architectures for Parallel Databases

•  Shared memory

•  Shared disk

•  Shared nothing

11 CSE 599c - Spring 2010

Shared Nothing

•  Most scalable architecture
–  Minimizes interference by minimizing resource sharing

–  Can use commodity hardware

•  Also most difficult to program and manage

•  Processor = server = node

•  P = number of nodes

12

We will focus on shared nothing

CSE 599c - Spring 2010

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors

–  An operator runs on one processor

•  Intra-operator parallelism
–  An operator runs on multiple processors

13

We study only intra-operator parallelism: most scalable
CSE 599c - Spring 2010

Horizontal Data Partitioning

•  Relation R split into P chunks R0, …, RP-1, stored at the P
nodes

•  Round robin: tuple ti to chunk (i mod P)

•  Hash based partitioning on attribute A:
–  Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
–  Tuple t to chunk i if vi-1 < t.A < vi

14 CSE 599c - Spring 2010

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with P
processors ?
–  Round robin

–  Hash partitioned
–  Range partitioned

15 CSE 599c - Spring 2010

Parallel Selection

•  Q: What is the cost on a parallel database with P
processors ?

•  A: B(R) / P in all cases

•  However, different processors do the work:
–  Round robin: all servers do the work

–  Hash: one server for σA=v(R), all for σv1<A<v2(R)
–  Range: one server only

16 CSE 599c - Spring 2010

Data Partitioning Revisited

What are the pros and cons ?

•  Round robin
–  Good load balance but always needs to read all the data

•  Hash based partitioning
–  Good load balance but works only for equality predicates and full

scans

•  Range based partitioning
–  Works well for range predicates but can suffer from data skew

17 CSE 599c - Spring 2010

Parallel Group By

•  Compute γA, sum(B)(R)

•  Step 1: server i partitions chunk Ri using a hash function
h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

•  Step 2: server i sends partition Rij to serve j

•  Step 3: server j computes γA, sum(B) on
R0j, R1j, …, RP-1,j

18 CSE 599c - Spring 2010

Parallel Join

•  Step 1
–  For all servers in [0,k], server i partitions chunk Ri using a hash

function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

–  For all servers in [k+1,P], server j partitions chunk Sj using a hash
function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1

•  Step 2:
–  Server i sends partition Riu to server u
–  Server j sends partition Sju to server u

•  Steps 3: Server u computes the join of Riu with Sju

CSE 599c - Spring 2010 19

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add special split and merge operators
–  Handle data routing, buffering, and flow control

•  Example: exchange operator
–  Inserted between consecutive operators in the query plan

–  Can act as either a producer or consumer

–  Producer pulls data from operator and sends to n consumers
•  Producer acts as driver for operators below it in query plan

–  Consumer buffers input data from n producers and makes it
available to operator through getNext interface

CSE 599c - Spring 2010 20

Map Reduce

•  Google: paper published 2004

•  Open source variant: Hadoop

•  Map-reduce = high-level programming model and
implementation for large-scale parallel data processing

•  Competing alternatives include:
–  Dryad from Microsoft

–  Clustera from Wisconsin

21 CSE 599c - Spring 2010

Data Model

•  Files !

•  A file = a bag of (key, value) pairs

•  A map-reduce program:
–  Input: a bag of (input key, value) pairs

–  Output: a bag of (output key, value) pairs

22 CSE 599c - Spring 2010

Step 1: the MAP Phase

•  User provides the MAP-function:
–  Input: one (input key, value)

–  Ouput: a bag of (intermediate key, value) pairs

•  System applies map function in parallel to all (input key,
value) pairs in the input file

23 CSE 599c - Spring 2010

Step 2: the REDUCE Phase

•  User provides the REDUCE function:
–  Input: intermediate key, and bag of values

–  Output: bag of output values

•  System groups all pairs with the same intermediate key,
and passes the bag of values to the REDUCE function

24 CSE 599c - Spring 2010

Example

•  Counting the number of occurrences of each word in a
large collection of documents

25

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”): reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

CSE 599c - Spring 2010

26

(k1,v1)

(k2,v2)

(k3,v3)

. . . .

(i1, w1)

(i2, w2)

(i3, w3)

. . . .

MAP REDUCE

MapReduce Execution

CSE 599c - Spring 2010

Map = GROUP BY,
Reduce = Aggregate

27

SELECT word, sum(1)

FROM R

GROUP BY word

R(documentKey, word)

CSE 599c - Spring 2010

Example 2: MR word length count

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from that subordination in
which they have hitherto remained, and to assume among powers of the earth the equal and independent station
to which the laws of nature and of nature's god entitle them, a decent respect to the opinions of mankind
requires that they should declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent; that from that equal
creation they derive rights inherent and inalienable, among which are the preservation of life, and liberty, and
the pursuit of happiness; that to secure these ends, governments are instituted among men, deriving their just
power from the consent of the governed; that whenever any form of government shall become destructive of
these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying it's
foundation on such principles and organizing it's power in such form, as to them shall seem most likely to effect
their safety and happiness. Prudence indeed will dictate that governments long established should not be
changed for light and transient causes: and accordingly all experience hath shewn that mankind are more
disposed to suffer while evils are sufferable, than to right themselves by abolishing the forms to which they are
accustomed. But when a long train of abuses and usurpations, begun at a distinguished period, and pursuing
invariably the same object, evinces a design to reduce them to arbitrary power, it is their right, it is their duty, to
throw off such government and to provide new guards for future security. Such has been the patient sufferings
of the colonies; and such is now the necessity which constrains them to expunge their former systems of
government. the history of his present majesty is a history of unremitting injuries and usurpations, among which
no one fact stands single or solitary to contradict the uniform tenor of the rest, all of which have in direct object
the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid
world, for the truth of which we pledge a faith yet unsullied by falsehood.

28 CSE 599c - Spring 2010

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Abridged Declaration of Independence
A Declaration By the Representatives of the United States of America, in General
Congress Assembled.
When in the course of human events it becomes necessary for a people to advance from
that subordination in which they have hitherto remained, and to assume among powers of
the earth the equal and independent station to which the laws of nature and of nature's
god entitle them, a decent respect to the opinions of mankind requires that they should
declare the causes which impel them to the change.
We hold these truths to be self-evident; that all men are created equal and independent;
that from that equal creation they derive rights inherent and inalienable, among which are
the preservation of life, and liberty, and the pursuit of happiness; that to secure these
ends, governments are instituted among men, deriving their just power from the consent
of the governed; that whenever any form of government shall become destructive of these
ends, it is the right of the people to alter or to abolish it, and to institute new government,
laying it's foundation on such principles and organizing it's power in such form, as to
them shall seem most likely to effect their safety and happiness. Prudence indeed will

dictate that governments long established should not be changed for light and transient
causes: and accordingly all experience hath shewn that mankind are more disposed to
suffer while evils are sufferable, than to right themselves by abolishing the forms to
which they are accustomed. But when a long train of abuses and usurpations, begun at a
distinguished period, and pursuing invariably the same object, evinces a design to reduce
them to arbitrary power, it is their right, it is their duty, to throw off such government and
to provide new guards for future security. Such has been the patient sufferings of the
colonies; and such is now the necessity which constrains them to expunge their former
systems of government. the history of his present majesty is a history of unremitting
injuries and usurpations, among which no one fact stands single or solitary to contradict
the uniform tenor of the rest, all of which have in direct object the establishment of an
absolute tyranny over these states. To prove this, let facts be submitted to a candid world,
for the truth of which we pledge a faith yet unsullied by falsehood.

Yellow: 10+

Red: 5..9

Blue: 2..4

Pink: = 1

Map Task 1
(204 words)

Map Task 2
(190 words)

(key, value)

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Example 2: MR word length count

29 CSE 599c - Spring 2010

Map task 1

(yellow, 17)
(red, 77)
(blue, 107)
(pink, 3)

Map task 2

(yellow, 20)
(red, 71)
(blue, 93)
(pink, 6)

Reduce task
(yellow, 37)

(red, 148)

(blue, 200)

(pink, 9)

Map is a GROUP BY operation
Reduce is an AGGREGATE operation

Example 2: MR word length count

30 CSE 599c - Spring 2010

Local storage ` 

MR Phases

•  Each Map and Reduce task has multiple phases:

31 CSE 599c - Spring 2010

Implementation

•  There is one master node

•  Master partitions input file into M splits, by key

•  Master assigns workers (=servers) to the M map tasks,
keeps track of their progress

•  Workers write their output to local disk, partition into R
regions

•  Master assigns workers to the R reduce tasks

•  Reduce workers read regions from the map workers’ local
disks

32 CSE 599c - Spring 2010

Interesting Implementation Details

•  Worker failure:
–  Master pings workers periodically,

–  If down then reassigns the task to another worker

•  Choice of M and R:
–  Larger is better for load balancing

–  Limitation: master needs O(M×R) memory

33 CSE 599c - Spring 2010

Interesting Implementation Details

•  Backup tasks:
–  “Straggler” = a machine that takes unusually long time to

complete one of the last tasks. Eg:
•  Bad disk forces frequent correctable errors (30MB/s 1MB/s)

•  The cluster scheduler has scheduled other tasks on that machine

–  Stragglers are a main reason for slowdown

–  Solution: pre-emptive backup execution of the last few remaining
in-progress tasks

34 CSE 599c - Spring 2010

Map-Reduce Summary

•  Hides scheduling and parallelization details

•  However, very limited queries
–  Difficult to write more complex tasks

–  Need multiple map-reduce operations

•  Solution: more general query languages:
–  PIG Latin (Y!): its own language, freely available
–  Scope (MS): SQL ! But proprietary…

–  DryadLINQ (MS): LINQ ! But also proprietary…

–  Clustera (other UW) : SQL ! Not publicly available

35 CSE 599c - Spring 2010

MapReduce (MR) tools

MR implementation:

One MR query language:

Query engine:

Pig Latin

Graphics taken from: hadoop.apache.org and research.yahoo.com/node/90
36 CSE 599c - Spring 2010

Background: Pig system

37

Pig Latin
program

A = LOAD 'file1' AS (sid,pid,mass,px:double);
B = LOAD 'file2' AS (sid,pid,mass,px:double);
C = FILTER A BY px < 1.0;
D = JOIN C BY sid,
 B BY sid;
 STORE g INTO 'output.txt';

Ensemble of
MapReduce jobs

Applying MapReduce to Science

•  What are the potential benefits of applying parallel dbs or
MapReduce to science?

•  What are the potential challenges?

CSE 599c - Spring 2010 38

CloudBurst Overview

•  DNA sequencing machines produce lots of data

•  After sequencing DNA, researchers often map the reads
to a reference genome to find the locations where each
read occurs
–  Output: for each read, one or more alignments

•  Alignment is valid if nb errors (mismatch, insert, delete) < threshold

–  Algorithm: seed-and-extend

CSE 599c - Spring 2010 39

CloudBurst Map Phase

•  Input: Two datasets split into chunks
–  Reads from sequencing machine and reference genome

–  Schema: (id, SeqInfo), where SeqInfo is (sequence, start_offset)

•  Configuration parameters
–  Max nb of mismatches k

–  Minimum length of reads m

–  Seed size: s = m/(k+1)

•  Output
–  For each input sequence, emit a set of (seed, MerInfo)

–  Where seed is a sequence of length s

–  MerInfo is tuple (id, position, isRef, isRC, left_flank, right_flank)

CSE 599c - Spring 2010 40

CloudBurst Reduce Phase

•  Input: (seed, sequence of MerInfo)
–  Recall that MerInfo comes either from reads or from reference

–  So there are two sets of MerInfo: R and Q

•  Goal:
–  Extend the exact alignment seeds into longer inexact alignments

–  Need to process the Cartesian product RxQ
–  For each alignment found, check and eliminate duplicates

•  Output:
–  File with every alignment of every read with at most k mismatches

CSE 599c - Spring 2010 41

Results

•  See Figures 3 through 5

CSE 599c - Spring 2010 42

Benefits and Challenges

•  Does it work well?

•  Is this useful?

•  Any problems with this approach?

•  Is this a significant contribution?

CSE 599c - Spring 2010 43

SkewReduce

•  Goal: Help scientists express their analysis in a way that
leads to an efficient execution in a share-nothing cluster

•  Focus: Feature-extracting analysis functions
–  Input: points in a multi-dimensional space (or a multi-d array)

–  Processing: identify and extract features (e.g., clusters)
–  Outputs:

•  The list of features

•  The input data annotated with these features

CSE 599c - Spring 2010 44

Example Applications

•  Data clustering
–  Find galaxies in a 3D snapshot of a simulated universe

–  Find families of organisms in a 6D space of measured properties

•  Image processing
–  Find flocks of birds, hurricanes, stars, etc. in 2D images

CSE 599c - Spring 2010 45

Basic Approach

Can parallelize feature extracting functions as follows

•  Step 1: Split input into N equal-sized hypercubes

•  Step 2: Extract features in each partition separately
–  And annotate the input data with these features

•  Step 3: Reconcile features that span partition boundaries

•  Step 4: Re-label the input data with the final feature IDs

CSE 599c - Spring 2010 46

Basic Approach

CSE 599c - Spring 2010 47

Serial feature extraction
algorithm

Merge
Algorithm

Example: Friends of Friends

P1

I I

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

Example: Friends of Friends

P1

I I

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

merge

P1

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

C5 → C3
C6 → C4

Merge P1, P3
Merge P2, P4

Example: Friends of Friends

P1

C1 C2

C3

P3
I

P4

P2

C4

C5 C6

C5 → C3
C6 → C4

C4 → C3
C5 → C3
C6 → C3

P1

C1 C2

C3

P3
I

P4

P2

I

C4

C5 C6

Merge P1-P3, P2-P4

merge

Challenge

•  A naïve implementation can lead to an extremely
inefficient execution and can even fail!

•  Why? Because of computation skew
–  Some partitions take much longer than others

•  For one astronomy dataset with 43 GB: 20 hours!

•  Optimized implementation: 70 minutes!
–  But took a few weeks to develop, which is not scalable!

CSE 599c - Spring 2010 51

What’s going on?!

Local FoF

Merge

Example: Unbalanced Computation

•  The top red line runs for 1.5 hours

5 minutes

Unbalanced Computation: Skew

•  A few partitions are slow
–  All other partitions are waiting for the slow ones

•  MapReduce: Speculative execution
–  Effective for machine skew

–  What if faster machine can’t help?

•  Spatial analysis can exhibit significant skew
–  Density varies wildly: Stars, Galaxies, Cities, …

How About Micro
Partitions?

How about having micro partitions?

•  Super fine grain partitions
–  Less data = Less skew
–  But framework overhead!

•  Finding sweet spot is time
consuming

•  No guarantee of
successful merge

0

2

4

6

8

10

12

14

16

256 1024 4096 8192

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

rs
)

of partitions

Can we find a good partitioning plan
without trial and error?

SkewReduce

•  Starts with a simple API

–  Process :: < Seq of T > -> <F, Seq of S>

–  Merge :: < F, F > -> <F, Seq of S>

–  Finalize :: <F, S> -> <Seq of Z>

•  Add to this two cost functions

–  Cp :: (S, alpha, B) -> R

–  Cm :: (S, alpha, B) x (S, alpha, B) -> R

CSE 599c - Spring 2010 56

SkewReduce Approach

•  Two algorithms: Serial/Merge algorithm

•  Two cost functions for each algorithm

•  Find a good partition plan and schedule

Serial
Algorithm

Merge
Algorithm

Cost
functions

Skew Reduce Framework

Sample
Static
Plan

Partition Process Merge Finalize

Input Local Result Output

•  User supplied cost function
•  Runs offline

•  Hierarchically
reconcile local results

•  Produce final result

Process Merge

Local Result

Data at boundary
+ Reconcile State

Local Result Intermediate
Reconciliation State

SkewReduce: Approach

•  How to decompose space?
–  Bisect space such that subspaces have identical cost

•  How to schedule?
–  In decreasing order of cost (Longest Processing Time)

•  How to prevent Out of Memory?
–  Estimate the size of input data
–  Setaside unnecessary data before merge

Static Plan

•  Search for both partitioning axes and point
–  Guided by cost functions

–  Two subpartitions have roughly the same cost

Static Plan

•  Partition stop when there is no benefit
–  Partitioning is not free

Search Optimal Split

•  Three strategies to find optimal split point
–  Find a spot where the costs are identical

Binary Search

Incremental Update

Sampling

6:4. 3 cost evaluations

5:5. 4 cost evaluations

5:5. 1 cost evaluation

Check improvement

•  Partitioning is not free
–  Two subpartitions + Merge < Original partition

•  Accept new partitions if
–  Original partition includes too much data

–  Expected runtime improves with respect to task scheduling
algorithm

•  Longest Run Time algorithm by default

Static Plan: Summary

•  Goal
–  Find a good partition plan and corresponding schedule with

respect to cost functions and input data sample

•  Approach
–  Greedily search best splits

–  Only accept partitions if runtime improves

–  Run offline using a data sample

Evaluation

•  8 node cluster
–  Dual quad core, 16 GB RAM

–  Hadoop 0.20.1 + custom patch in MapReduce API

•  Dataset
–  Astro: simulation snapshot at step 92

–  Seaflow: flow cytometry survey

Does SkewReduce work?

•  Static plan yields 2 ~ 8 times faster running time

0

2

4

6

8

10

R
el

at
iv

e
p

ro
c

ti
m

e

Astro Seaflow

Coarse Fine Finer Finest Manual Opt

14.1 8.8 4.1 5.7 2.0 1.6

87.2 63.1 77.7 98.7 - 14.1

Hours

Minutes

Cost Functions

•  Data Size
–  the number of data items in a partition

•  Histogram 3D
–  Model spatial index traversal pattern

–  Construct equi-width 3D histogram

–  Cost = sum of square of frequencies

•  Histogram 1D
–  1D version of Histogram 3D

Fidelity of Cost Functions

•  Higher fidelity = Better performance

•  Seaflow -- overestimation

0

2

4

6

8

10

12

14

16

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

rs
)

Cost Function

0

5

10

15

20

25

30

35

40

Data Size Histogram 1D Histogram 3D

C
o

m
p

le
ti

o
n

 t
im

e
(M

in
u

te
s)

Cost Function

Astro Seaflow

Quality of Sample

•  Varied sample rate

•  Representativeness of sample affect the performance

0

5

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1
C

o
m

p
le

ti
o

n
 t

im
e

(M
in

u
te

)

Sample Rate

Real Expected

0

5

10

15

20

25

0.0001 0.001 0.01

C
o

m
p

le
ti

o
n

 t
im

e
(H

o
u

r)

Sample Rate

Real Expected

Astro Seaflow

Benefits and Limitations

•  Is SkewReduce useful?

•  Is this the right strategy?

•  What are the limitations?

•  Could this approach be generalized?

CSE 599c - Spring 2010 70

