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The Problem 

•  As we have seen over the past few lectures, science is 
becoming data intensive 

•  Not all scientists but increasingly many scientists can no 
longer perform their analysis locally on their desktop 
using Excel 

•  They need more powerful data analysis tools 

•  Many scientists even need to use clusters of machines 
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State of the Art 

•  Surprisingly few scientists use databases today 
–  Although some do use dbs and even data warehousing systems 

•  Even fewer use parallel databases or MapReduce 

•  Why is that? See discussion from past lecture 

•  So what do they use for their data intensive analytics? 
–  MPI  

–  OpenMP 

–  Specialized libraries such as ScaLAPACK (matrix ops and more) 
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Message Passing Interface (MPI) 

•  ”A message-passing API, together with protocol and 
semantic specifications for how its features must behave 
in any implementation.” [Wikipedia] 

–  Designed for shared-nothing clusters 

–  Very popular for HPC programming 

•  Example functionality: 
–  Message send and receive 
–  Broadcast, scatter/gather, synchronization barrier 

•  Limitations 
–  Low-level; Need to know and think in terms of parallel processing 

–  Libraries on top of MPI exist but are domain-specific and limited 
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OpenMP 

•  Alternative: forget clusters get shared-memory machine 

•  “The OpenMP Application Program Interface (API) 
supports multi-platform shared-memory parallel 
programming in C/C++ and Fortran” http://openmp.org/wp/ 

•  OpenMP allows one to give directives to the compiler as 
to how to parallelize the code 

•  Limitation: shared-memory machines can be expensive 
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Our Discussion Today 

•  Can parallel databases and MapReduce help? 

•  What are the challenges behind applying these 
technologies? 

•  Outline for the rest of the lecture 
–  Quick review of parallel dbs and MapReduce 

–  CloudBurst paper 
•  Concrete example of applying MapReduce 

–  SkewReduce 
•  Example of extending MapReduce motivated by science requirements 
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Parallel DBMSs 

•  Goal 
–  Improve performance by executing multiple operations in parallel 

•  Key benefit 
–  Cheaper to scale than relying on a single increasingly more 

powerful processor 

•  Key challenge 
–  Ensure overhead and contention do not kill performance 
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Performance Metrics  
for Parallel DBMSs 

•  Speedup 
–  More processors  higher speed 

–  Individual queries should run faster 
–  Should do more transactions per second (TPS) 

•  Scaleup 
–  More processors  can process more data 

–  Batch scaleup 
•  Same query on larger input data should take the same time 

–  Transaction scaleup 
•  N-times as many TPS on N-times larger database 

•  But each transaction typically remains small 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
–  Cost of starting an operation on many processors 

•  Interference 
–  Contention for resources between processors 

•  Skew 
–  Slowest step becomes the bottleneck 
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Architectures for Parallel Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Nothing 

•  Most scalable architecture 
–  Minimizes interference by minimizing resource sharing 

–  Can use commodity hardware 

•  Also most difficult to program and manage 

•  Processor = server = node 

•  P = number of nodes 

12 

We will focus on shared nothing 
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 

–  An operator runs on one processor 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
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We study only intra-operator parallelism: most scalable 
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Horizontal Data Partitioning 

•  Relation R split into P chunks R0, …, RP-1, stored at the P 
nodes 

•  Round robin: tuple ti to chunk (i mod P) 

•  Hash based partitioning on attribute A: 
–  Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
–  Tuple t to chunk i if vi-1 < t.A < vi 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with P 
processors ? 
–  Round robin 

–  Hash partitioned 
–  Range partitioned 
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Parallel Selection 

•  Q: What is the cost on a parallel database with P 
processors ? 

•  A: B(R) / P in all cases 

•  However, different processors do the work: 
–  Round robin: all servers do the work 

–  Hash: one server for σA=v(R), all for σv1<A<v2(R) 
–  Range: one server only 
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Data Partitioning Revisited 

What are the pros and cons ? 

•  Round robin 
–  Good load balance but always needs to read all the data 

•  Hash based partitioning 
–  Good load balance but works only for equality predicates and full 

scans 

•  Range based partitioning 
–  Works well for range predicates but can suffer from data skew 
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Parallel Group By 

•  Compute γA, sum(B)(R) 

•  Step 1: server i partitions chunk Ri using a hash function 
h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

•  Step 2: server i sends partition Rij to serve j 

•  Step 3:  server j computes γA, sum(B) on  
R0j, R1j, …, RP-1,j  
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Parallel Join 

•  Step 1 
–  For all servers in [0,k], server i partitions chunk Ri using a hash 

function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

–  For all servers in [k+1,P], server j partitions chunk Sj using a hash 
function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1   

•  Step 2:  
–  Server i sends partition Riu to server u 
–  Server j sends partition Sju to server u 

•  Steps 3: Server u computes the join of Riu with Sju 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add special split and merge operators 
–  Handle data routing, buffering, and flow control 

•  Example: exchange operator  
–  Inserted between consecutive operators in the query plan 

–  Can act as either a producer or consumer 

–  Producer pulls data from operator and sends to n consumers 
•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and makes it 
available to operator through getNext interface 
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Map Reduce 

•  Google: paper published 2004 

•  Open source variant: Hadoop 

•  Map-reduce = high-level programming model and 
implementation for large-scale parallel data processing 

•  Competing alternatives include:  
–  Dryad from Microsoft 

–  Clustera from Wisconsin 
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Data Model 

•  Files ! 

•  A file = a bag of (key, value) pairs 

•  A map-reduce program: 
–  Input: a bag of (input key, value) pairs 

–  Output: a bag of (output key, value) pairs 
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Step 1: the MAP Phase 

•  User provides the MAP-function: 
–  Input: one (input key, value) 

–  Ouput: a bag of (intermediate key, value) pairs 

•  System applies map function in parallel to all (input key, 
value) pairs in the input file 
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Step 2: the REDUCE Phase 

•  User provides the REDUCE function: 
–  Input: intermediate key, and bag of values 

–  Output: bag of output values 

•  System groups all pairs with the same intermediate key, 
and passes the bag of values to the REDUCE function 
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Example 

•  Counting the number of occurrences of each word in a 
large collection of documents 
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map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”): reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 
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(k1,v1) 

(k2,v2) 

(k3,v3) 

. . . . 

(i1, w1) 

(i2, w2) 

(i3, w3) 

. . . . 

MAP REDUCE 

MapReduce Execution 
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Map = GROUP BY, 
Reduce = Aggregate 
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SELECT word, sum(1) 

FROM R 

GROUP BY word 

R(documentKey, word) 
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Example 2: MR word length count 

Abridged Declaration of Independence 
A Declaration By the Representatives of the United States of America, in General Congress Assembled. 
When in the course of human events it becomes necessary for a people to advance from that subordination in 
which they have hitherto remained, and to assume among powers of the earth the equal and independent station 
to which the laws of nature and of nature's god entitle them, a decent respect to the opinions of mankind 
requires that they should declare the causes which impel them to the change. 
We hold these truths to be self-evident; that all men are created equal and independent; that from that equal 
creation they derive rights inherent and inalienable, among which are the preservation of life, and liberty, and 
the pursuit of happiness; that to secure these ends, governments are instituted among men, deriving their just 
power from the consent of the governed; that whenever any form of government shall become destructive of 
these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying it's 
foundation on such principles and organizing it's power in such form, as to them shall seem most likely to effect 
their safety and happiness. Prudence indeed will dictate that governments long established should not be 
changed for light and transient causes: and accordingly all experience hath shewn that mankind are more 
disposed to suffer while evils are sufferable, than to right themselves by abolishing the forms to which they are 
accustomed. But when a long train of abuses and usurpations, begun at a distinguished period, and pursuing 
invariably the same object, evinces a design to reduce them to arbitrary power, it is their right, it is their duty, to 
throw off such government and to provide new guards for future security. Such has been the patient sufferings 
of the colonies; and such is now the necessity which constrains them to expunge their former systems of 
government. the history of his present majesty is a history of unremitting injuries and usurpations, among which 
no one fact stands single or solitary to contradict the uniform tenor of the rest, all of which have in direct object 
the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid 
world, for the truth of which we pledge a faith yet unsullied by falsehood. 
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(yellow, 20) 
(red, 71) 
(blue, 93) 
(pink, 6 ) 

Abridged Declaration of Independence 
A Declaration By the Representatives of the United States of America, in General 
Congress Assembled. 
When in the course of human events it becomes necessary for a people to advance from 
that subordination in which they have hitherto remained, and to assume among powers of 
the earth the equal and independent station to which the laws of nature and of nature's 
god entitle them, a decent respect to the opinions of mankind requires that they should 
declare the causes which impel them to the change. 
We hold these truths to be self-evident; that all men are created equal and independent; 
that from that equal creation they derive rights inherent and inalienable, among which are 
the preservation of life, and liberty, and the pursuit of happiness; that to secure these 
ends, governments are instituted among men, deriving their just power from the consent 
of the governed; that whenever any form of government shall become destructive of these 
ends, it is the right of the people to alter or to abolish it, and to institute new government, 
laying it's foundation on such principles and organizing it's power in such form, as to  
them shall seem most likely to effect their safety and happiness. Prudence indeed will  
 
dictate that governments long established should not be changed for light and transient 
causes: and accordingly all experience hath shewn that mankind are more disposed to 
suffer while evils are sufferable, than to right themselves by abolishing the forms to 
which they are accustomed. But when a long train of abuses and usurpations, begun at a 
distinguished period, and pursuing invariably the same object, evinces a design to reduce 
them to arbitrary power, it is their right, it is their duty, to throw off such government and 
to provide new guards for future security. Such has been the patient sufferings of the 
colonies; and such is now the necessity which constrains them to expunge their former 
systems of government. the history of his present majesty is a history of unremitting 
injuries and usurpations, among which no one fact stands single or solitary to contradict 
the uniform tenor of the rest, all of which have in direct object the establishment of an 
absolute tyranny over these states. To prove this, let facts be submitted to a candid world, 
for the truth of which we pledge a faith yet unsullied by falsehood. 
 
 

Yellow: 10+ 

Red: 5..9 

Blue: 2..4 

Pink: = 1  

Map Task 1 
(204 words) 

Map Task 2 
(190 words) 

(key, value) 

(yellow, 17) 
(red, 77) 
(blue, 107) 
(pink, 3)  

Example 2: MR word length count 
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Map task 1 

(yellow, 17) 
(red, 77) 
(blue, 107) 
(pink, 3)  

Map task 2 

(yellow, 20) 
(red, 71) 
(blue, 93) 
(pink, 6 ) 

Reduce task  
(yellow, 37) 

(red, 148) 

(blue, 200) 

(pink, 9) 

Map is a GROUP BY operation 
Reduce is an AGGREGATE operation 

Example 2: MR word length count 
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Local storage ` 

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Implementation 

•  There is one master node 

•  Master partitions input file into M splits, by key 

•  Master assigns workers (=servers) to the M map tasks, 
keeps track of their progress 

•  Workers write their output to local disk, partition into R 
regions 

•  Master assigns workers to the R reduce tasks 

•  Reduce workers read regions from the map workers’ local 
disks  
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Interesting Implementation Details 

•  Worker failure: 
–  Master pings workers periodically, 

–  If down then reassigns the task to another worker 

•  Choice of M and R: 
–  Larger is better for load balancing 

–  Limitation: master needs O(M×R) memory 
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Interesting Implementation Details 

•  Backup tasks: 
–  “Straggler” = a machine that takes unusually long time to 

complete one of the last tasks. Eg: 
•  Bad disk forces frequent correctable errors (30MB/s  1MB/s) 

•  The cluster scheduler has scheduled other tasks on that machine 

–  Stragglers are a main reason for slowdown 

–  Solution: pre-emptive backup execution of the last few remaining 
in-progress tasks 
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Map-Reduce Summary 

•  Hides scheduling and parallelization details 

•  However, very limited queries 
–  Difficult to write more complex tasks 

–  Need multiple map-reduce operations 

•  Solution: more general query languages: 
–  PIG Latin (Y!): its own language, freely available 
–  Scope (MS):  SQL !  But proprietary… 

–  DryadLINQ (MS): LINQ ! But also proprietary… 

–  Clustera (other UW) : SQL ! Not publicly available 
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MapReduce (MR) tools 

MR implementation: 

One MR query language: 

Query engine: 

Pig Latin 

Graphics taken from: hadoop.apache.org and research.yahoo.com/node/90 
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Background: Pig system 

37 

Pig Latin  
program 

A = LOAD 'file1' AS (sid,pid,mass,px:double);  
B = LOAD 'file2' AS (sid,pid,mass,px:double);  
C = FILTER A BY px < 1.0; 
D = JOIN C BY sid,  
         B BY sid; 
      STORE g INTO 'output.txt'; 

Ensemble of 
MapReduce jobs 



Applying MapReduce to Science  

•  What are the potential benefits of applying parallel dbs or 
MapReduce to science? 

•  What are the potential challenges? 
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CloudBurst Overview 

•  DNA sequencing machines produce lots of data 

•  After sequencing DNA, researchers often map the reads 
to a reference genome to find the locations where each 
read occurs 
–  Output: for each read, one or more alignments  

•  Alignment is valid if nb errors (mismatch, insert, delete) < threshold 

–  Algorithm: seed-and-extend 
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CloudBurst Map Phase 

•  Input: Two datasets split into chunks 
–  Reads from sequencing machine and reference genome 

–  Schema: (id, SeqInfo), where SeqInfo is (sequence, start_offset) 

•  Configuration parameters 
–  Max nb of mismatches k 

–  Minimum length of reads m 

–  Seed size: s = m/(k+1) 

•  Output 
–  For each input sequence, emit a set of (seed, MerInfo) 

–  Where seed is a sequence of length s 

–  MerInfo is tuple (id, position, isRef, isRC, left_flank, right_flank) 
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CloudBurst Reduce Phase 

•  Input: (seed, sequence of MerInfo) 
–  Recall that MerInfo comes either from reads or from reference 

–  So there are two sets of MerInfo: R and Q 

•  Goal: 
–  Extend the exact alignment seeds into longer inexact alignments 

–  Need to process the Cartesian product RxQ 
–  For each alignment found, check and eliminate duplicates 

•  Output: 
–  File with every alignment of every read with at most k mismatches 
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Results 

•  See Figures 3 through 5 
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Benefits and Challenges 

•  Does it work well? 

•  Is this useful? 

•  Any problems with this approach? 

•  Is this a significant contribution? 
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SkewReduce 

•  Goal: Help scientists express their analysis in a way that 
leads to an efficient execution in a share-nothing cluster 

•  Focus: Feature-extracting analysis functions 
–  Input: points in a multi-dimensional space (or a multi-d array) 

–  Processing: identify and extract features (e.g., clusters) 
–  Outputs:  

•  The list of features 

•  The input data annotated with these features 
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Example Applications 

•  Data clustering 
–  Find galaxies in a 3D snapshot of a simulated universe 

–  Find families of organisms in a 6D space of measured properties 

•  Image processing 
–  Find flocks of birds, hurricanes, stars, etc. in 2D images 
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Basic Approach 

Can parallelize feature extracting functions as follows 

•  Step 1: Split input into N equal-sized hypercubes 

•  Step 2: Extract features in each partition separately 
–  And annotate the input data with these features 

•  Step 3: Reconcile features that span partition boundaries 

•  Step 4: Re-label the input data with the final feature IDs 
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Basic Approach 
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Serial feature extraction 
algorithm 

Merge 
Algorithm 



Example: Friends of Friends 
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Challenge 

•  A naïve implementation can lead to an extremely 
inefficient execution and can even fail! 

•  Why? Because of computation skew 
–  Some partitions take much longer than others 

•  For one astronomy dataset with 43 GB: 20 hours! 

•  Optimized implementation: 70 minutes! 
–  But took a few weeks to develop, which is not scalable! 
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What’s going on?! 

Local FoF 

Merge 

Example: Unbalanced Computation 

•  The top red line runs for 1.5 hours  

5 minutes 



Unbalanced Computation: Skew 

•  A few partitions are slow 
–  All other partitions are waiting for the slow ones 

•  MapReduce: Speculative execution 
–  Effective for machine skew 

–  What if faster machine can’t help? 

•  Spatial analysis can exhibit significant skew 
–  Density varies wildly: Stars, Galaxies, Cities, … 



How About Micro 
Partitions?  



How about having micro partitions? 

•  Super fine grain partitions 
–  Less data = Less skew 
–  But framework overhead! 

•  Finding sweet spot is time 
consuming 

•  No guarantee of 
successful merge 
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without trial and error? 



SkewReduce 

•  Starts with a simple API 

–  Process :: < Seq of T > -> <F, Seq of S> 

–  Merge :: < F, F > -> <F, Seq of S> 

–  Finalize :: <F, S> -> <Seq of Z> 

•  Add to this two cost functions 

–  Cp :: (S, alpha, B) -> R 

–  Cm :: (S, alpha, B) x (S, alpha, B) -> R 
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SkewReduce Approach 

•  Two algorithms: Serial/Merge algorithm 

•  Two cost functions for each algorithm 

•  Find a good partition plan and schedule 

Serial 
Algorithm 

Merge 
Algorithm 

Cost 
functions 



Skew Reduce Framework 

Sample 
Static 
Plan 

Partition Process Merge Finalize 

Input Local Result Output 

•  User supplied cost function 
•  Runs offline 

•  Hierarchically 
reconcile local results 

•  Produce final result 

Process Merge 

Local Result 

Data at boundary 
+ Reconcile State 

Local Result Intermediate 
Reconciliation State 



SkewReduce: Approach 

•  How to decompose space? 
–  Bisect space such that subspaces have identical cost 

•  How to schedule? 
–  In decreasing order of cost (Longest Processing Time) 

•  How to prevent Out of Memory? 
–  Estimate the size of input data 
–  Setaside unnecessary data before merge 



Static Plan 

•  Search for both partitioning axes and point 
–  Guided by cost functions 

–  Two subpartitions have roughly the same  cost 



Static Plan 

•  Partition stop when there is no benefit 
–  Partitioning is not free 



Search Optimal Split 

•  Three strategies to find optimal split point 
–  Find a spot where the costs are identical 

Binary Search 

Incremental Update 

Sampling 

6:4.  3 cost evaluations 

5:5.  4 cost evaluations 

5:5.  1 cost evaluation 



Check improvement 

•  Partitioning is not free 
–  Two subpartitions + Merge < Original partition 

•  Accept new partitions if 
–  Original partition includes too much data 

–  Expected runtime improves with respect to task scheduling 
algorithm 

•  Longest Run Time algorithm by default 



Static Plan: Summary 

•  Goal 
–  Find a good partition plan and corresponding schedule with 

respect to cost functions and input data sample 

•  Approach 
–  Greedily search best splits 

–  Only accept partitions if runtime improves 

–  Run offline using a data sample 



Evaluation 

•  8 node cluster 
–  Dual quad core, 16 GB RAM 

–  Hadoop 0.20.1 + custom patch in MapReduce API 

•  Dataset 
–  Astro: simulation snapshot at step 92 

–  Seaflow: flow cytometry survey 



Does SkewReduce work? 

•  Static plan yields 2 ~ 8 times faster running time 
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Cost Functions 

•  Data Size 
–  the number of data items in a partition 

•  Histogram 3D 
–  Model spatial index traversal pattern 

–  Construct equi-width 3D histogram 

–  Cost = sum of square of frequencies 

•  Histogram 1D 
–  1D version of Histogram 3D 



Fidelity of Cost Functions 

•  Higher fidelity = Better performance 

•  Seaflow -- overestimation 
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Quality of Sample 

•  Varied sample rate 

•  Representativeness of sample affect the performance 
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Benefits and Limitations 

•  Is SkewReduce useful? 

•  Is this the right strategy? 

•  What are the limitations? 

•  Could this approach be generalized? 
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