CSE 599c Scientific Data Management

Magdalena Balazinska and Bill Howe Spring 2010 Lecture 3 – Science in the Cloud

References

- Existing Clouds
 - Amazon Web services, Google App Engine, & Windows Azure
 - And Science Clouds (listed later in the talk)
- Microsoft Cloud Futures Workshop
 <u>http://research.microsoft.com/en-us/events/cloudfutures2010/default.aspx</u>
- Today's readings
 - E-Science Central: eScience on the Web, powered by Clouds. P.
 Watson et. al. Under submission
 - Integating marine Observatories into a System-of-Systems: Messaging in the US Ocean Observatories Initiative. M. Arrot et. al. In Proc. of IEEE/ MTS Oceans 2009

Outline

- Review of cloud computing
- Why push science into the cloud?
- Highlights of Cloud Futures workshop
- Two case studies
 - eScience Central
 - Ocean Observatories Initiative

Cloud Computing

- A definition [Wikipedia]
 - "Style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet"
- Basic idea
 - Developer focuses on application logic
 - Infrastructure and data hosted by someone else in their "cloud"
 - Hence all operations tasks handled by cloud service provider
- A few history points
 - "computation may someday be organized as a public utility" (J. McCarthy 1960)
 - 1990's: Grid computing, Hotmail
 - Early 2000s: Web services, ASPs, Salesforce.com
 - 2005, Google docs
 - 2006, Amazon Web Services
 - And now it's a craze!

Key Features

- Elastic scalability
- Pay-as-you-go
- Accessible from anywhere
- Accessible as a service
- Multi-tenant (= cheaper but also performance can vary)
- Many admin/operations issues handled by provider...

Levels of Service

- Infrastructure as a Service (laaS)
 - Example Amazon EC2
- Platform as a Service (PaaS)
 - Example Microsoft Azure, Google App Engine, Force.com
- Software as a Service (SaaS)
 - Example Google Docs

Levels of Service

How About Data Management as a Service?

- Running a DBMS is challenging
 - Need to hire a skilled database administrator (DBA)
 - Need to provision machines (hardware, software, configuration)
 - Problems:
 - If business picks up, may need to scale quickly
 - Workload varies over time
- Solution: Use a DBMS service
 - All machines are hosted in service provider's data centers
 - Data resides in those data centers
 - Pay-per-use policy
 - Elastic scalability
 - No administration!

Basic Features for Data Management as a Service

- Data storage and query capabilities
- Operations and administration tasks handled by provider
 - Include high availability, upgrades, etc.
 - Elastic scalability: Clients pay exactly for the resources they consume; consumption can grow/shrink dynamically
 - No capital expenditures and fast provisioning
- Three different types exist at the moment
 - Simplified data management systems (e.g., Amazon SimpleDB)
 - Standard relational data management systems
 - Analysis services such as Amazon Elastic MapReduce

CSE 599c - Spring 2010

Why push science into the cloud?

- Scientists have great data management needs
 - Collect, store, archive, and analyze growing datasets
- Processing power needs are bursty (e.g., paper deadline)
- Scientists need to share their data and analyses
 - Simply co-locating data is already a huge help here!
- Scientists do not have computer science expertise
 - They should not have to be DBAs!

Why is this Hard?

- Cloud platforms can still be hard to use
- Clouds do not necessarily provide services needed by scientists

Lots of Ongoing Efforts

- **DataOne** (earth science observatory data, nothing deployed yet)
- HubZero (platform for science collaboration, helps create dynamic websites)
- **CrowdLabs** (social visualization repository, based on VisTrails)
- myGrid (creating, running, and sharing Taverna workflows)
- **Nimbus** (turnkey clusters for science)
- **CAMERA** (ocean microbiology)
- caBig (biology)
- Galaxy, BioMart, BioMobi, InnateImmunityPortal, LANL HIV, Pathway Commons, GEO, ArrayExpress (bio, varying success, usually focused on data quality and simple data retrieval)

Cloud Futures Workshop

- Keynotes
 - Ed Lazowska
 - David Patterson
 - Dan Reed
- Technical talks
 - Several example uses of clouds, including for science
 - Several technical talks about building cloud infrastructures
 - Virtualization, failures, consistency, replication, elasticity, etc.
 - One track on existing clouds: Amazon, Google, Microsoft
- All talks were filmed, so they should be available online

Two Case Studies

- E-Science Central
- Ocean Observatories Initiatives

Discussion Questions

- What are the key goals/requirements of the system?
- What are the key features of the system?
 - Any good ideas?
 - Any terrible ideas?
 - Anything missing?
- Is it likely to succeed? Why or why not?