
CSE 599b: Cryptography (Winter 2006)

Lecture 9: Pseudorandom Function Families and Permutations
1 February 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Pseudorandom Function Families
Recall our definitions from last time:

Definition 1.1. An infinite keyed function family F is an infinite sequence {F k}k≥1 where F k :
{0, 1}k × {0, 1}`(k) → {0, 1}`(k). We call the ` the length of the family.

We write FK for the function F |K|(K, ·) : {0, 1}`(k) → {0, 1}`(k).

Note that we can equivalently view F as an ensemble {Fk}k≥1 where Fk is the distribution on
the Func(`(k), `(k)) induced by choosing K ← Uk and returning FK .

We can then write our definition of a pseudorandom function family as follows:

Definition 1.2. A function ensemble F of length ` is a pseudorandom function family (PRFF) if
and only if

1. F is polynomial-time computable; i.e. the function that computes F (K, x) = FK(x) =
F |K|(K, x) for x ∈ {0, 1}`(|K|) is computable in deterministic polynomial time.

2. For all (oracle) PPT A,

AdvFA (k) = Pr[AFk(1k) = 1]− Pr[AFunc(`(k),`(k))(1k) = 1]

is negligible.

We stated the following theorem last time which we will now prove.

Theorem 1.3 (Goldreich, Goldwasser, Micali). If PRNGs with factor 2 stretch exist then PRFFs
exist with length `(k) = k.

Proof. Let G : {0, 1}∗ → {0, 1}∗ be a PRNG such that G : {0, 1}k → {0, 1}2k for each k.
Define G0 : {0, 1}k → {0, 1} and G1 : {0, 1}k → {0, 1} by

G(y) = G0(y)G1(y).

That is G0 gives the left half of the output of G and G1 gives the right half. We can extend this
definition for all subscripts x ∈ {0, 1}∗ by

Gλ(y) = y (λ is the empty string)
Gx0(y) = Gx(G0(y))

Gx1(y) = Gx(G1(y)).

1

Each Gx : {0, 1}k → {0, 1}k.
Now for x ∈ {0, 1}k and K ∈ {0, 1}k define F (K, x) = FK(x) = Gx(K).
Consider an (oracle) PPT A and let ε(n) = Pr[AFk(1k) = 1]−Pr[AFunc(k,k)(1k) = 1]. Let q(k)

be the maximum number of queries that A can make on input 1k and any oracle. By definition, q
is a polynomial function of k.

We will show that if ε(n) is non-negligible then there is PPT B (based on A) that receives at
most q(k) input strings of length 2k and can distinguish with probability ε′(k) = ε(k)/k whether
these strings are outputs of G on random inputs of length k rather than truly random strings. We
earlier showed that if such an ε′(k) is non-neglible then that is enough to prove that G is not a
PRNG.

The idea of the construction is another hybrid argument. Before we define B, we consider a
number of hybrid distributionsHj,k on functions from {0, 1}k to {0, 1}k.

These distirbutions are based on viewing the computation of FK(x) = Gx(K) for a randomly
chosen K as involving a binary tree whose root (at level 0) is K and whose leaves (at level k) are
the various Gx(K). The internal nodes of the tree indexed by α ∈ {0, 1}≤k are labeled by Gα(K).
The two children of node indexed by α are G0(Gα(K)) and G1(Gα(K)). Observe that

• having oracle access to FK for a random K is equivalent to having access to such a tree
having a randomly chosen k-bit string label the node at level 0

• having oracle access to a function from Func(k, k) is equivalent to having access to such a
tree having randomly chosen k-bit strings labeling each node at level k.

We thus define Hj,k to be a distribution which uses such a tree with randomly chosen k-bit nodes
at level j and the remainder of the nodes labeled according to G.

Let pj,k = Pr[AHj,k(1k) = 1]. Clearly H0,k = Fk and Hk,k = Func(k, k) so as is usual in our
hybrid arguments we have ε(k) = p0,k − pk,k =

∑k
j=1(pj−1,k − pj,k).

We now define B as follows:
On input z1, . . . , zq(k) ∈ {0, 1}2k and 1k,

1. Choose j uniformly in {1, . . . , k}.

2. Simulate A on input 1k and when A makes a query x ∈ {0, 1}k to its oracle:

(a) if no string whose length j−1 suffix agreeing with that of x has previously been queried
then use the next unused string zi in B’s input to label the two level j children of the
node corresponding to this suffix.

(b) Now find the longest suffix of x whose corresponding node in the tree has been labeled
by a string and use G to continue labelling the children along the path to the leaf whose
index is x and return this value to A.

3. Output 1 iff A outputs 1.

B is clearly a PPT and, by assumptions about A, B will always have enough input.

2

Consider a fixed choice of j. By construction if B chooses k = j and receives z1, . . . , zq(k)

from U q(k)
2k then it acts like AHj,k(1k) and if B receives z1, . . . , zq(k) from G(Uk)

q(k) then it acts like
AHj−1,k(1k). Therefore

ε′(n) = Pr[B(G(Uk)
q(k), 1k) = 1]− Pr[B(U q(k)

2k , 1k) = 1]

=
1

k

k∑
j=1

(Pr[AHj−1,k(1k) = 1]−−Pr[AHj,k(1k) = 1)

=
1

k

k∑
j=1

(pj−1,k − pj,k)

= ε(k)/k.

2 Pseudorandom Permutation Families
The construction of PRFFs almost fits our notion of ideal block cipher, except that it does not
produce invertible permutations. Let Perm(k, k) be the set of all permutations on {0, 1}k.

Definition 2.1. A function ensemble F is a pseudorandom permutation family (PRPF) if and only
if

1. F is a PRFF

2. For each K ∈ {0, 1}∗, FK is a permutation in Perm(`(k), `(k)) and the function F inv that
maps (K, Y) ∈ {0, 1}k × {0, 1}`(k) to F−1

K (Y) is polynomial-time computable.

Theorem 2.2 (Luby,Rackoff). If PRFFs exist then PRPFs exist.

Proof Sketch. This uses three rounds of the Feistel construction using three independent chosen
keys that we considered in earlier lectures. Given a function f : {0, 1}k → {0, 1}k define Df :
{0, 1}2k → {0, 1}2k by Df (x, y) = (y, y ⊕ f(x)). That is Df implements one Feistel round using
f and so always produces a permutation whose inverse is computable using f . The idea of the
proof is a two phase argument

1. Show that for three independently chosen random functions f1, f2, f3 ← Func(k, k), Df3 ◦
Df2 ◦ Df1 is indistinguishable from a random element of Func(2k, 2k). The idea of this
argument is that for a polynomial number of distinct queries it is almost certain that the
functions f2 and f3 will be queried on arguments they have never seen before.

2. Using a hybrid argument show that replacing each of f1, f2, and f3 by independent random
selections from Fk is also indistinguishable from using random functions. (The hybridizing
is only over the 4 options: Having the first i ∈ {0, 3} of these functions being chosen from
Fk.) The result follows because F is a PRFF.

3

Luby and Rackoff proved even more than this. They showed that even if a test can call an
oracle for f−1 as well as f then there is a construction that cannot be distinguished from random
functions. More formally:

Definition 2.3. A function ensemble F is a strong pseudorandom permutation family (strong
PRPF) if and only if

1. F is polynomial time computable.

2. For each K ∈ {0, 1}∗, FK is a permutation and the function F inv that maps (K, Y) ∈
{0, 1}k × {0, 1}`(k) to F−1

K (Y) is polynomial-time computable.

3. For all (oracle) PPT A,

AdvF ,F−1

A (k) = Pr[AFK ,F−1
K (1k) = 1 | K ← Uk]− Pr[AF,F−1

(1k) = 1 | F ← Func(k, k)]

is negligible.

Theorem 2.4 (Luby-Rackoff). Df4 ◦Df3 ◦Df2 ◦Df1 for f1, . . . , f4 chosen independently from a
PRFF F is a strong PRPF.

Using the basic methodology of the Luby-Rackoff, the only issue we need to deal with in the
security of variants these constructions is the analogue of step 1 of their proof, the security of the
construction using random functions. It has been shown that Df ◦ Df ◦ Df is insecure, which
means that using the same key for all 3 Feistel rounds of their PRPF construction is insecure.

Subsequent to their work, Naor and Reingold re-visited the ideas and realized that the first and
last rounds of the construct really serve a different purpose and derived a simpler argument to show
that one can use two Feistel rounds with the same key provided that one sandwiched them between
simpler objects called universal permutation hash functions. In this case Df ◦ Df ◦ h is a PRFF
and h−1

2 ◦Df ◦Df ◦ h1 is a strong PRFF.

3 Birthday Attack
The fact that it is hard to distinguish these permutations families from pseudorandom families
certainly means that it is hard to distinguish random permutations from random functions. So if
Perm(n, n) is the distribution that produces a uniformly chosen random permutation, what is the
maximum over all A that make q queries of Pr[APerm(n,n)(1n) = 1]− Pr[AFunc(n,n)(1n) = 1]?

It is clear that the only difference that A can detect is if A sees two inputs that yield the same
output. Since A makes at most q queries there are only

(
q
2

)
pairs that might collide and the chance

for a random function of any fixed one of those pairs having a collision is precisely 2−n. Therefore
the expected number of collisions is at most

(
q
2

)
/2n = q(q−1)

2n+1 and the probability of finding one
is at most this large. It is not hard to show that this is nearly the correct answer which means
that to detect the difference with, say, constant probability requires Θ(2n/2) queries. This factor

4

of 2 in the exponent is something that one must often keep in mind in estimating the security of
cryptosystems.

(The name Birthday Attack comes from the surprising fact that in any room of 23 people there
are likely to be at least two people who share a birthday.)

5

	Pseudorandom Function Families
	Pseudorandom Permutation Families
	Birthday Attack

