
CSE 599b: Cryptography (Winter 2006)

Lecture 8: Creating PRNGs and Pseudorandom Function Families
27 January 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Pseudorandom Number Generators from One-Way Permu-
tations

Recall the definition of hard-core bits from last class:

Definition 1.1. A function B : {0, 1}∗ → {0, 1} is a hard-core bit for a function f if and only if
for every PPT A′, the function ε′ : N→ N is negligible where

ε′(n) = Pr[A′(f(x), B(x)) = 1 | x← Un]− Pr[A′(f(x), b)) = 1 | x← Un; b← U1].

We saw that a number of our candidate collections of one-way functions (which were permuta-
tions) had associated hard-core bits. Also, based on the Goldreich-Levin theorem from last class,
given a length-preserving one-way function f one can produce a related function g that has a hard-
core bit; moreover, if f is a permutation then so is g. Therefore, given any one-way permutation
there is a one-way permutation f with an associated polynomial-time computable hard-core bit B.
We will now prove that these can be used to derive pseudo-random generator that increase the seed
length by a polynomial amount.

Recall that a pseudo-random generator (PRNG) is a deterministic polynomial-time computable
function G : {0, 1}∗ → {0, 1}∗ that is length-increasing (mapping n bits to `(n) bits) and such that
for all PPT A,

ε(n) = Pr[A(G(Un)) = 1]− Pr[A(U`(n)) = 1]

is negligible.
We will now prove part (b) of the following theorem.

Theorem 1.2 (Blum-Micali, Yao). Let f : {0, 1}∗ → {0, 1}∗ such that for all n, f : {0, 1}n →
{0, 1}n is a permutation and B is a hard-core bit for f that is polynomial-time computable then

(a) G : {0, 1}∗ → {0, 1}∗ given by G(x) = f(x)B(x) is a PRNG with `(n) = n + 1.

(b) For every polynomial `(n) > n the function G` : {0, 1}∗ → {0, 1}∗ given by G`(x) =
B(x)B(f(x))B(f(f(x))) · · ·B(f `(|x|)−1(x)) is a PRNG where f j is the composition of f
with itself j times.

Proof. As is typical in these proofs the argument follows by a reduction which allows to turn a sta-
tistical test A which distinguishes G`(Un) from U`(n) into an algorithm A′ that accepts (f(x), B(x))

1

for random x more frequently than it does (f(x), b) for random (x, b). We also will use a hybrid
argument.

Let A be such a statistical test and let ε(n) = Pr[A(G`(Un)) = 1]− Pr[A(U`(n)) = 1]
For each 0 ≤ k ≤ `(n) define a hybrid distribution Hk,n on {0, 1}`(n) by That is an ele-

ment of Hk,n is given by b1 · · · bkB(fk(x)) · · ·B(f `(n)−1(x)) for x chosen uniformly from Un

and bits b1 . . . bk chosen uniformly from Uk. A key observation is that if f is a permutation
then for x chosen from Un, for any j ≥ 0, f j(x) is distributed as a y chosen from Un. Thus
an alternative way to choose an element of Hk,n is as b1 · · · bkB(f(y) · · ·B(f `(n)−k(y)) or as
b1 · · · bkB(y) · · ·B(f `(n)−k−1(y)) for y chosen uniformly from Un and bits b1 . . . bk chosen uni-
formly from Uk; i.e.,Hk,n = Uk ×G`−k(Un).

ThusH0,n = G`(Un) andH`(n),n = U`(n). Define pk,n = Pr[A(Hk,n) = 1]. By definition,

ε(n) = p0,n − p`(n),n

=

`(n)∑
k=1

(pk−1,n − pk,n)

is non-negligible.
Now define a PPT A′ that uses A to check the supposedly hard-core bit using the hybrid argu-

ment.
On input w = f(y) ∈ {0, 1}n and b ∈ {0, 1}:

1. Choose k uniformly in {1, . . . , `(n)}.

2. Choose b1 . . . bk−1 → Uk−1.

3. Compute z = B(f(y)) . . . B(f `(n)−k(y)).

4. Run A on input b1 . . . bk−1bB(f(y)) . . . B(f `(n)−k(y)) and output 1 if and only if A does.

We now apply the definition of the distinguishing probability of A′:

ε′(n) = Pr[A′(f(y), B(y)) = 1 | y ← Un]− Pr[A′(f(y), b) = 1 | y ← Un; b← U1]

=
1

`(n)

`(n)∑
k=1

(Pr[A(b1 . . . bk−1B(y)B(f(y)) . . . B(f `(n)−k(y))) = 1 | y ← Un; b1 . . . bk−1 ← Uk−1]

−Pr[A(b1 . . . bk−1bB(f(y)) . . . B(f `(n)−k(y))) = 1 | y ← Un; b1 . . . bk−1 ← Uk−1; b← U1])

=
1

`(n)

`(n)∑
k=1

(Pr[A(Hk−1,n) = 1]− Pr[A(Hk,n) = 1])

=
1

`(n)

`(n)∑
k=1

(pk−1,n − pk,n)

= ε(n)/`(n)

which is non-negligible if and only if ε(n) is since `(n) is polynomial in n.

2

This construction is particularly convenient as a replacement for the random bits in a one-time
pad for symmetric encryption as a stream cipher as follows:

On shared key K ∈ {0, 1}k, to send the bit string M = m1 . . . mn Alice computes C ← M ⊕
B(K)B(f(K)) . . . B(fn−1(K)) and sends C to Bob who computes M ← C⊕B(K)B(f(K)) . . . B(fn−1(K)).
To be able to send additional messages, Bob and Alice can now each replace their shared key K
by K ′ = fn−1(K) and then continue. We will see that this can be shown to be secure provided the
total number of bits ever sent is polynomial in the key length, k.

Of the different candidate one-way functions we considered, if it is a one-way function, the
Blum squaring function provides a fairly efficient form of pseudorandom generator given:

Once N = pq where p and q are n-bit primes with p, q ≡ 3 (mod 4) chosen, we can generate
a random element of QRN by choosing a random element x ∈ Z∗

N and squaring it modulo N .
Therefore since BlumN is a permutation and LSB is a hard-core bit if BlumN is one-way, the
following loop produces the bits of the generator:

for i = 1 to `(n)
x← x2 mod N
output LSB(x)

end for

This construction produces one bit of output per modular multiplication (much faster than
using the discrete exponentiation example which costs n multiplications) and is pseudorandom if
factoring Blum integers is computationally hard. In fact, one can extend the proof of the Blum-
Micali-Yao theorem to show that one can produce pseudorandom bits at a higher rate using the
hard-core function for BlumN which outputs the log n least significant bits of x instead of just
LSB(x). One cannot get hard-core functions that produce signficantly more than log n bits as
output so that is the limit of this construction: log n bits of output per evaluation of the one-way
function. Gennaro and Trevisan have shown that for any generic construction of PRNGs from one-
way functions this is the highest rate achievable per evaluation (unless one could do so without
using the one-way function).

2 PRNGs from any One-way Function
The most general theorem relating one-way functions and pseudorandom generators is the follow-
ing HILL theorem:

Theorem 2.1 (Håstad, Impagliazzo, Luby, Levin). One-way functions exist if and only if pseudo-
random number generators exist.

This proof of this theorem is quite complicated and is beyond what we will cover in this course.
Moreover, Luby and other have shown that these properties are equivalent to the existence of secure
symmetric encryption.

3

3 Pseudorandomness of Ideal Block Ciphers
As we discussed earlier, pseudorandom generators are enough to produce stream ciphers. What
about block ciphers? Recall that ideally a block cipher E has the following properties:

• EK : {0, 1}n → {0, 1} is easy to compute,

• E−1
K : {0, 1}n → {0, 1} is easy to compute,

• For any polynomial number of distinct messages M1, M2, . . . ,Mq and random K ∈ {0, 1}k,
the values of EK(M1), . . . , EK(Mq) should look random (except that they are distinct).

An arbitrary function from {0, 1}n to {0, 1}n takes n2n bits to specify so the conditions on EK

suggest that EK looks like a block of n2n bits such that any choice nO(1) bits out of this exponential
length string look random. This is a much more stringent condition than pseudorandom generators
which only produce one sequence of nO(1) bits that look random. We will see that we can indeed
produce functions with these properties.

4 Pseudorandom Function Families
Let Func(D, R) be the set of all functions from D to R and let Func(r, s) be the set of all functions
from {0, 1}r to {0, 1}s.

Definition 4.1. A finite keyed function family F from D to R is a map F : K ×D → R where K
is the called key set of F . For K ∈ K we write FK for the function F (K, ·).

From now on for convenience we will assume that the set K = {0, 1}k and D = R = {0, 1}n
where n is polynomial in k.

Definition 4.2. An infinite keyed function family F is an infinite sequence {F k}k≥1 where F k is
a finite keyed function family with K = {0, 1}k and D = R = {0, 1}n for n = `(k) for some
polynomial function `. (The function ` is called the length of the function family.)

We say that F is polynomial time computable if and only if the map F (K, x) = F |K|(K, x) is
computable in deterministic polynomial time. (Since the length of the key K determines k, we also
write FK for F k(K, ·).)

We would like to say that a function family is pseudorandom so we need the notion of a ran-
domly chosen function to compare it to. A random function will be an element from the distribution
Func(D, R), the uniform distribution on Func(D, R); Func(r, s) is defined similarly.

4.1 Function Oracles
For pseudorandomness we also need to have a notion of how an algorithm can test a function. The
most natural notion would be to allow the algorithm have access to the function as a black box
that it can query repeatedly. That is we design A so that it can call a subroutine that computes

4

a function from {0, 1}n to {0, 1}n. This black-box or subroutine access to the function is known
as oracle access. Each oracle call that the algorithm makes will cost it at least one time step so
the total number of calls that an algorithm A can make is its running time. If A is an algorithm
and f is a function that can be used in A’s subroutine calls then we write Af for the machine A
with the subroutine replaced by function f . If F is a distribution on functions we write AF for the
distribution of the action of A when given an oracle randomly chosen from F .

Observe that for any PPT algorithm A, AFunc(r,s) can be simulated by a PPT algorithm A′

without oracle:
Whenever A makes a call x ∈ {0, 1}r to its oracle f :

1. If x has not been input previously

(a) Choose s random bits y from Us.

(b) Store the fact that f(x) = y in a table.

(c) Return y

2. Else (x has been previously input)

(a) Return the value of f(x) from the table.

4.2 Pseudorandom Function Families
Definition 4.3. An infinite keyed function family F = {F k}k≥1 with length ` is a pseudorandom
function family if and only if

1. F is polynomial-time computable; i.e. the function that computes F (K, x) = FK(x) =
F |K|(K, x) for x ∈ {0, 1}`(|K|) is computable in deterministic polynomial time.

2. For all PPT A,

AdvFA (k) = Pr[AFK (1k) = 1 | K ← Uk]− Pr[AF (1k) = 1 | F ← Func(`(k), `(k))]

is negligible.

Theorem 4.4 (Goldreich, Goldwasser, Micali). If PRNGs with factor 2 stretch exist then pseudo-
random function families exist with length `(k) = k.

Since we have alread seen that existence of one-way functions implies the hypothesis we have
the immediate corollary.

Corollary 4.5. If one-way functions exist then pseudorandom function families exist.

The GGM construction is a follows:
Given G : {0, 1}∗ → {0, 1}∗ such that G : {0, 1}k → {0, 1}2k is a PRNG.
Define G0 : {0, 1}k → {0, 1} and G1 : {0, 1}k → {0, 1} by

G(y) = G0(y)G1(y).

5

That is G0 gives the left half of the output of G and G1 gives the right half. We can extend this
definition for all subscripts x ∈ {0, 1}∗ by

Gλ(y) = y (λ is the empty string)
Gx0(y) = Gx(G0(y))

Gx1(y) = Gx(G1(y)).

Each Gx : {0, 1}k → {0, 1}k.
Now for x ∈ {0, 1}k and K ∈ {0, 1}k define F (K, x) = FK(x) = Gx(K).
This is easy to compute and we will show next time that it is secure. One might wonder about

why the roles of x and K are not reversed. It can be shown that doing things the other way would
not be secure.

6

	Pseudorandom Number Generators from One-Way Permutations
	PRNGs from any One-way Function
	Pseudorandomness of Ideal Block Ciphers
	Pseudorandom Function Families
	Function Oracles
	Pseudorandom Function Families

