
CSE 599b: Cryptography (Winter 2006)

Lecture 7: Hard-Core Bits; PRNG’s from One-Way Functions
25 January 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Hard-Core Bits
Even though a function may be one-way, given f(x) it may be possible to learn a great deal
about x. (Consider, for example, the subset sum candidate one-way function f(x1, . . . , xn, I) =
(x1, . . . , xn,

∑
i∈I xi).)

Definition 1.1. A function B : {0, 1}∗ → {0, 1} is a hard-core bit for a function f if and only if
for every PPT A, the function ε : N→ N is negligible where

ε(n) = Pr[A(f(x)) = B(x) | x← Un]− 1/2.

That is, B is a hard-core bit if and only if it is computationally infeasible to predict B(x) given
f(x) with probability significantly better than 1/2. It is trivial to predict any value with probability
≥ 1/2 since random guessing ensures that the success rate is exactly 1/2. Observe also that by this
definition, if B is efficiently computable, the value of B(x) must be very close to being balanced
on inputs in Un since otherwise a guess that succeeds with probability above 1/2 can be made by
evaluating B on a number of random y in Un and outputing the majority answer of the B(y).

If a function f loses information about x then it can be easy to produce a hard-core bit for f .
For example, suppose that f(x) produces all but the last bit of x and B(x) is that last bit. That is
not the kind of case we will be interesting in. We will typically consider functions f that do not
lose this any information (for example functions that are permutations on the set of inputs of length
n) and in this case, in order for B to be hard-core for f , f must be a one-way function.

The following alternative definition of hard-core bit can be seen to be equivalent to the original
definition and, although it is more complicated, it is more convenient for analysis.

Definition 1.2. A function B : {0, 1}∗ → {0, 1} is a hard-core bit for a function f if and only if
for every PPT A′, the function ε′ : N→ N is negligible where

ε′(n) = Pr[A′(f(x), B(x)) = 1 | x← Un]− Pr[A′(f(x), b)) = 1 | x← Un, b← U1].

Clearly if we define A′(y, b) to run A on input y and output 1 if and only if A(y) outputs b,
then Pr[A′(f(x), b)) = 1 | x ← Un, b ← U1] = 1/2 and Pr[A′(f(x), B(x)) = 1 | x ← Un] =
Pr[A(f(x)) = B(x) | x← Un] so ε′(n) from this definition is precisely the same as ε(n) from the
previous definition so this definition is at least as strong as the earlier one. One can also show the
reverse implication by observing that Pr[A′(f(x), b)) = 1 | x← Un, b← U1] is the average of the
distributions conditioned on b = B(x) and b = 1−B(x).

1

This latter definition looks very much our definitions of statistical indistinguishability, except
that in trying to distinguish B(x) from a random b, A′ is given f(x) as advice. Using this latter
definition we can extend the notion of hard-core bits to hard-core functions.

Definition 1.3. A function H : {0, 1}∗ → {0, 1}m(n) is hard-core for a function f if and only if for
every PPT A′, the function ε′ : N→ N is negligible where

ε′(n) = Pr[A′(f(x), H(x)) = 1 | x← Un]− Pr[A′(f(x),~b)) = 1 | x← Un, ~b← Um(n)].

Similar notions of hard-core bits and hard-core functions can be defined for collections of func-
tions but for simplicity we do not state them formally. As we will see, if our candidate collections
of one-way functions are indeed one-way then each has a natural hard-core bit.

1.1 Hard-Core Bits for Candidate Functions
Define LSBk(x) to be the k least-significant bits of x ∈ {0, 1}n and define LSB(x) = LSB1(x).
Similarly for p a prime and x ∈ Zp−1 define the most significant bit of x,

MSBp(x) =

{
1 (p− 1)/2 ≤ x ≤ p− 2

0 0 ≤ x < (p− 1)/2
.

Observe that for g a generator of Z∗
p, 1 = g(p− 1) mod p = (g(p−1)/2)2 mod p but g(p−1)/2 6≡ 1

(mod p). Thus g(p−1)/2 ≡ −1 (mod p) and we can write

Z∗
p = {1, g, g2, . . . , g(p−1)/2 = −1,−g,−g2, . . . ,−gp/2−1}.

Lemma 1.4 (Blum-Micali 1982). If EXP(p,g)(a.k.a.DLP(p,g)) is one-way then MSB(x) is a
hard-core bit for EXP(p,g).

Proof Sketch. The basic idea of the argument is that if one has an algorithm that can determine
MSBp(x) from EXP(p,g) = gx mod p then one actually invert EXP(p,g). We use the following
two facts:

• Given z such that z is a square modulo p, there is a randomized algorithm that will find an
w such that w2 ≡ z (mod p). (This is known as the Tonelli-Shanks algorithm.)

• y is a square modulo p if and only if y = g2k mod p for some integer k and thus if and only
if y(p−1)/2 ≡ 1 (mod p).

We now describe the algorithm. Given y = gx mod p, we can determine the low order bit of
x simply by determining whether y is a square modulo p. Now define

z =

{
y if y is a square mod p

g−1y if y is not a square mod p
.

2

Clearly z is always square mod p and z = g2k mod p where k is the integer given by the bits of x
shifted right by one bit.

Now, when the square root algorithm is run on z we get one of two square roots of z, either
w = gk or w = −gk = g(p−1)/2+k. Thus w = gv where v is either k or (p − 1)/2 + k. We really
want the former one but just given w we don’t know which case we have. However, if given can
find the MSBp(v) given w = gv then we can tell which case we have and simply multiply by −1
to obtain gk. This can be repeated to cover each bit of x in turn for a total of n calls where n is the
number of bits in x.

Similar properties hold for other one-way candidate functions.

Lemma 1.5 (Blum, Blum, Schub 1982). If BlumN is one-way then LSB(x) is hard-core bit for
BlumN .

Lemma 1.6 (Alexi, Chor, Goldreich, Schnorr 1983). LSB(x) is a hard-core bit for RSA(N,e),
BlumN , RabinN if the corresponding function is one-way. Moreover, For m = O(log log N),
LSBm)(x) is hard-core for RSA(N,e), BlumN , RabinN if the corresponding function is one-way.

In each of the above cases the number of calls to the hard-core predicate in order to invert
the function is O(n) where n is the number of bits in the parameters. As a result the advantage at
predicting the hard-core bit must be at most O(n) times the inverting probability for the underlying
one-way function. The following result is more recent, much more general, but a fair bit less
efficient.

Lemma 1.7 (Høastad, Naslund 2004). Any block of log log N bits of RSA(N,e) are simultaneously
secure.

1.2 A Hard-core Bit from any One-Way Function
The following is a general method for deriving hard-core bits from one-way functions.

Theorem 1.8 (Goldriech-Levin). If f : {0, 1}∗ → {0, 1}∗ is a one-way function that is length-
preserving (maps {0, 1}n to {0, 1}n) then B : {0, 1}∗ → {0, 1}∗ defined by B(xr) = x · r mod 2
where |x| = |r| and x · r is the inner product of x and r is a hard-core bit for the function
g(x, r) = (f(x), r).

This theorem is very general and useful although the difference in the predictability of B versus
the invertability of f is cubic and so not as efficient as the specific candidates functions above.

2 Pseudorandom Number Generators from One-Way Permu-
tations

Recall that a pseudorandom generator (PRNG) is a deterministic polynomial-time computable
function G : {0, 1}∗ → {0, 1}∗ that is length-increasing (mapping n bits to `(n) bits) and such that
for all PPT A,

AdvPRNG,G
A (n) = Pr[A(G(Un)) = 1]− Pr[A(U`(n)) = 1]

3

is negligible.
The following is a general method for using one-way permutations to build PRNGs. We will

prove part (b) next time. Part (a) is an exercise.

Theorem 2.1. Let f : {0, 1}∗ → {0, 1}∗ such that for all n, f : {0, 1}n → {0, 1}n is a permutation
and B is a hard-core bit for f that is polynomial-time computable then

(a) G : {0, 1}∗ → {0, 1}∗ given by G(x) = f(x)B(x) is a PRNG with `(n) = n + 1.

(b) For every polynomial `(n) > n the function G` : {0, 1}∗ → {0, 1}∗ given by G(x) =
B(x)B(f(x))B(f(f(x))) · · ·B(f `(|x|)−1(x)) is a PRNG.

4

	Hard-Core Bits
	Hard-Core Bits for Candidate Functions
	A Hard-core Bit from any One-Way Function

	Pseudorandom Number Generators from One-Way Permutations

