CSE 599b: Cryptography (Winter 2006)

Lecture 7: Hard-Core Bits; PRNG’s from One-Way Functions
25 January 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Hard-Core Bits

Even though a function may be one-way, given f(z) it may be possible to learn a great deal
about z. (Consider, for example, the subset sum candidate one-way function f(z1,...,2,,1) =

(T1, - @0, D ey T4)2)

Definition 1.1. A function B : {0,1}* — {0, 1} is a hard-core bit for a function f if and only if
for every PPT A, the function € : N — N is negligible where

e(n) = Pr[A(f(z)) = B(z) |z < U,] — 1/2.

That is, B is a hard-core bit if and only if it is computationally infeasible to predict B(z) given
f(z) with probability significantly better than 1/2. It is trivial to predict any value with probability
> 1/2 since random guessing ensures that the success rate is exactly 1/2. Observe also that by this
definition, if B is efficiently computable, the value of B(x) must be very close to being balanced
on inputs in U4, since otherwise a guess that succeeds with probability above 1/2 can be made by
evaluating B on a number of random y in I, and outputing the majority answer of the B(y).

If a function f loses information about x then it can be easy to produce a hard-core bit for f.
For example, suppose that f(z) produces all but the last bit of x and B(z) is that last bit. That is
not the kind of case we will be interesting in. We will typically consider functions f that do not
lose this any information (for example functions that are permutations on the set of inputs of length
n) and in this case, in order for B to be hard-core for f, f must be a one-way function.

The following alternative definition of hard-core bit can be seen to be equivalent to the original
definition and, although it is more complicated, it is more convenient for analysis.

Definition 1.2. A function B : {0,1}* — {0, 1} is a hard-core bit for a function f if and only if
for every PPT A', the function € : N — N is negligible where

€(n)=Pr[A'(f(z),B(x)) =1|x U] —Pr[A'(f(2),0) =1 |z — U,, b U].

Clearly if we define A’(y,b) to run A on input y and output 1 if and only if A(y) outputs b,
then Pr[A'(f(x),b)) =1 | 2 «— U,, b — U] = 1/2 and Pr[A'(f(x),B(x)) =1 | z «— U,] =
Pr[A(f(z)) = B(x) | * < U,] so € (n) from this definition is precisely the same as ¢(n) from the
previous definition so this definition is at least as strong as the earlier one. One can also show the
reverse implication by observing that Pr[A’(f(x),b)) =1 | © < U,,, b < U] is the average of the
distributions conditioned on b = B(x) and b = 1 — B(x).

1

This latter definition looks very much our definitions of statistical indistinguishability, except
that in trying to distinguish B(z) from a random b, A’ is given f(x) as advice. Using this latter
definition we can extend the notion of hard-core bits to hard-core functions.

Definition 1.3. A function H : {0,1}* — {0, 1}™™ is hard-core for a function f if and only if for
every PPT A, the function € : N — N is negligible where

€(n) = Pr[A'(f(z), H(x)) = 1| & — U] — PrlA(f(2),0)) = 1| & — Uy, b — Upw))-

Similar notions of hard-core bits and hard-core functions can be defined for collections of func-
tions but for simplicity we do not state them formally. As we will see, if our candidate collections
of one-way functions are indeed one-way then each has a natural hard-core bit.

1.1 Hard-Core Bits for Candidate Functions

Define LS By(z) to be the k least-significant bits of x € {0, 1}" and define LSB(z) = LSB;(z).
Similarly for p a prime and x € Z,_; define the most significant bit of z,

MSBp(x):{l (p-D/2<e<p-2

0 0<z<(p-—1)/2
Observe that for g a generator of Z3, 1 = glp — 1) mod p = (¢?~/%)? mod p but g®»=1/2 £ 1
(mod p). Thus g?®»~1/2 = —1 (mod p) and we can write

(p=1)/2 = _17 -9, _92, sy _gp/Qil}'

Lemma 1.4 (Blum-Micali 1982). If EX Py, s(a.k.a.DLP,,) is one-way then M SB(x) is a
hard-core bit for EX P, ;).

Zy=A{1,9,9>.....9

Proof Sketch. The basic idea of the argument is that if one has an algorithm that can determine
MSBy(z) from EX P, . = ¢° mod p then one actually invert £X P, ;. We use the following
two facts:

e Given z such that z is a square modulo p, there is a randomized algorithm that will find an
w such that w? = 2z (mod p). (This is known as the Tonelli-Shanks algorithm.)

e 7 is a square modulo p if and only if y = ¢?* mod p for some integer k and thus if and only
if y»~1/2 =1 (mod p).

We now describe the algorithm. Given y = ¢ mod p, we can determine the low order bit of
2 simply by determining whether ¥ is a square modulo p. Now define

Y if y is a square mod p
z = .
g 'y if y is not a square mod p

Clearly z is always square mod p and z = ¢g** mod p where k is the integer given by the bits of x
shifted right by one bit.

Now, when the square root algorithm is run on z we get one of two square roots of z, either
w=gForw = —g* = gP~1/2+* Thus w = g” where v is either k or (p — 1)/2 + k. We really
want the former one but just given w we don’t know which case we have. However, if given can
find the M SB,(v) given w = g" then we can tell which case we have and simply multiply by —1
to obtain g*. This can be repeated to cover each bit of z in turn for a total of n calls where n is the
number of bits in z. O

Similar properties hold for other one-way candidate functions.

Lemma 1.5 (Blum, Blum, Schub 1982). If Blumy is one-way then LS B(x) is hard-core bit for
Blump;.

Lemma 1.6 (Alexi, Chor, Goldreich, Schnorr 1983). LSB(x) is a hard-core bit for RSA(y),
Blumy, Rabiny if the corresponding function is one-way. Moreover, For m = O(loglog N),
LS B (x) is hard-core for RS A ¢), Blumy, Rabiny if the corresponding function is one-way.

In each of the above cases the number of calls to the hard-core predicate in order to invert
the function is O(n) where n is the number of bits in the parameters. As a result the advantage at
predicting the hard-core bit must be at most O(n) times the inverting probability for the underlying
one-way function. The following result is more recent, much more general, but a fair bit less
efficient.

Lemma 1.7 (Hgastad, Naslund 2004). Any block of loglog N bits of RS A(ne) are simultaneously
secure.

1.2 A Hard-core Bit from any One-Way Function

The following is a general method for deriving hard-core bits from one-way functions.
Theorem 1.8 (Goldriech-Levin). If f : {0,1}* — {0,1}* is a one-way function that is length-
preserving (maps {0, 1}" to {0, 1}") then B : {0,1}* — {0, 1}* defined by B(xr) = x -r mod 2
where |x| = |r| and x - r is the inner product of x and r is a hard-core bit for the function
gla,r) = (f(x),r).

This theorem is very general and useful although the difference in the predictability of B versus
the invertability of f is cubic and so not as efficient as the specific candidates functions above.

2 Pseudorandom Number Generators from One-Way Permu-
tations

Recall that a pseudorandom generator (PRNG) is a deterministic polynomial-time computable
function G : {0,1}* — {0, 1}* that is length-increasing (mapping n bits to ¢(n) bits) and such that

for all PPT A,
Adv TN () = PrlA(G(U,)) = 1] — Pr[AUsm) = 1]

3

is negligible.
The following is a general method for using one-way permutations to build PRNGs. We will
prove part (b) next time. Part (a) is an exercise.

Theorem 2.1. Let f : {0,1}* — {0, 1}* such that foralln, f : {0,1}" — {0, 1}" is a permutation
and B is a hard-core bit for f that is polynomial-time computable then

(a) G:{0,1}* — {0,1}* given by G(x) = f(x)B(x) is a PRNG with {(n) = n + 1.

(b) For every polynomial {(n) > n the function G* : {0,1}* — {0,1}* given by G(z) =
B(x)B(f(2))B(f(f(x))) - B(f**V~!(x)) is a PRNG.

	Hard-Core Bits
	Hard-Core Bits for Candidate Functions
	A Hard-core Bit from any One-Way Function

	Pseudorandom Number Generators from One-Way Permutations

