
CSE 599b: Cryptography (Winter 2006)

Lecture 4: More Block Ciphers; Pseudorandom Generators
13 January 2006

Lecturer: Paul Beame Scribe: Paul Beame

0.1 Aside: Why two Feistel rounds are not enough
Suppose that f : {0, 1}k × {0, 1}n → {0, 1}n and we have a block cipher with block-length 2n
and key length 2k and key defined for K = K1K2 by M = (L, R) → C = (L′′, R′′) using two
Feistel rounds:

L′ ← R

R′ ← L⊕ fK1(R)

L′′ ← R′

R′′ ← L′ ⊕ fK2(R
′)

Then for two messages M1 and M2 with the same right half say M1 = L1R, M2 = L2R, observe
that the left halves L′′

1 and L′′
2 of their corresponding encryptions C1 and C2 are L′′

1 = L1⊕ fK1(R)
and L′′

2 = L2 ⊕ fK1(R). Thus L′′
1 ⊕ L′′

2 = L1 ⊕ L2 which is essentially as bad as using a one-time
pad on the left half of the input.

1 On the security of DES
Given a single (M, C) pair with C = DESK(M) and the fact that DES has a key length of
56 bits and brute force key search will succeed on average in 255 trials to find a K ′ such that
DESK′(M) = C; moreover it is unlikely that even two different keys will work for the single
(M, C) pair since there are more ciphertexts than keys so almost surely K ′ = K.

More sophisticated attacks have been developed, although neither is particularly practical for
DES:

Differential cryptanalysis [Biham, Shamir 89] Examines how the differences between closely
related messages get propagated through the rounds of the block cipher. Can break DES after
seeing 247 ciphertexts of chosen plaintexts. This attack was known to the NSA, but not made
public, during the development of DES. It has been observed that the design of the S-boxes in
DES makes it clear that they were aware of it since even small changes to their design would make
DES much more vulnerable to this attack. Differential cryptanalysis was fatal for some designs
that had been proposed as alternatives to DES and has been effective recently in breaking current
cryptographic hash function designs.

1

Linear cryptanalysis [Matsui 94] Looks for correlations between parts of DES and linear func-
tions. Can break DES after only 244 ciphertexts of known plaintexts but requires massive storage
to compare them.

To get an idea of the numbers, on current machines there are roughly 230 clock cycles in a
second and roughly 230 seconds in 30 years. This should already give one pause in using DES,
especially given the fact that the brute force attacks parallelize trivially. Nearly a decade ago, after
it had been suggested that one could build a machine to break DES very easily, the Electronic
Freedom Foundation did just that and was able to break DES in an average of 56 hours. This led
to attempts to strengthen DES.

2 Double DES, Triple DES, DESX
All of these are 64 bit ciphers that are extensions of DES but use much larger keys.

Double DES
Here 2DES(K1K2, M) = DESK1(DESK2(M)). This yields a key length of 112 bits and is twice
as slow as DES. Ideally one would like this to have brute force-style security that would require
2111 trials. However, a very simle “meet in the middle attack” can find the key in only 257 trials
(although this requires a lot of storage and is not practical). The idea is the following: Given an
(M, C) pair compute all DESS(M) for varying keys S and DES−1

T (C) for varying keys T and use
a large hash table to detect collisions between these two sets. If A = DESS(M) = DES−1

T (C) is
a collision then DEST (DESS(M)) = C and TS is a good candidate key.

Triple DES
There are two versions both with 168 bit keys and each is three times as slow as DES:

3DES3(K1K2K3, M) = DESK3(DES−1
K2

(DESK1(M)))

3DES2(K1K2, M) = DESK2(DES−1
K1

(DESK2(M)))

Each of these uses DES−1 (which is essentially the same difficulty as DES) in the middle in order
to achieve backward compatibility since

3DES3(KKK, M) = 3DES2(KK, M) = DESK(DES−1
K (DESK(M))) = DESK(M).

The two versions of Triple DES so far do not appear to have particular vulnerabilities but they
are both particularly slow in software and not great in hardware so alternatives were sought that
would be faster.

2

DESX
DESX also has 184-bit keys but is essentially as fast as DES:

DESX(KK1K2, M) = K2 ⊕DES(K, K1 ⊕M)

Moreover, backward compatibility comes from setting K1 = K2 = 064. It is a bit unclear how
secure DESX is but there was also concern about the inefficiency of its 64 bit blocksize.

3 AES/Rijndael
In the mid 1990’s when it was clear that DES needed to be completely replaced there was an open
competition to design a replacement which would be a 128-bit block cipher.

The winning design which became the Advanced Encryption Standard or AES was Rijndael,
which is an amalgam of the two authors’ names. Unlike all the others it is permutation that is not
derived from the Fiestel method (and seems to use its bits a little more efficiently since Feistel
ciphers only mix half the bits as a time). There are 3 versions depending on the key length.
AES128, AES192, and AES256. There are all pretty similar so we’ll consider AES128.

AES128 expands the 128 bit key K into 11 round keys each of 128 bits using similar ideas to
DES. There are 10 rounds and at the start and end and between each pair of rounds a round key is
XOR-ed with the current 128-bit scrambling of the message. The main difference is what goes on
in each round.

The main thing they use is arithmetic in GF (28), the finite (Galois) field of 28 = 256 elements
(conveniently one byte per element). Elements of GF (28) are described by polynomials that are
taken modulo 2 and modulo an ‘irreducible’ polynomial m(x) of degree 8. In particular, the
polynomial used is m(x) = x8 + x4 + x3 + 1 (which the authors say just happened to be the first
one in a standard list of such polynomials). Thus the byte b7 . . . b1b0 represents the polynomial
b7x

7 + · · ·+ b1x + b0 in GF (28) which has been reduced mod m(x) and 2.
To add two polynomials in this representation of GF (28) one simply adds their coefficients and

reduces the result mod 2. To multiply, one multiplies them as polynomials (which is just a shift
and add mod 2) and uses the identity that x8 +x4 +x3 +1 = 0 which implies that x8 = x4 +x3 +1
(since additing and subtracting are the same mod 2) and thus one can do shift and mod 2 additions
also to get rid of any coefficients of x14, x13, ..., x8.

For a field one also needs multiplicative inverses. This is why m(x) had to be irreducible
(doesn’t factor mod 2). This is the analog of being a prime over the integers. Euclid’s algorithm
shows that if gcd(a, m) = 1 then one can solve az mod m = 1 for z; moreover if m is prime
and a 6≡ 0 mod m then such a z is unique mod m and we write x = a−1 mod m. In the
case of GF (28), m(x) is irreducible so for any polynomial a(x) ∈ GF (28), with a(x) 6= 0,
the gcd(a(x), m(x)) = 1 and thus we can find a inverse polynomial INV (a)(x) = (a(x))−1

mod m(x) such that a(x) · INV (a)(x) mod m(x) = 1. Moreover, we can extend this map that
takes a to INV (a) to a permutation of all of GF (28) by defining INV (0) = 0. A simple 256 byte
look-up table can be used to compute such inverses.

3

Now we can describe the internals of a round between the XOR-ing in of the round keys. The
inversion operation above is used at the start of each round on each byte separately as the analog
of the S-boxes of DES. For the remaining two operations one thinks of the 16 bytes as being
arranged in a 4× 4 square. The remaining two operations are a column scrambling operation done
separately one each column followed by a row shifting. The latter simply cyclically shifts the
second row by 1, the third row by 2 and the last row by 3. The more interesting part is the column
scrambling operation. In this one views each column as a degree 3 polynomial in GF (28)[y]. That
is a polynomial in y whose coefficients are polynomials in x of degree at most 7. Each column
is multiplied by a different degree 3 polynomial in GF (28)[y] and the result is computed mod the
polynomial y4 + 1 to derive a new degree 3 polynomial in GF (28)[y]. That is, multiplication is
done modulo y4 + 1, modulo x8 + x4 + x3 + 1 and modulo 2. Note that the polynomial y4 + 1
is NOT irreducible but the multipliers done have a common factor with y4 + 1 over GF (28) and
therefore this operation can be inverted. Performing this operation is also easy.

AES128 is much faster in software than Triple DES or its other competitors. It has the advan-
tage of having its design decisions public and had extensive public testing before it was adopted (of-
ten by people who had vested interests in showing that their competing cipher was better). For more
details of the design decisions for AES see: http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-
ammended.pdf

4 Towards Security of Block Ciphers
Part of our intuitive notion of being secure required that the encryptions of messages look random
and distinct. However, if we have EK(M1), EK(M2), ..., once we have more bits in some fixed
messages M1, M2, ... than we have bits in K we will essentially have more random-looking bits
of output than we have bits of random key. Thus a block cipher will have to create pseudorandom
bits. Therefore, before we can formalize security of block ciphers we will need to formalize
pseudorandomness.

5 Formal notions of security and pseudorandomness
There are two natural mathematically sound ways one can go about defining security and pseudo-
randomness that exemplified by the notes by Bellare and Goldwasser and Bellare and Rogaway,
respectively. Each has its advantages and disadvantages.

Asymptotic security Developed by Blum, Goldwasser, Micali, and Yao in the 1980’s.

• Allow all probabilistic polynomial time algorithms and adversaries

• Security=negligible probability of failure (the adversary wins)

The positive aspects are that it is good to be able to say that systems are secure against all reason-
able adversaries but one must discuss asymptotics and therefore one must have an infinite family
of systems and the ’security’ of, say, a 128-bit system is not meaningful.

4

Concrete security Developed by Bellare, Kilian, and Rogaway in the early 1990’s as a refine-
ment of asymptotic security.

• Allow probabilistic algorithms with specific bounds on their running time t and number of
queries q.

• Bound failure probability as an exact function of t, q, key-size k, message length n, etc.

The positive aspects are that one can talk about how secure systems of a specific size are (without
an infinite family even existing) and so one can measure the security of practical systems, although
one can never say that a system is secure. The main negative aspect for us is that using concrete
security often means that one simply has to spend more time analyzing exactly the same arguments
as in the asymptotic complexity case but there are more painful details to handle. We will use the
asymptotic complexity formulation since it will have fewer of those details to deal with.

6 Pseudorandom Number Generators (PRNG)
Recall

Definition 6.1. An ensemble E is an infinite family {En}n of distributions where En is a distribution
on {0, 1}n.

Definition 6.2. An function ν : N→ R+∪{0} is negligible if and only if ν(n) is 1/nω(1); i.e. ν(n)
goes to 0 fast than 1 over any polynomial in n.

Definition 6.3. A polynomial-time statistical test is a probabilistic polynomial time algorithm A.

We will write PPT for ‘probabilistic polynomial-time algorithm’.

Definition 6.4. Two ensembles E and D are computationally (polynomially) indistinguishable if
and only if for all PPT A, the function ε given by

ε(n) = Pr[A(x) = 1 | x← En]− Pr[A(x) = 1 | x← Dn]

is negligible. (We think of ε(n) as the advantage that A has in discriminating E from D and there-
fore sometimes write ε(n) = AdvE,D

A (n). Also we sometimes express ε(n) simply as Pr[A(En) =
1]− Pr[A(Dn) = 1].

Uniform Distribution We let U be the uniform ensemble where Un is the uniform distribution
on {0, 1}n.

Definition 6.5. An ensemble E is pseudorandom if and only if it is computationally indistinguish-
able from U .

This gives the intuitive basis for the definition of pseudorandom generators.

5

Definition 6.6. A deterministic polynomial time computable function G : {0, 1}∗ → {0, 1}∗ is a
pseudorandom generator (PRNG) if and only if

• Length Increasing: G : {0, 1}n → {0, 1}`(n) where `(n) > n.

• Pseudorandom: For every PPT A, ε is negligible where
ε(n) = Pr[A(y) = 1 | x← Un; y ← G(x)]− Pr[A(y) = 1 | y ← U`(n)].

Intuitively, G being pseudorandom requires that the ensembles U and G(U) are computation-
ally indistinguishable, i.e. G(U) is pseudorandom, but there is a slightly annoying aspect of the
getting the lengths to match so we spell things out in detail.

After seeing that a second use was enough to kill the security of one-time pads or a simple
information-theoretic definition of MACs one might be concerned that maybe we are giving the
adversary A too little access to G. Maybe some larger number of queries would allow A to do
better? To discuss this we need another concept.

Definition 6.7. An ensemble D is polynomial-time samplable if and only if there is a PPT S such
that S(1n) produces elements of {0, 1}n distributed as Dn.

Clearly U is polynomial-time samplable and (not worrying too much about indices) G(U) is
polynomial-time samplable. We will see next time that for two computationally indistinguishable
ensembles that are polynomial-time samplable, if we allow PPT algorithms access to a polyno-
mial number of queries rather than just one query then they still have negligible advantage. This
will introduce the basic idea of the reduction method we will use throughout the course and will
introduce the ‘Hybrid Argument’ that appears frequently in analyzing security.

6

	Aside: Why two Feistel rounds are not enough
	On the security of DES
	Double DES, Triple DES, DESX
	AES/Rijndael
	Towards Security of Block Ciphers
	Formal notions of security and pseudorandomness
	Pseudorandom Number Generators (PRNG)

