
CSE 599b: Cryptography (Winter 2006)

Lecture 15: Message Authentication
22 February 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Message Authentication
Recall that the goal of message authentication is to develop a tagging scheme that so that an adver-
sary cannot modify the message being sent on a channel without being detected.

Definition 1.1. A message authentication scheme is a triple of PPT algorithms,

• a key generation algorithm K, such that K(1k) is a key K ∈ {0, 1}k.

• a tagging algorithm Tag : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that maps a pair consisting of a key
K and message M to a tag σ = TagK(M) = Tag(K, M).

• a verification algorithm V erify : {0, 1}∗×{0, 1}∗×{0, 1}∗ → {0, 1} that takes a key K, a
message M , and a string σ and produces a bit of output. We require that V erifyK(M, σ) =
V erify(K, M, σ) if and only if σ is a possible output of TagK(M).

For K ∈ {0, 1}k, our definitions assume that TagK : {0, 1}∗ → {0, 1}∗. We also allow
restricted authentication schemes in which keys of a given size can only be used to authenticate
messages of up to a given size. An L(k) → `(k)-message authentication scheme is one in which
for each k, Tag : {0, 1}k × {0, 1}L(k) → {0, 1}`(k).

A message authemtication code is a special case of a message authentication scheme in which
the algorithm Tag is deterministic and V erifyK(M, σ) simply evaluates the predicate “σ =
TagK(M)”. We usually write MACK(M) instead of TagK(M).

1.1 Attacks on Message Authentication Schemes
Replay Attack In this attack the adversary, who acts as an intermediary for all traffic, simply
re-sends a tagged message that has been sent previously. Unless we substantially complicate the
definition above this is unavoidable. However, we can easily combat this by including sequence
numbers and time stamps along with the messages that are tagged (making this a stateful scheme).
Therefore we will assume that replay attacks are handled separately.

(Adaptive) Chosen Message Attack The adversary gets access to the tagging algorithm TagK(·)
as well as V erifyK(·, ·) and afterwards must successfully produce the tag for a new message for
which the tagging algorithm has not been called.

1

This corresponds to a situation in which the adversary by out-of-band interaction causes the
sender to send tagged messages of the adversary’s choosing and tries out passing some of these to
the receiver to observe whether or not the receiver acted as if the message was correctly verified.

1.2 Existential Unforgeability under Chosen Message Attacks
Definition 1.2. A message authentication scheme (K, Tag, V erify) is UF-CMA secure if and only
if for every oracle PPT A, the function

ε(k) = Pr[V erifyK(M, σ) = 1 | K ← K(1k); (M, σ)←new ATagK(·),V erifyK(·,·)(1k)]

is negligible, where the ‘new’ M has not been given as an argument to TagK(·).

Since A is given an oracle for V erifyK we can without loss of generality simplify the UF-
CMA definition to simply require that V erifyK never be called on the output of any input sent to
TagK and return 0 for all but (possibly) its last call which is on its output (M, σ) and the probability
ε(k) is simply the probability that A produces a call to its V erifyK(·, ·) oracle that returns 1.

Note also that the same definition applies to L(k) → `(k) message authentication schemes as
well as full message authentication schemes.

1.3 MACs based on PRFFs
The simplest way to define a MAC is using an ideal block cipher or PRFF. Given a length ` PRFF
F , define MACK(M) = FK(M).

Theorem 1.3. If F is a length `(k) PRFF and `(k) is ω(log k) then MACF is an `(k) → `(k)
UF-CMA secure message authentication scheme.

Proof. Let A be a PPT with two oracles and let ε(k) be its advantage as in the UF-CMA definition.
Define B on input 1k with oracle f that simulates A on input 1k and whenever A:

• queries its MACK(·) oracle with M0, B passes it f(M0), or

• queries its V erifyK(·, ·) oracle on (M0, σ0), B passes A the value of the predicate “f(M0) =
σ0”.

and B outputs 1 if and only if f(M) = σ where (M, σ) is the output of A (and has not been made
as a call to MACK(·)).

By the fact that F is a PRFF,

ε′(k) = Pr[BFk(1k) = 1]− Pr[BFunc(`(k),`(k))(1k) = 1]

is negligible. By construction, Pr[BFk(1k) = 1] = ε(k).
By construction Bf (1k) = 1 if and only if Af(·),v(·,·) creates a new call (M, σ) to v such that

f(M) = σ having only previously received 0 as an output from v. For f ← Func(`(k), `(k)),
the chance that a given call is successful the probability is 1/2`(k), which yields a total value of

2

Pr[BFunc(`(k),`(k))(1k) = 1] is at most q(k)/2`(k) where q(k) is the polynomial upper bound on
the number of calls that A makes to its v oracle. Therefore ε(k) ≤ ε′(k) + q(k)/2`(k) which is
negligible since `(k) is ω(log k).

Remark 1.4. This proof is typical of the proofs that we shall give, namely given a use of a PRFF
in a construction, the key analysis we need to do is to determine how the construction would work
if a truly random function were used in place of a PRFF.

Although there are a number of different constructions of MACs have been given directly, there
is a common thread between these constructions in that they really are constructions of PRFFs with
different sizes of their domain and range. Instead of directly expressing them as MACs we will
describe them as PRFF constructions as apply the above theorem to show that they are UF-CMA
secure.

Definition 1.5. We say that a function family F = {Fk}k≥1 is an L(k) → `(k) PRFF if and only
if for all PPT B,

ε(k) = Pr[BFk(1k) = 1]− Pr[BFunc(L(k),`(k))(1k) = 1]

is negligible.

1.4 Cipher Block Chaining, CBC-MAC
So far, we only have a construction such that the MACK(M) and M have the same length (or a
PRFF with input and output lengths the same). Using cipher block chaining we can obtain tags
that are much smaller than their input size.

For f : {0, 1}` → {0, 1}` and m with |Mi| = ` for i = 1, . . . ,m define

CBCm
f (M1 . . . Mm)

C0 ← 0`(k)

For i = 1 to m
Ci ← f(Ci−1 ⊕Mi)

EndFor
Return Cm

Definition 1.6. Given a PRFF F and m : N+ → N+, define CBC-PRFFm(F) by CBC-
PRFFm

K (M1 . . . Mm) = CBC
m(k)
FK

(M1 . . . Mm(k)) for K ← K(1k), and |Mi| = `(k) for i =
1, . . . ,m = m(k).

Theorem 1.7. If F is a length `(k) PRFF and `(k) is ω(log k) then for polynomial m : N+ → N+

CBC-PRFFm(F) is an L(k)→ `(k) PRFF for L(K) = m(k)`(k).

Proof. Let A be an oracle PPT and define

ε(k) = Pr[ACBC-PRFFm(Fk)(1k) = 1]− Pr[AFunc(L(k),`(k))(1k) = 1].

3

Define B that on input 1k runs A on input 1k and uses its oracle f : {0, 1}L(k) → {0, 1}`(k) to run
A with oracle CBC

m(k)
f .

By definition,

Pr[BFk(1k) = 1] = Pr[ACBC-PRFFm(Fk)(1k) = 1]

and
Pr[BFunc(`(k),`(k))(1k) = 1] = Pr[ACBC-PRFFm(Func(`(k), `(k)))(1k) = 1]

Also, by definition,

ε′(k) = Pr[BFk(1k) = 1]− Pr[BFunc(`(k),`(k))(1k) = 1]

is negligible. Therefore

ε(k) = ε′(k) + Pr[ACBC-PRFFm(Func(`(k), `(k)))(1k) = 1]− Pr[AFunc(L(k),`(k))(1k) = 1].

Let q(k) be the polynomial upper bound on the number of queries that A makes on input 1k.
Consider the case when A receives an oracle for CBCm

f for f ← Func(`(k), `(k)). The claim
is that, except for an event of negligible probability, at some point in each evaluation of CBCm

f

the function f will be called on an input on which it has never previously been called. This
would imply that the output of CBCm

f will be distributed randomly in {0, 1}`(k) independent of all
previous values output which is precisely what is true for functions from Func(L(k), `(k)).

The key observation is that since A does not have access to the intermediate Ci−1 values in
evaluating CBCm

f for i > 1, and each new query yields a new random output of `(k) bits, A only
can attack the psuedorandomness of the CBCm

f oracle by

• Producing known inputs to f by choosing the same first coordinates M1 since C0 is fixed.

• Producing unknown but equal inputs to f by choosing two messages M and M ′ that agree
up to some prefix.

• Being lucky that the message M it chose for i > 1 satisfies Mi ⊕ Ci−1 = M ′
j ⊕ C ′

j−1 for
some previous M ′ and j.

Observe that once a call to f in computing CBCm
f on its j-th query M1 . . . Mm is different

from every previous call to f the probability that the remainder of the computation of CBCm
f

yields a call that agrees with a previous call is at most m(k)j/2`(k) since each different input yields
an output that is a random string. Consider CBCm

f on its j-th query M1 . . . Mm. Consider the
sequence C0, C1, . . . , Cm produced by this call and consider the query M ′ = M ′

1 . . . M ′
m that has

the longest agreement with M1 . . . Mm and let i be an index such Mi 6= M ′
i . If i = 1 then no

other query begins with the same M1. By construction, the only inputs on which A knows the
input that has been passed to f are those in the first position (since C0 is fixed) and all others have
been random and unknown to A. Since no other query begins with the same M1, the chance that A
produces an M1 that is that the same as some previous input to f is only m(k)j/2`(k) since there
are fewer than m(k)j previous calls.

4

Suppose now that i > 1. Then by assumption Ci−1 was a randomly chosen string unknown
to A. For any prior query M ′′ and any i′ ≤ m, M ′′

1 . . . M ′′
i′ 6= M1 . . . Mi and in creating M ,

the value of C ′′
i′−1 is independent of Ci−1. Therefore the chance that A can produce M such that

M ′′
i′ ⊕ C ′′

i′−1 = Mi ⊕ Ci−1 is only 1/2`(k). There at most m(k)j previous choices of M ′′ and i′.
Therefore, in total, despite the fact that the queries to f are made adaptively the chance of detection
that the oracle is not a truly random function from L(k) bits to `(k) bits is at most the number of
pairs of queries to f , which is ≤ (m(k)q(k))2, divided by the chance a given pair collides which
is 1/2`(k). Thus ε(k) ≤ ε′(k) + (q(k)m(k))2/2`(k) which is negligible as required.

Define CBC-MACF
m to be MACCBC-PRFFm(F).

Corollary 1.8. IfF is a length `(k) PRFF and `(k) is ω(log k) then for polynomial m : N+ → N+,
then CBC-MACF

m is an UF-CMA secure L(k)→ `(k) MAC for L(K) = m(k)`(k).

Remark 1.9. Note that this construction does not yield a general UF-CMA secure MAC since the
input length L(k) is fixed (and must be a multiple of `(k) although this restriction is less severe).
For example, given CBC-MACF applied to M = M1 . . . Mm, one can forge CBC-MACF

applied to M ′ = M1 . . . Mm+1 by computing CBC-MACF applied to Cm ⊕Mm+1.

1.5 Universal Hashing Approach: Hash and Hide
An alternative way to produce PRFFs that compress a wider variety of strings is to use (almost)
unversal hashing. Recall the following definition of almost universal hash function families.

Definition 1.10. An almost universal L(k)→ `(k) hash function familyH = {Hk}k≥1 is given by
a family of functions {Hk} such that Hk : {0, 1}k × {0, 1}L(k) → {0, 1}`(k) for `(k) < L(k) such
that

• there is a PPT algorithm K′ that on input 1k produces a random key K from {0, 1}k.

• there is a deterministic polynomial time algorithm H that for any k on input a key K ∈
{0, 1}k and x ∈ {0, 1}L(k) outputs HK(x) = Hk

K(x).

• The function

δ(k) = max
x1 6=x2∈{0,1}L(k)

Pr[HK(x1) = HK(x2) | K ← K′(1k)]

is negligible.

Given an almost universal L(k) → `(k) hash function family H and a length `(k) PRFF F
define the function family F ◦ H by

(F ◦H)(K,K′)(x) = FK(HK′(x)).

Theorem 1.11. If H is an almost universal L(k) → `(k) hash function family and F is a length
`(k) PRFF with `(k) that is ω(log k) then F ◦ H is an L(k)→ `(k) PRFF.

5

Proof. Let A be a PPT algorithm that on input 1k with oracle for g that maps L(k) bits to `(k) bits
that can distinguish g chosen from Fk ◦Hk from g chosen from Func(L(k), `(k)) with probability
ε(k). Define δ(k) to be the collision probability ofH as above.

Define B that on oracle f and input 1k runs A on input 1k and oracle for f ◦ Hk. Clearly since
F is a PRFF, B can only distinguish between f ← Fk from f ← Func(`(k), `(k) with negligible
probability ε′(k).

Therefore

ε(k) = ε′(k) + (Pr[AFunc(`(k),`(k))◦H(1k) = 1]− Pr[AFunc(L(k),`(k))(1k) = 1]).

As in the previous argument, the difference in the parenthesized term will be 0 except for the
fraction of the time that the oracle computation of f ◦ HK′ repeats an argument to f . Let the
sequence of queries to f ◦ HK′ be x1, x2, By construction, no matter what x1 is, the fact that
f is random ensures that f ◦ HK′ is independent of x1 and independent of HK′(x1). Therefore,
since A does not see HK′(x1), the choice of x2 that A makes is independent of K ′, etc. Provided
HK′(xi) 6= HK′(xj) for all i 6= j, the values of f produced will all be random and independent of
the key K ′. Therefore, the probability of a collision for HK′ is at most q(k)2δ(k) where q(k) is the
number of different xj . This quantity is negligible as required.

6

	Message Authentication
	Attacks on Message Authentication Schemes
	Existential Unforgeability under Chosen Message Attacks
	MACs based on PRFFs
	Cipher Block Chaining, CBC-MAC
	Universal Hashing Approach: Hash and Hide

