
CSE 599b: Cryptography (Winter 2006)

Lecture 14: Cryptographic Hash Functions
17 February 2006

Lecturer: Paul Beame Scribe: Paul Beame

1 Hash Function Properties
A hash function family H = {HK}K∈K is a function H : K × D → R where |D| < |R|. We
generally view K as a probability distribution on the set of possible keys but here we also use K to
denote the set of possible keys.

Universal Hash Function Families

Definition 1.1 (Carter-Wegman). H : K ×D → R is a universal hash function family if and only
if for all x1 6= x2 ∈ D,

Pr[HK(x1) = HK(x2) | K ← K] = 1/|R|,

where K is a probability distribution.

This is equivalent to saying that, for all a1, a2 ∈ R and all x1 6= x2 ∈ D,

Pr
K←K

[HK(x2) = a2 | HK(x2) = a2] = 1/|R|,

and thus being a universal hash function family is equivalent to having a probability distribution
on functions from D to R that maps elements of D in a uniform pairwise independent fashion.

Typically we will consider D = {0, 1}n and R = {0, 1}m for m < n. The following construc-
tion due to Dietzfelbinger is particularly convenient: The space of keys is all strings K = (a, b)
where a, b ∈ {0, 1}m+n and HK(x) consists of the middle m bits of ax + b. (ax + b will naturally
have 2n + m bits.)

In keeping with our choice of considering PPT adversaries for our formal definitions we will
use infinite hash function families and allow probability slop that is negligible. We will also want
our hash function families to be efficiently computable. Before we consider the cryptographic
versions we state a relaxation of the universal hash function family definition.

Definition 1.2. An almost universal hash function family {Hk : {0, 1}k × Dk → Rk}k≥1 for
|Rk| < |Dk| is a collection of functions satisfying

• there is a PPT algorithm K that on input 1k produces a random key K from {0, 1}k.

• there is a deterministic polynomial time algorithm H that for any k on input a key K ∈
{0, 1}k and x ∈ Dk outputs HK(x) = Hk

K(x).

1

• The function
ε(k) = max

x1 6=x2∈Dk

Pr[HK(x1) = HK(x2) | K ← K(1k)]

is negligible.

Universal One-Way Hash Function Families (UOWHFFs) We now consider cryptographic
requirements. The first of these to be defined historically was collision resistance whose properties
were formalized by Damgard. Collision resistance (which we define later) requires that given the
key K it should be hard to find a pair of distinct inputs that map to the same place. Subsequently
Naor and Yung realized that a simpler property suffices in many applications. This property which
they called universal one-way hash function families is also know as target collision resistance. It
says that given the key K and a challenge point x1, it is hard to find a second point x2 that maps to
the same place as x1.

Definition 1.3. A universal one-way hash function family (UOWHFF) {Hk : {0, 1}k × Dk →
Rk}k≥1 for |Rk| < |Dk| is a collection of functions satisfying

• there is a PPT algorithm K that on input 1k produces a random key K from {0, 1}k.

• there is a deterministic polynomial time algorithm H that for any k on input a key K ∈
{0, 1}k and x ∈ Dk outputs HK(x) = Hk

K(x).

• For any PPT algorithm A, the function

ε(k) = Pr[HK(x1) = HK(x2) and x1 6= x2 | K ← K(1k); x1 ← Dk; x2 ← A(K, x1)]

is negligible where Dk is the uniform distribution over Dk

In this definition we think of HK(x1) as being the target.

Collision Resistant Hash Function Families

Definition 1.4. A collision-resistant hash function family (CRHFF) {Hk : {0, 1}k×Dk → Rk}k≥1

for |Rk| < |Dk| is a collection of functions satisfying

• there is a PPT algorithm K that on input 1k produces a random key K from {0, 1}k.

• there is a deterministic polynomial time algorithm H that for any k on input a key K ∈
{0, 1}k and x ∈ Dk outputs HK(x) = Hk

K(x).

• For any PPT algorithm A, the function

ε(k) = Pr[HK(x1) = HK(x2) and x1 6= x2 | K ← K(1k); (x1, x2)← A(K)]

is negligible.

2

Collision-resistant hash function families are sometimes referred to as collision-intractable or
even collision-free hash function families.

To understand the relationship between the definitions observe that the difference between the
cryptographic notions and the non-cryptographic ones is that the non-cryptographic definitions
require that the points x1 and x2 are fixed before the key is chosen whereas the cryptographic
notions allow these points to be chosen by an adversary depending upon the key.

Birthday Attack To see the difference between the CRHFF and UOWHFF definitions consider
the so-called birthday attack discussed earlier in which the adversary A simply applies HK ran-
domly to q random elements of Dk. Suppose that |Dk| >> |Rk| which is the typical case.

For any two elements of Dk, the probability that HK maps them to the same element of Rk is
at least 1/|Rk| (it is exactly 1/|Rk| if each point in Rk has an equal number of pre-images under
HK). There are

(
q
2

)
pairs of elements so the probability that at least one pair collides in roughly at

least q2/|Rk|. In particular, this means that after q =
√
|RK | random queries there is a constant

probability of finding a collision. (Since |Rk| << |Dk| the queries are much less likely to be the
same than the places where they are mapped.)

On the other hand, for a uniformly distributed Hk, the chance that one of q queries will map to
a target HK(x1) is at most q/|Rk|.

Therefore, if a hash function family maps inputs to a space Rk = {0, 1}m then it is insecure un-
der obvious attacks for collision-resistance that run in time 2m/2 and for target collision-resistance
that run in time 2m−1.

2 The MD paradigm, MD4, MD5, SHA-1, SHA256, etc.
For practical examples we deal with non-asymptotic versions of the definitions of hash function
families (using only one value of k). Moreover, the functions will work with only one fixed value
of the key K.

In 1988 Merkle and Damgard devised a method for building collision resistant hash functions
that work for (essentially) arbitrarily long strings from collision resistant hash functions that oper-
ate on fixed length strings.

Based on the Merkle and Damgard paradigm, Rivest in 1990 defined a candidate hash function
family MD4 and a related larger scheme MD5 in 1992. In 1995 insecurities were found the NSA
modified MD5 to add an error-correcting code and produced the SHA1, the “secure hash algo-
rithm”. Subsequently, related definitions have been developed using similar ideas that have longer
key size.

SHA1 : {0, 1}<264 → {0, 1}160

SHA256 : {0, 1}<264 → {0, 1}256

SHA384 : {0, 1}<264 → {0, 1}384

SHA512 : {0, 1}<264 → {0, 1}512

3

The hope for each of these functions is collision-resistance and therefore security roughly 280 for
SHA1, 2128 for SHA256, etc.

We describe the SHA1 scheme in some detail to give an idea about the MD construction and
the ideas involved in these schemes. The basic structure of SHA1 involves breaking the message
being hashed up into blocks of 512 bits and iterating a fixed-length function shf1 on these bits.

SHA1K(M):
y ← pad(M) = M10d` where ` is the 64-bit representation of |M |

and d is chosen so that |y| is a multiple of 512.
Write y = M1M2 . . . Mn where |Mi| = 512.
V0 ← IV ∈ {0, 1}160

For i = 1 to n
Vi ← shf1K(Mi, Vi−1)

EndFor
Output Vn

In SHA1 the key K = K1K2K3K4 is a fixed 128 bits consisting of 4 sub-keys of 32 bits each.
K1 is the binary approximation of

√
2; K2 is the binary approximation of

√
3; K3 is the binary

approximation of
√

5 and K4 is the binary approximation of
√

10. Also, the initialization vector
IV is an ad-hoc choice of string. (We’ll see that its exact value is not particularly important.)

In the function shf1, the 512-bit message Mi is first encoded using a simple binary code that
expands it to 2560 = 80x32 bits. That is, Mi is broken into 16 blocks of 32 bits, W0, . . . ,W15, and
then W16, . . . ,W79 are defined where Wj is the ⊕ of 4 previous blocks.

Now the vector Vi−1 of 160 bits is broken into 5 blocks of 32 bits each, A, B, C,D, E. This
operates in a slightly Feistel-style fashion for 80 rounds. Each iteration sends E ′ ← D, D′ ← C,
C ′ ← B, B′ ← Rot(A) were Rot(A) is some rotation of the bits of A. The main action in the j-th
iteration is in creating A′ which is defined by

A′ = Wj + Kdj/20e + fdj/20e(B, C, D) + Rot′(A) + E

where addition is modulo 232, Rot′ is a different rotation, and f1, f2, f3, f4 are each very simple
functions of B, C, and D, one is simply their ⊕, others involve simple bit-wise ∧s and ∨s.

Finally, after the 80-th version of A, B, C,D, E have been defined, each of them is added
back into its corresponding block of Vi−1 (again taken modulo 232 in each block) and that value is
returned.

2.1 Attacks on SHA1
As mentioned above the birthday attack on SHA1 should be expected to succeed after 280 queries.
In early 2005, Wang, Yin, and Yu used differential cryptanalysis to derive a collision finding al-
gorithm that succeeds in only 269 queries. (Xing Wang had previously shown that not only was
MD5 not collision-resistant, it was not even target collision-resistant.) In August 2005, follow-on
work by Wang with Frances Yao and Andy Yao reduced the number of queries to 263. Since, a
couple of years ago, there was a successful distributed attack on a different primitive that involved

4

264 queries, this clearly should not be considered secure against collision-finding attacks from a
practical point of view. (Target collision-resistance is still open but the success in breaking MD5
suggests that this may also be poor.)

SHA1 was scheduled to be replaced as a standard in 2009 but since SHA256, SHA384, and
SHA512 use similar design principles it is unclear how much one should rely on any of them for
collision-resistance. We shall see, however, the insecurity of SHA1 is a property of shf1 rather
than the Merkle Damgard paradigm.

2.2 The MD Paradigm
Given a hash function family hKK∈{0,1}k that each maps (b + m)-bit strings to m-bit strings the
MD method shows how to build a hash function family HKK∈{0,1}k that maps strings of up to 2m/2

bits to m-bit strings as follows:

HK(M)
y ← pad(M) where pad(M) is uniquely decodable as M, is a

multiple of b-bits long and contains |M | in the last block.
Write y = M1M2 . . . Mn where |Mi| = b.
V0 ← IV ∈ {0, 1}m
For i = 1 to n

Vi ← hK(Mi, Vi−1)
EndFor
Output Vn

Theorem 2.1 (Merkle, Damgard). The collision resistance of {HK}K∈{0,1}k is the same as that of
{hK}K∈{0,1}k .

Proof. Let AH be an adversary and let

ε = Pr[HK(x1) = HK(x2) and x1 6= x2 | K ← Uk; (x1, x2)← AH(K)].

We now define an adversary Ah that achieves the same probability for h:
On input K,

1. Run A to produce a pair (x1, x2).

2. Run the MD code using hK to produce HK(x1) and HK(x2) and keep track of the blocks
M1

i and M2
i for x1 and x2 respectively as well as the corresponding V 1

i and V 2
i during the

computation and let n1 and n2 be the number of blocks in their encoding.

3. If HK(x1) 6= HK(x2) or if x1 = x2 then FAIL and HALT.

4. If |x1| 6= |x2| then return the pair (x′1, x
′
2) where x′1 = (M1

n1
, V 1

n1−1) and x′2 = (M2
n2

, V 2
n2−1)).

5. If |x1| = |x2| then let i← n1.

5

(a) While (M1
i , V 1

i−1) = (M2
i , V 2

i−1) Do i← i− 1;

(b) Return (x′1, x
′
2) where x′1 = (M1

i , V 1
i−1) and x′2 = (M2

i , V 2
i−1).

Note that by construction of the padding, if |x1| 6= |x2| then the last block of the padded
version of x1 will be different from that of x2. Thus in this case x′1 will be different from x′2,
and, moreover, hK(x′1) = hK(M1

n1
, V 1

n1−1) = HK(x1) hK(x′2) = hK(M2
n2

, V 2
n2−1) = HK(x2) so

hK(x′1) = hK(x′2).
On the other hand if |x1| = |x2 then the algorithm follows the two (M, V) pairs back from

the end of the padded string until the first time that (M1
i , V 1

i−1) 6= (M2
i , V 2

i−1). However, in this
case hK(M1

i , V 1
i−1) = V 1

i = V 2
i = hK(M2

i , V 2
i−1) and thus the returned values of x′1 and x′2 form a

collision for hK .
It follows that in either case Ah succeeds whenever AH succeeds.

It remains to derive fixed-length collision-resistant hash functions. There is a general (slow)
construction of such schemes based on collections of pairs of claw-free functions (or directly using
specific number-theoretic assumptions) but we won’t have time to discuss them. Instead we will
focus more on UOWHFFs which are easier to construct.

3 Universal One-Way Hash Function Families (UOWHFFs)
Why might it be difficult to find a second pre-image for a target that is a hash function applied to a
randomly chosen x1? There are two natural reasons:

• The hash function is 1-1 on the point x1.

• The hash function is hard to invert on HK(x1); i.e. HK is one-way.

Let p1 = Pr[|H−1
K (HK(x))| = 1 | K ← Uk; x ← Dk]. Then since each element of y ∈ Rk

is associated with most one x ∈ Dk such that |H−1
K (HK(x))| = 1, namely HK−1(y) = {x}, it

follows that p1 ≤ |Rk|/|Dk|. For most hashes we will consider |Rk|/|Dk| is negligible in k so p1

is negligible in k.
Let A be a PPT and consider the probability that the one-wayness of HK fails,

ε(k) = Pr[A(y) ∈ H−1
K (y) | K ← Uk; x← Dk; y = HK(x)].

If A(y) ∈ H−1
K (y) then since Dk is uniform over Dk, the chance that A(y) will return the element

x used to construct y is precisely 1/|H−1
K (y)|, which is at most 1/2 for |H−1

K (y)| > 1. Therefore
if A′(K, x1) runs A on K and y = hK(x1) then A′ will produce a second pre-image with proba-
bility at least (ε(k) − p1)/2 which is non-negligible if and only if ε(k) is non-negligible and the
domain/range ratio is large. Thus UOWHFFs must be collections of one-way functions.

The existence of UOWHFFs is actually equivalent to the existence of one-way functions. We
give the original construction due to Naor and Yung [1990] based on one-way permutations. To do
this we will also need universal hash function families from {0, 1}n → {0, 1}n−1 for each n that
have one additional property.

6

Definition 3.1. An infinite family of hash functions {GK}K∈{0,1}k for k ≥ 1 is collision accessible
if and only if there is a PPT algorithm C such that for each k and x1, x2 ∈ Dk, C(x1, x2) produces
a uniformly chosen K ∈ {0, 1}k conditioned on GK(x1) = GK(x2).

Most of the constructions of universal hash function families are easily seen to be collision
accessible. The Naor-Yung construction requires the existence of one-way permutations and a
collision accessible universal family of hash functions that compress their input by precisely one 1
bit.

Suppose that {Gn}n≥1 is a collision accessible universal hash function family where Gn :
{0, 1}kn × {0, 1}n → {0, 1}n−1. Let f be a one-way permutation. Define a hash function family
{Hn}n≥1 by Hn(K, x) = Gn(K, f(x)). That is for x ∈ {0, 1}n, HK(x) = GK(f(x)).

Theorem 3.2. If f is a one-way permutation and {Gn}n≥1 is a family of collision-accessible uni-
versal hash functions that compress their inputs by 1 bit then {Hn} as defined above is a UOWHFF.

Proof. Suppose that A is an algorithm that breaks the UOWHFF property with probability ε(n);
i.e.

ε(n) = Pr[HK(x1) = HK(x2) and x1 6= x2 | K ← K(1kn); x1 ← Un; x2 ← A(K, x1)].

We use algorithm A to create an algorithm A′ that inverts f as follows:
On input y ∈ {0, 1}n,

1. Choose x1 from Un

2. Evaluate f on x1; if f(x1) = y then return x1.

3. Apply the collision accessibility algorithm C for G to produce a random K ∈ {0, 1}kn such
that GK(y) = GK(f(x1)).

4. Run A on input K and x1 to produce x2.

5. If HK(x2) 6= HK(x1) or x2 = x1 then FAIL

6. Otherwise return x2.

Observe that if A succeeds then GK(y) = GK(f(x1)) = HK(x1) = HK(x2) = GK(f(x2)).
The key idea for the correctness of the construction is that since each G is a universal hash function
family that compresses by precisely one bit, each GK is precisely a 2-1 map. Furthermore, since f
is a permutation on {0, 1}n if x1 6= x2 then f(x1) 6= f(x2) are the only two pre-images of GK(y)
so one of f(x1) and f(x2) must be y. Thus if the call to A succeeds the algorithm will succeed in
inverting f on y.

However, we have to argue that this use of A leads to the same probability of success for
breaking f as in the definition of ε(n). For this we observe that since x1 is chosen from Un, and f
is permutation then f(x1) is a random element of {0, 1}n. In the definition of the one-way property
for f , the element y is the image of a random element of {0, 1}n and is therefore also random. Thus
the call to C is for two random elements of {0, 1}n. By the definition of universal hash function

7

families, in the experiment in which we choose a random pair of inputs y, y′ and then choose a
random K such that GK(y) = GK(y′), each K will be equally likely to be chosen. Thus the
success probability of A′ is precisely that of A.

This construction produced an infinite family {Hn}n≥1 that is a UOWHFF but compresses only
by 1 bit at a time. It is easy to observe that if we want more compression then we can obtain this
by concatenating keys and composing the functions. That is, we can define a family of UOWHFFs
mapping {0, 1}n → {0, 1}m(n) for any m(n) < n, by defining

HKm(n)+1···Kn−1Kn = HKm(n)+1
◦ · · · ◦HKn−1 ◦HKn ,

where each Kj ∈ {0, 1}kj . It is easy to check that the definition of UOWHFF is preserved.
Note that this construction requires one one-way permutation evaluation for every bit of com-

pression. Kim, Simon, and Tetali have shown that any black-box construction needs to have a
number of evaluations that is polynomial in the amount of compression (roughly at least the square
root).

Furthermore, in a natural oracle model, Simon has shown that the existence of collision-
resistant hash functions does not follow from that of UOWHFFs by given an oracle relative to
which the later exist but the former do not.

8

	Hash Function Properties
	The MD paradigm, MD4, MD5, SHA-1, SHA256, etc.
	Attacks on SHA1
	The MD Paradigm

	Universal One-Way Hash Function Families (UOWHFFs)

