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RSA is not the only way to build public key encryption. We consider some of the other candi-
dates.

1 Blum Squaring
Recall the collection of functions {BlumN : QRN → QRN} were BlumN = xN mod N for
so-called Blum integers N that are products of two distinct primes congruent to 3 mod 4 are
candidate one-way functions. As we mentioned earlier, inverting for algorithms for BlumN yield
algorithms for factoring N .

We now show that for N = pq, p 6= q prime, p, q ≡ 3 (mod 4), the pair (p, q) of factors of N
forms trapdoor for BlumN .

Consider the non-zero integers mod p, Z∗
p. Recall that Z∗

p is cyclic, equalling {1, g, g2, . . . , gp−2}
for some g ∈ Z∗

p. QRp consists of the set of even powers of g, g2k for some integer k. Therefore if
h ∈ QRp then h(p−1)/2 = (g2k)(p−1)/2 ≡ 1 (mod p). If h = q2k+1 then h(p−1)/2 = (g2k+1)(p−1)/2 =
g(p−1)/2 ≡ −1 (mod p).

Now suppose that p = 4m + 3; in this case in particular (−1)(p−1)/2 = (−1)2m+1 = −1 and
thus −1 is not a quadratic residue. Moreover, suppose now that a ∈ QRp. Then a(p−1)/2 ≡ 1
(mod p). Thus a2m+1 ≡ 1 (mod p) and thus a2m+2 ≡ a (mod p). In particular, this means that if
bp = am+1 mod p = a(p+1)/4 mod p then b2

p ≡ (a2m+2) ≡ a (mod p). Thus bp is a square root
of a modulo p.

By similar computation define bq = a(q+1)/4 (mod q). Then b2
q ≡ a (mod q).

We now have square roots ±bp and ±bq of a modulo p and q respectively. Since −1 is not
in QRp, only one of bp or −bp will be in QRp; similarly, only one of bq or −bq will be in QRq.
Assume without loss of generality that the elements of QRp and QRq are bp and bq respectively.

We now use Chinese remaindering to find a b ∈ QRN such that b2 ≡ a (mod N).

Chinese Remaindering
Since p 6= q we can use Euclid’s algorithm to produce uq = q−1 mod p and up = p−1 mod q.
Thus quq ≡ 1 (mod p) and pup ≡ 1 (mod q).

Now let b = bpquq + bqpup. Then b2 mod p = (bpquq)
2 mod p = b2

p mod p = a mod p
and b2 mod q = (bqpup)

2 mod q = b2
q mod p = a mod q. Therefore b2 ≡ a (mod N).

Moreover b is itself in QRN since b mod p is in QRp and b mod q is in QRq.
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2 El Gamal Encryption
Because there is no known trapdoor that allows one to compute the discrete log effciently, the
constructions using the difficulty of computing discrete logarithms are different from the general
constructions we have seen, although it is inspired by the basic probabilistic encryption method of
Goldwasser and Micali.

The El Gamal encryption scheme is defined over any cyclic group G = {1, g, g2, . . . , gq−1} for
which group product and inverses are efficiently computable. In general for this scheme it is best
to have the size of G, q, to be prime.

A typical choice of the group G is the following: Let p be a prime of the form 2q + 1 for
q a prime. Instead of using the group Z∗

p = {1, g, g2, . . . , gp−2}, the group G will be QRp =
{1, g2, g4, . . . , gp−3} = {1, h, h2, . . . , hq−1} for h = g2. (We will see that choosing Z∗

p would not
be a good idea.)

Typically we have described encryption schemes involving an infinite family of schemes parametrized
by a key length parameter. We could do that if we specialized the El Gamal scheme to the groups
QRp as above. However, for more generality we simply describe it for each group G independently.

Definition 2.1. For a cyclic group G of order q with generator g and efficiently computable group
product and inverse, the public key encryption scheme El Gamal(G,g) is defined by the following:

• The key generation algorithm G produces a pair (e, d) by choosing y uniformly at random
from Zq, computes Y = gy and sets e = (G, q, Y ) and d = (G, g, y). (Note that since mul-
tiplication in G is efficiently computable, exponentiation in G is also efficiently computable
using repeated squaring.)

• Given a message M interpreted as an element of G, the encryption algorithm Ee(M) is
computed by choosing r uniformly at random from Zq and returning the pair (gr, Y rM).

• Given a ciphertext (R,Z) for R,Z ∈ G, the decryption algorithm Dd on input R and Z,
returns ZR−y. (By definition R = gr for some r and Z = Y rM = gyrM , so ZR−y =
gyrMg−ry = M .)

Intuitively, the security of the El Gamal scheme is related to the Diffie-Hellman scheme, since
an adversary has access to the public key and the ciphertext which includes R = gr, Y = gy, and
can recover the message from the ciphertext given gry.

Definition 2.2. The Decision Diffie-Hellman (DDH) Assumption for cyclic group G of order q
and generator g is that it is computationally hard for an algorithm to distinguish distributions
(ga, gb, gab) for random a, b ∈ Zq from (ga, gb, gz) for random a, b, z ∈ Zq.

(Again we have ignored our usual asymptotic notation and describe this for an individual group.
For an infinite family of groups parametrized by their size we could make ’computationally hard’
be our usual notion of computational indistinguishable.)

Theorem 2.3. El Gamal(G,g) is IND-CPA secure if and only if DDH(G,g) holds.
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Before we go into the proof we see why we do not want to choose the group G in the El Gamal
scheme to be Z∗

p. Consider DDH for Z∗
p. Above we noted that given an A = ga we can tell whether

a is even or odd by computing A(p−1)/2 and observing whether we obtain 1 or -1. Now given
A = ga, B = gb, if both a and b are odd then ab is odd so for a random z ∈ Zp−1, gz can be
distinguished from gab with probability at least 1/2. Similar if either a or b is even then ab is even
and again gz can be distinguished from gab with probability at least 1/2. Thus DDHZ∗p is false. It
is easy to see that the same reasoning holds if the order of the group q has any small prime factor.

We now prove Theorem 2.3.

Proof. We consider the following characterization of IND-CPA security for a public key encryp-
tion scheme: For any time-bounded adversary T and message construction algorithmM, the prob-
ability that for (e, d) output by G, message M output by M(e) and a random M ′ 6= M , the proba-
bility that T (e, Ee(M), M) = 1 differs by at most ε from the probability that T (e, Ee(M

′), M) = 1.
Now specializing this to the El Gamal scheme for G and g this definition is equivalent to

saying that for y randomly chosen from Zq and Y = gy, message M chosen as M(Y ), ran-
dom message M ′, and r randomly chosen from Zq, the probability that T (g, Y, R, Z, M) =
T (g, gy, gr, gyrM, M) = 1 differs by at most ε from the probability that T (g, gy, gr, gyrM ′, M) =
1. The only difference in these two cases is that the fourth input to A is gyrM ′ versus gyrM .

Suppose that DDH(G,g) fails, that is there is an algorithm D that takes inputs (A, B, C) in G3

and can distinguish distributions (ga, gb, gab) from (ga, gb, gz) for random a, b ∈ Zq, and z 6= ab
with probability more than ε. Define algorithm M(Y ) to output some fixed message M ignoring
Y . Define algorithm T that on input (g, Y, R, Z, M) computes A = R, B = Y and C = Z/M .
Observe that if (R,Z) is the El Gamal encryption of M then C = gry for A = gr and B = gy.
Since r and y are randomly chosen in Zq, the input distribution of (A, B, C) looks like (ga, gb, gab)
for random a, b. However, for a random M ′, C will be of the form gz for random z. Therefore the
algorithm T will distinguish this with probability more than ε.

Conversely, suppose that the IND-CPA security of El Gamal(G,g) fails, i.e. there is a time-
bounded algorithm T such that for r, y randomly chosen and M ′ randomly chosen the probability
that T (g, gy, gr, gyrM, M) = 1 is more than ε larger than the probability that T (g, gy, gr, gyrM ′, M) =
1.

Now suppose that we have inputs (A, B, C) for A = ga, B = gb and we want to determine if
C = gab. Define an algorithm D that on input (A, B, C):

1. Chooses a random w ∈ Zq and computes Y = Bw = gbw.

2. Chooses random s, t ∈ Zq, chooses M = M(Y ) and computes R = Asgt = gas+t and
Z = CswY tM = gzsw+bwtM for C = gz and passes the result to T . D outputs what T
outputs.

Now, by construction Y is a uniformly random element of G as in the El Gamal key generation, R is
also a random element of G, and (R,Z) is an encryption of M if and only if zsw+bwt = bw(as+t)
which is true if and only if z = ab. Furthermore for C = gz for a random z then Z is a uniformly
random element of G that is independent of R and thus (R,Z) is an encryption of a random
M ′ ∈ G.
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Therefore the difference in the probability that D outputs 1 in the two cases is precisely the
difference in the probability that T outputs 1 in these cases when is more than ε and thuse the
DDH(G,g) assumption fails.

The El Gamal scheme will be the basis for the IND-CCA2 secure public key Cramer-Shoup
encryption scheme that we define later but so far it is just as insecure under this kind of attack
as all our previous constructions. In order to define this scheme we will need cryptographic hash
functions which we define next time.
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